

Green Infrastructure at NYC Parks: What decisions are we making and what research is needed?

Nette Compton New York City Department of Parks & Recreation

Urban Eco-hydrology Science and Practice July 24th 2012

Greenstreets

Greenstreets Sites By Borough

Bronx Brooklyn Manhattan Queens Staten Island

Citywide Sites

862 Sites 332 Sites **2,582**

471 Sites

534 Sites

383 Sites

- 1. Optimize Green Infrastructure (GI) Design
- 2. Predict GI Performance and quantify value of the entire system
- 3. Reduce or Eliminate Maintenance from Watering Trucks

NYC Green Infrastructure Plan

Goals

- Reduce CSO outflows
- Manage run-off from 10% of the impervious surfaces in sewer-sheds through retention and infiltration over the next two decades

Green Infrastructure Fund

- \$1.5 billion over 20 years
- Funded by water rates
- \$187 million for construction in the next 4 years plus \$56 million for maintenance

Interagency Partnerships and Coordination

- Green Infrastructure Task Force
- Best Management Practices

Waterbodies exceeding Federal Standards

NYC CSO discharge: 30 billion gal/yr

Leading cause of water pollution in NYC's harbor

CSO discharging into Harlem River

Upcoming Research Topics

Research and Development Agenda

- Small chunks of research studies via Request for Proposals (Like NYC DDC's "town and gown")
- •Highest Priority Topics First
- Don't want to duplicate research – make use of data collected across nation (Onondaga County, International BMP database)
- Interagency Peer Review
 Panel to review and analyze
 data

Green Infrastructure at Parks: Plant Selection & Maintenance

"The Four Experiments" – Study 1

4 Experiments

- Rainfall, evaporation, & quantity of water intercepted by plants
- 2. Surface storage & infiltration; inflow from subwatershed
- 3. Soil moisture, percolation & overflow
- 4. Water table levels in response to rain events

Summer 2011

6 Interns

130 Greenstreets

Plant Mortality

	GS Site Assessment Data Collection					
Names			Date			
			- W	eather		
Borough:			Propert	ty No.:		
A) Intersection of:		OR	81			
Street 1		On Street:				
Street 2		Cross Street 1				
Street 3			Cross Street 2			
Installation (circle all	that apply)			-		
Season:	Spring	Fall				
Planting Date:			Cantrac	ct No.:		
Existing Conditions (c	ircle all that apply	1)	17.	-		
TYPOLOGY:	•Median	•Triangle/ Island	HARDSCAPE		•Sidewalk (4'+)	•Concrete Curb
	•Sidewalk	•Bumpout/	•Steel Fac	ed	•Beigium	•Fencing

ROW Bioswales

Self Sufficiency – design to reduce maintenance from watering trucks

Vegetative Selection and Health

Upcoming Research Topics

Pollinator Use

Green Infrastructure at Parks: Soil Management

Greenstreets Hydrological Processes

Ongoing Monitoring – Infiltration Rates

Cornell sprinkle infiltrometer

Ongoing Monitoring – Infiltration Rates

Location	Infiltration Rate (in/hr)
Orient, Metropolitan & Bushwick Aves, Brooklyn	5.55
Riverside Dr & W 104 th St, Manhattan	5.32
Furmanville Ave, 80 th St & Dry Harbor Rd, Queens	4.81
Nashville Blvd, 116 Av, & 209 St, Queens	4.72
Carmansville PG: Amsterdam Ave bet W 151 st & W 152 nd Sts, Manhattan	4.32
Lafayette Ave & Edgewater Rd, Bronx	4.27
Pelham Pkwy & Stillwell Ave, Bronx	3.71
Church Ave, 14 th Ave & 35 th St, Brooklyn	3.06
Bay St & Swan St, Staten Island	2.92
Gregory Saucedo Triangle: Ave T, Fillmore Ave, & E 57 th St, Brooklyn	2.87
Seagirt Blvd between Beach 20 th & Beach 19 th , Queens	2.76
Targee Ave & Van Duzer St, Staten Island	2.02
Westbourne Ave & Bay 25th St, Queens	1.15
Colfax St & Murdock Ave, Queens	0.95

Finding #1

No statistical difference between greenstreets (they all drain rapidly!)

N = 50 tests

Average Ksat: 4.5 in/hr

95% confidence that the median is between 3.2 in/hr and 5.8 in/hr

Maximum: 0.3 in/hr

Maximum: 10.6 in/hr

Finding #2

Clear statistical difference between tree pits with and without guards

Site Selection based on environmental factors

Clogging Rates of Various Media

Sizing Calculator / Maximum Hydraulic Loading Rates

Green Infrastructure at Parks: Stormwater Management

Stormwater Capture – Techniques

Pipe Inlets

Surface Edging

Trench Drains

Curb Inlets

Deep Excavation

Bioswale Grading

Monitoring Study 2

Green Innovation Grant – Upcoming

Inlets to Maximize Inflow and Minimize Clogging

Conceptual Section

Runoff Reduction Calculator

Easy to use, but scientifically underpinned spreadsheet model

Water Quality and Pollutant Removal Efficiency

Non-CSO areas

Groundwater Mounding Issues

In areas where infiltration won't work...

Sand Column Connections to higher infiltrating soils

Detention Based Controls

slow release back to sewers