A Deep Learning Approach To Universal Image
Manipulation Detection Using A New Convolutional Layer

Belhassen Bayar
Drexel University
Dept. of ECE
Philadelphia, PA, USA

bb632@drexel.edu

ABSTRACT

When creating a forgery, a forger can modify an image us-
ing many different image editing operations. Since a forensic
examiner must test for each of these, significant interest has
arisen in the development of universal forensic algorithms ca-
pable of detecting many different image editing operations
and manipulations. In this paper, we propose a universal
forensic approach to performing manipulation detection us-
ing deep learning. Specifically, we propose a new convolu-
tional network architecture capable of automatically learn-
ing manipulation detection features directly from training
data. In their current form, convolutional neural networks
will learn features that capture an image’s content as op-
posed to manipulation detection features. To overcome this
issue, we develop a new form of convolutional layer that
is specifically designed to suppress an image’s content and
adaptively learn manipulation detection features. Through
a series of experiments, we demonstrate that our proposed
approach can automatically learn how to detect multiple im-
age manipulations without relying on pre-selected features
or any preprocessing. The results of these experiments show
that our proposed approach can automatically detect several
different manipulations with an average accuracy of 99.10%.

CCS Concepts

eComputing methodologies — Image processing;

Keywords

Image forensics; Universal forgery detection; Convolutional
neural networks

1. INTRODUCTION

Over the past several years, researchers have developed a
variety of information forensic techniques to determine the
authenticity and processing history of digital images [20].
Much of this research has focused on identifying traces left
in an image by specific editing operations, then developing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

TH&MMSec 2016, June 20-23, 2016, Vigo, Spain
© 2016 ACM. ISBN 978-1-4503-4290-2/16/06. .. $15.00
DOL: http://dx.doi.org/10.1145/2909827.2930786

Matthew C. Stamm
Drexel University
Dept. of ECE
Philadelphia, PA, USA
mstamm@coe.drexel.edu

algorithms designed to detect these traces. This approach
has been used to develop algorithms targeted at detecting
image manipulations such as resizing and resampling [17, 8],
median filtering [9, 7], contrast enhancement [19], etc.

While the development of targeted editing detectors has
led to many important advances in information forensics,
this approach to image authentication suffers an important
drawback: Since a forger has many editing operations at
their disposal, a forensic investigator must apply a large
number of forensic tests to determine if and how an im-
age has been edited. If multiple forensic tests are run on an
image, the investigator must address several new problems
such as controlling the overall false alarm rate between mul-
tiple tests and dealing with conflicting results. Furthermore,
as new image editing operations are developed, researchers
must identify traces left by these new operations and design
associated detection algorithms.

In response to these issues, there has been significant in-
terest in the development of universal forensic algorithms de-
signed to detect many, if not all, editing operations. Recent
experimental evidence has shown that tools initially devel-
oped to perform steganalysis are capable of detecting a wide
variety of image editing operations [18]. These tools from
steganalysis operate by building local models of pixel depen-
dencies by analyzing the joint distribution of pixel value pre-
diction errors, then extracting detection features from these
joint distributions [16, 4]. Another recent effort towards
developing universal forensic detectors operates by building
Gaussian mixture models (GMMs) of image patches in un-
altered and manipulated images [3]. A series of binary ma-
nipulation detectors for several editing operations are used
then by comparing the log-likelihood of an image patch un-
der the GMM for different possible manipulations. While
these techniques show great promise, they each learn detec-
tion features from pre-selected models. As a result, a natural
question remains: Can strong universal detection features be
discovered without requiring human analysis or imposing a
predetermined model on the data?

In this work, we propose a new universal approach for
performing image editing detection that is capable of au-
tomatically learning traces left by editing. To accomplish
this, we make use of tools from deep learning known as con-
volutional neural networks (CNNs). CNNs have recently
fueled dramatic advances in image recognition due to their
ability to adaptively learn classification features rather than
rely on human-selected features [12]. These features are ex-
tracted from an image via a set of convolutional filters whose
coefficients are learned using a technique known as back-

propagation, then aggregated using an operation known as
pooling. Though CNNs are able to adaptively learn good
features for object recognition, they are not well suited for
performing image manipulation detection in their existing
form. Instead of learning filters that identify traces left by
editing and manipulation, the convolutional layers will ex-
tract features that capture an image’s content.

In this paper, we propose a new form of convolutional
layer designed to suppress an image’s content and adaptively
learn manipulation detection features. Using this new con-
volutional layer, we propose a CNN architecture capable of
automatically learning how to detect multiple image manip-
ulations without relying on pre-selected features or models.
Through a series of experiments, we evaluate our CNN’s
ability to act as a universal image manipulation detector.
The results of these experiments show that our proposed
approach can automatically detect several different manip-
ulations with an average accuracy of 99.10%.

2. BACKGROUND

In this section, we give a brief overview of CNNs. A CNN
is a special type of multi-layer neural network used in deep
learning that has recently gained significant attention in
the computer vision and machine learning communities [10,
21]. Convolutional neural networks first appeared in the late
1980’s with the handwritten zip code recognition [13] as an
extended version of artificial neural networks (ANN). They
have been also applied to handwritten digit recognition[11],
images, speech and time series data [12]. Instead of rely-
ing on hand-designed features, CNNs are able to adaptively
learn classification features. A deep learning to constructing
CNNg, i.e., stacking many hidden layers on top of one an-
other, has recently proved very effective for problems such
as object recognition [10]. These recent advances have been
fueled by the use of GPUs to overcome the computational
expense of estimating the large number of hyper-parameters
that a deep network involves.

While the particular design or “architecture” of CNNs may
vary, they are built using a common set of basic elements
and share a similar overall structure. The first layer is a
convolutional layer, comprising several convolutional filters
applied to the image in parallel. These filters act as a set of
feature extractors—their outputs are known as feature maps.

In this paper, matrices are denoted by bold letters, e.g., h,
w; and scalars by regular letters. More specifically, w(i,)
denotes the (i,7)" entry in the matrix w and w;; denotes
the (i,)" matrix in a set of matrices. The superscript ()
denotes the layer order in the network.

More specifically, the analytical expression of the convo-
lution within the CNN architecture is given in Eq. (1):

K
R =3 R x40, (1)
k=1

where h;n) is the j*" feature map output in the hidden layer
R, h{""" is the k' channel in the hidden layer h("~Y,
wg) is the k' channel in the j*" filter in ™ and b§.") is
its corresponding bias term. The convolutions and associa-
tions of these feature maps throughout layers strengthen the
learning ability of a CNN model to predict classes.

Though initially seeded with random values, the filter co-
efficients are learned via a process known as back-propagation

algorithm which we explain in details later. A convolutional
layer is typically followed by a pooling layer whose purpose
is to reduce the dimensionality of the feature maps. This
reduces the computational cost associated with training the
network and decreases the chances of over-fitting. Pooling
layers operate by dividing feature maps into small, possi-
bly overlapping windows, then retaining only single value
per window. Two of the most popular forms of pooling are
max-pooling and mean-pooling which retain the maximum
and mean value of each window respectively.

Most CNN architectures are built by stacking several con-
volutional layers and pooling layers on top of one another.
This enables the CNN to learn a set of low-level features in
early layers, then hierarchically group them into high-level
features in later layers. After this, the final set of feature
maps are passed to a set of fully connected layers that per-
form the classification. As in a traditional neural network,
every neuron in a fully connected layer is connected to each
of the outputs of the previous layer. Multiple fully con-
nected layers can be stacked on top of one another to form
deep architectures. The final (visible) fully connected layer
of neurons is trained to produce class scores for each class.
If sigmoids are used as activation functions for each neu-
ron in this layer, the class scores can be interpreted as class
probabilities.

During training the coefficients of the convolutional filters
w;; are automatically learned using an iterative algorithm
which alternates between feedforward and backpropagation
passes of the data. The ultimate goal of this algorithm is to
minimize the average loss between the actual labels and the
network outputs, i.e.,

_ 1R 0 *)
E=—3% " log(u"), (2)

i=1 k=1

where y *) and ygk) are respectively the true label and the

network output of the i*” image at the k" class with m
training images and ¢ neurons in the output layer.

To this aim, a variety of solvers could be used to solve the
underlying optimization problem. In this paper we consider

the stochastic gradient descent (SGD) to train our model.
(n)

The iterative update rule for the kernel coefficients w;;” in
CNN during the backpropagation pass is given below:
wE?) = wl(.;.l) + AwE?) (3)
n n n E
Aw(-j) = m-Aw(-j) —d-e-w(-j) e 9 7
1 1 1 (n)
ow;;
where wZL) represents the ¢® channel from the j* kernel

matrix in the hidden layer h{™that convolves with the ‘"
channel in the previous feature maps denoted by hgn_l),
A'wz(-?) denotes the gradient of wz(-;-l) and € is the learning
rate. The letters m and d are respectively the momentum
and the decay. The bias term bg") in (1) is updated using
the same equations presented in (3). The use of the decay
and momentum strategy is mainly for fast convergence as
explained by LeCun et al. in [14].

3. NEW CONVOLUTIONAL LAYER

Though CNNs are able to adaptively learn strong classifi-
cation features for object recognition, they are ill suited for

Kfilters

Input Image

<4

K feature maps

Figure 1: Our proposed convolutional layer. The
red coeflicient is -1 and the coefficients in the green
region sum to 1.

performing manipulation detection in their standard form.
This is because in their existing form, CNNs will tend to
learn features that represent an image’s content rather than
manipulation detection features. This effect has recently
been observed by Chen et al. during their efforts train a
CNN to perform median filtering detection [2]. In their ex-
periments, Chen et al. found that the CNN was not able
to learn median filtering detection features if images are di-
rectly fed to the input layer. Instead, they first extracted a
high dimensional feature set from the image known as the
median filter residual, then provided this to the input layer
of the CNN.

To overcome this problem, we propose a new form of con-
volutional layer that will force the CNN to learn manipu-
lation detection features from images without requiring any
preliminary feature extraction or pre-processing. The key
idea behind developing this layer is that certain local struc-
tural relationships exist between pixels independent of an
image’s content. Manipulations will alter these local rela-
tionships in a detectable way. As a result, manipulation
detection feature extractors must learn the relationship be-
tween a pixel and its local neighborhood while simultane-
ously suppressing the content of the image so that content
dependent features are not learned. For this to occur, the
first convolutional layer must not be allowed freely evolve
into any set of filters. Instead, it must be constrained to
evolve filters with the desired properties described above.

To accomplish this, we propose creating the first layer
of our CNN using convolutional filters that are constrained
to learn only a set of prediction error filters. Prediction
error filters are filters that predict the pixel value at the
center of the filter window, then subtract this central value
to produce the prediction error. More explicitly, each of the
K filters 'wgcl) in the first layer of the CNN have the following
constraints placed on them:

{ wlil)(070) =-1

1
Ym0 W (m) =1

where wg)(é, m) is the filter weight at the (£, m) position
and wgcl)(O7 0) is the filter weight at the center of the filter
window. Each filter in this layer is initialized by randomly
choosing each filter weight, then enforcing the constraints
in (4). During training, the constraints in (4) are again
enforced during each iteration after the filter weights have
undergone their stochastic gradient descent updates. This

(4)

allows the CNN to adaptively learn a strong set of manip-
ulation detection feature extractors, rather than having the
chosen a priori.

Pseudocode summarizing the training algorithm for our
new layer is shown below:

Algorithm 1 Training algorithm for our new convolutional
layer

1: Initilize wy’s using randomly drawn weights
2: i=1
3: while ¢ < max_iter do

4: Set wi(0,0)V) = 0 for all K filters

5: Normalize w,(c”’s such that >, ., 'w,(cl)(é, m) =1

6: Set wk(0,0)(l) = —1 for all K filters

7 Do feedforward pass

8: Update filter weights through stochastic gradient
descent and backpropagate errors

9: i=i+1

10: if training accuracy converges then

11: exit

12: end

13: Enforce constraints on wy’s given in Steps 4 through 6

We note that our proposed constrained convolutional layer
takes inspiration from a wide array of previous information
forensic and steganographic research. Many forensic and ste-
ganalysis algorithms can be viewed as specific forms of the
following detection approach: Predict each pixel value on the
basis of its neighbors according to a fixed rule, calculate the
prediction error, create a lower dimensional feature vector or
test statistic from these prediction errors, then make a deci-
sion on the basis of this feature vector or test statistic. This
approach has also been recently applied to camera model
identification [1]. It is quite easy to see that steganalysis
algorithms such as rich models [4] and SPAM [16] are very
successful instances of this approach. Furthermore, forensic
algorithms for detecting several manipulations such as resiz-
ing (using linear predictor residues [8]) and median filtering
(using streaking artifacts [9] or median filter residuals [7])
can also be viewed as specific forms of this approach.

While each of these algorithms discussed above rely on a
fixed predictor or set of predictors chosen a priori, our pro-
posed constrained convolutional layer enables a set of predic-
tors to be learned directly from the training data. Further-
more, the higher layers of our CNN (described in Section 4)
are able to learn the appropriate method for extracting low
dimensional detection features from the high dimensional
prediction errors. As a result, our proposed universal foren-
sic approach does not require analysis by a human expert
to create a detector for a new manipulation. This is par-
ticularly important because the design of detection features
and an appropriate detection rule by a human expert is both
time consuming and difficult.

4. NETWORK ARCHITECTURE

In this section, we present our proposed CNN architec-
ture for performing manipulation detection. Fig. 2 shows
our proposed CNN architecture as well as detailed informa-
tion about the size of each layer. As depicted in Fig. 2, our
network contains 8 layers, namely our proposed new convo-
lutional layer, 2 convolutional layers, 2 max-pooling layers
and 3 fully-connected layers. Images are fed into the CNN

Stride of 1 223

112 56

227

Dropout: 50%

Dropout: 50%

56

— 1

Stride

of 2

convl

Max

convRes
227 64 feature maps pooling

12 feature maps

Stride
of1

64 feature maps 48 feature maps pooling FC1: 4096 FC2: 4096

Figure 2: An illustration of the proposed CNN Architecture. The network’s input dimension is 51529 neurons
and the remaining 8 layers have 596748, 802816, 200704, 150528, 37632, 4096, 4096 and 5 neurons respectively

through an input layer, also known as the data layer. The
first layer of our network is 227 x 227 grayscale image.

4.1 Convolutional Layer

In our architecture, we use two types of convolutional
layers, i.e., regular and our proposed type of convolution.

4.2 Max-Pooling

We use the overlapping max-pooling layer similarly to [10]
which is a subsampling approach. The goal of pooling layer
is to reduce the resolution of the feature map and make it
robust to variations for previous learned features. Explicitly,
this method consists of computing the maximum value in

Throughout the regular convolutional layers, inputs are called each neighborhood at different positions. We use a kernel

images. Specifically, an input image of dimension w x [X ¢
from a hidden layer h(*™) is convolved with k different ker-
nels of dimension s X s X ¢ where w and [are respectively,
the width and the height of the input image, ¢ is the number
of feature maps in the hidden layer (") and s is the filter
size. The number of feature maps in the input image of the
hidden layer h(™ is k. The convolution is applied to all the
s x s local regions of the image, also called receptive fields,
with an overlapping distance called stride.

In our model, we have 2 non-constrained convolutional
layers respectively called convl and conv2. As can be seen
in Fig. 2, convl has 64 kernels that we depict only one of
size 7 X 7 x 12 with stride of 2 which yields 112 x 112 x 64
feature maps. conv2 has 48 kernels of size 5 X 5 x 64 with
stride of 1 which yields 56 x 56 x 48 feature maps

A convolutional layer is commonly followed by a nonlinear
mapping applied in an activation layer. An activation layer
is simply a nonlinear function applied to each pixel value.
In our work we use the Rectified Linear Unit (ReLU), i.e.,
f(z) = max(0,z) [15]. Krizhevsky et al. showed that in
practice, CNNs with ReLU neural activations train several
times faster than other activation functions [10].

The first layer in our CNN is our proposed constrained
layer discussed in Section 3. We refer to this layer as con-
vRes (see Figs. 1 and 2). Specifically, we have a set of 5 X 5
constrained prediction error filters with stride of 1. From
Fig. 2, we use 12 kernels whose outputs are 12 223 x 223
feature maps. These latter convolutional outputs are consid-
ered as a new image with 12 channels. Therefore, the next
convolutional kernel in convl has 12 channels. This type
of convolution is not followed by a ReLU mapping mainly
because the output feature maps carry the fingerprints left
by a tampering operation which can be destroyed by the
nonlinear operator.

size of 3 and a stride of 2. We can see from Fig. 2 that the
size of the feature map in conv1 is reduced from 112x112x 64
to 56 x 56 x 64 after the first max-pooling layer. The output
of the second max-pooling layer is a set of 37,632 neurons,
i.e. feature maps of size 28 x 28 x 48, reduced from the
previous feature maps of size 56 x 56 x 48.

Furthermore, the max-pooling layers are followed by a Lo-
cal Response Normalization (LRN) similarly applied in [10]
where the central value in each neighborhood is normalized
by the surrounding pixel values. This type of operation is
also called “brightness normalization”.

4.3 Dropout & Fully-Connected Layers

The dropout technique [5] applied in the fully-connected
layers fcl and fc2 consists of setting to zero the neurons of
the hidden layer with probability 0.5. It reduces the complex
co-adaptations of neurons and forces them to learn more
robust features. From Fig. 2 we have 4096 neurons in fcl
and fc2. Therefore, only 2048 neurons contribute in the
forward pass and the backpropagation.

Finally, the output layer has one neuron corresponding to
each possible class, i.e. one neuron for unaltered images as
well as a neuron for each possible manipulation. In the ex-
periments conducted in this paper, we considered 4 different
manipulations, therefore out output layer has 5 neurons. A
softmax operator is applied in fc3 to scale the output values
as the probabilities of an example to belong to each class.

S. EXPERIMENTAL RESULTS
5.1 Experimental Setup

To evaluate the performance of our proposed CNN model
for image editing detection, we first built an experimental

Table 1: CNN detection accuracy rate for binary detectors

Median Filtering

Gaussian Blurring

AWGN, 0 =2

Re-sampling

Accuracy

99.31%

99.32%

99.68%

99.40%

Table 2: Confusion matrix showing the detection accuracy of our multiclass CNN

Original | Median Filtering | Gaussian Blurring | AWGN, o = 2 | Re-sampling
Original 98.40% 0.52% 0.29% 0.34% 0.44%
Median Filtering 0.23% 98.27% 1.24% 0.12% 0.12%
Gaussian Blurring | 0.00% 0.18% 99.75% 0.00% 0.06%
AWGN, o =2 0.03% 0.04% 0.14% 99.77% 0.00%
Resampling 0.27% 0.20% 0.15% 0.00% 99.35%

database of unaltered and edited images. Our experimental
image datasets have been collected from 12 different cam-
era models and devices with no previous tampering or pre-
processing. We created a set of grayscale images by retain-
ing only the green color layer from each image. We cropped
each original image in the center, then subdivided it into
256 x 256 blocks. More explicitly, every block corresponds
to a new image that has its corresponding different tam-
pered images. In total we created a set of 261, 800 unaltered
blocks. Next, we generated a set of altered images. We did
this by applying the following operations to a set of unal-
tered image:

e Median Filtering with a 5 x 5 kernel.

e Gaussian Blurring with a 5 x 5 kernel and a standard
deviation o = 1.1.

o Additive White Gaussian Noise (AWGN) with stan-
dard deviation 2.

e Resampling (resizing) using bilinear interpolation and
a scaling factor 1.5.

We then cropped these images into 256 by 256 blocks to cre-
ate a total of 333,200 manipulated blocks. During training
and testing all the blocks are further cropped to 227 by 227
blocks.

We implemented all of our CNNs using the Caffe deep
learning framework [6]. We ran our experiments using one
Nvidia GeForce GTX 980 GPU with 4GB RAM. To facil-
itate this, we converted our datasets to the Imdb format.
We set the training parameters of the stochastic gradient
descent as follows: momentum = 0.9, decay = 0.0005, and
a fixed learning rate e = 10~ over all iterations. The choice
of the learning rate € is very crucial for both accuracy and
the stability of the weights gradient. A larger learning rate
would yield numerically unstable filters weights. We set the
batch size for training and testing to 32 images.

5.2 Results

In what follows, we use our suggested CNN model as a bi-
nary and multi-class classifier and we present our simulation
results.

5.2.1 Binary Classification Approach

In our first set of experiments, we trained different CNNs
to detect each of the four manipulations discussed in Sec-
tion 5.1. Each CNN corresponds to a binary classifier that

detects one type of possible image operation with the same
architecture outlined in Section 4. The output layer corre-
sponds to two neurons, i.e., original v.s. tampered image.
Decision made by picking the class corresponding to the neu-
ron with the highest activation. We chose 43, 500 unaltered
blocks and their corresponding tampered blocks to build our
training data for each type of forgery. Similarly we picked
16,000 unaltered blocks and their corresponding tampered
blocks to build our testing data for each type of forgery.
That is, for every binary classifier we have a total number
of 87,000 blocks for training and 32,000 blocks for testing.

Table 1 summarizes the performance of our proposed model
for binary classification to detect the underlying image oper-
ations. We can see from this table that our CNNs are able to
distinguish between unaltered and manipulated images with
at least 99.31% accuracy. We also note that we chose to stop
the training process after achieving an accuracy higher than
99% since it increases slowly above that rate. Therefore,
these results represent a lower-bound accuracy of what our
model can achieve.

Our model converges to a very high accuracy after few
thousands of iterations. Furthermore, we note that on our
machines this typically takes less than one hour.

5.2.2 Multi-class Classification Approach

In our second experiment we trained a multiclass CNN
to detect multiple types of image forgery, i.e., median fil-
tering, guassian blurring, additive white gaussian noise and
re-sampling v.s. authentic image. Following the first set of
experiments, a decision is made by picking the class corre-
sponding to the neuron with the highest activation. Given
the memory constraints of our machines, we picked 17,400
unaltered blocks and their four corresponding tampered blocks
to build our training data. Similarly we picked 6,400 unal-
tered blocks and their four corresponding tampered blocks
to build our testing data. That is, we have a total number
of 87,000 blocks for training and 32,000 blocks for testing.

The CNN was trained over 56, 000 iterations and then fine-
tuned for 9,000 iterations with fixed filters in all the con-
volutional layers. Since CNNs have many hyper-parameters
that must be learned throughout all layers, this constraint
during fine-tuning helps to direct the neurons in the fully
connected layers toward more optimal weights. That is, we
need to direct the gradient direction to a better minima by
fine-tuning only the fully-connected layers. This procedure
has increased the accuracy of our model by ~ 1%. The

entire training typically converges in less than 6 hours.

Our simulation results are summarized in Table 2. Our
proposed model achieves an accuracy of 99.10% of detecting
the different four types of forgery. From this confusion ma-
trix, we can see that our CNN can detect each manipulation
with very high accuracy.

These results are significant for several reasons. First,
they show that our CNN represents a universal manipu-
lations detection approach since it can be trained to de-
tect multiple manipulations without altering its architec-
ture. Second, and perhaps most surprisingly, our CNN can
be trained to automatically learn detection features for each
manipulation without requiring human intervention. This
suggests that as new manipulations are considered or devel-
oped, our CNN can potentially learn to detect them without
needing a human expert to identify detection features.

6. CONCLUSION

In this paper, we proposed a novel CNN-based univer-
sal forgery detection technique that can automatically learn
how to detect different image manipulations. To prevent the
CNN from learning features that represent an image’s con-
tent, we proposed a new form of convolutional specifically
designed to suppress an image’s content and learn manipula-
tion detection features. We accomplished this by specifically
constraining this new convolutional layer to learn prediction
error filters. Through a series of experiments, we demon-
strated that our CNN-based universal forensic approach can
automatically learn how to detect multiple image manipu-
lations without relying on pre-selected features or any pre-
processing. The results of these experiments demonstrated
that our proposed approach can automatically detect several
different manipulations with an average accuracy of 99.10%.

7. REFERENCES

[1] C. Chen and M. C. Stamm. Camera model
identification framework using an ensemble of
demosaicing features. In Information Forensics and
Security (WIFS), 2015 IEEE International Workshop
on, pages 1-6. IEEE, 2015.

[2] J. Chen, X. Kang, Y. Liu, and Z. J. Wang. Median
filtering forensics based on convolutional neural
networks. IEEFE Signal Processing Letters,
22(11):1849-1853, Nov. 2015.

[3] W. Fan, K. Wang, and F. Cayre. General-purpose
image forensics using patch likelihood under image
statistical models. In IEFE International Workshop
on Information Forensics and Security (WIFS), pages
1-6, Nov. 2015.

[4] J. Fridrich and J. Kodovsky. Rich models for
steganalysis of digital images. IEEE Transactions on
Information Forensics and Security, 7(3):868-882,
2012.

[5] G. E. Hinton, N. Srivastava, A. Krizhevsky,

I. Sutskever, and R. R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,

J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Catffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

10

[7] X. Kang, M. C. Stamm, A. Peng, and K. J. R. Liu.
Robust median filtering forensics using an
autoregressive model. IEEFE Transactions on
Information Forensics and Security,, 8(9):1456-1468,
Sept. 2013.

[8] M. Kirchner. Fast and reliable resampling detection by
spectral analysis of fixed linear predictor residue. In
Proceedings of the 10th ACM Workshop on
Multimedia and Security, MM&Sec ’08, pages 11-20,
New York, NY, USA, 2008. ACM.

[9] M. Kirchner and J. Fridrich. On detection of median

filtering in digital images. In IS&T/SPIE Electronic

Imaging, pages 754110-754110. International Society

for Optics and Photonics, 2010.

A. Krizhevsky, I. Sutskever, and G. E. Hinton.

Imagenet classification with deep convolutional neural

networks. In Advances in neural information

processing systems, pages 1097-1105, 2012.

B. B. Le Cun, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Handwritten

digit recognition with a back-propagation network. In

Advances in neural information processing systems.

Citeseer, 1990.

Y. LeCun and Y. Bengio. Convolutional networks for

images, speech, and time series. The handbook of brain

theory and neural networks, 3361(10):1995, 1995.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson,

R. E. Howard, W. Hubbard, and L. D. Jackel.

Backpropagation applied to handwritten zip code

recognition. Neural computation, 1(4):541-551, 1989.

Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller.

Efficient backprop. In Neural networks: Tricks of the

trade, pages 9—48. Springer, 2012.

V. Nair and G. E. Hinton. Rectified linear units

improve restricted boltzmann machines. In

International Conference on Machine Learning, pages

807-814, 2010.

T. Pevny, P. Bas, and J. Fridrich. Steganalysis by

subtractive pixel adjacency matrix. IEEE

Transactions on Information Forensics and Security,

5(2):215-224, June 2010.

A. C. Popescu and H. Farid. Exposing digital forgeries

by detecting traces of resampling. IEEE Transactions

on Signal Processing, 53(2):758-767, Feb. 2005.

X. Qiu, H. Li, W. Luo, and J. Huang. A universal

image forensic strategy based on steganalytic model.

In Proceedings of the 2nd ACM workshop on

Information hiding and multimedia security, pages

165-170. ACM, 2014.

M. C. Stamm and K. J. R. Liu. Forensic detection of

image manipulation using statistical intrinsic

fingerprints. IEEE Trans. on Information Forensics

and Security, 5(3):492 -506, 2010.

M. C. Stamm, M. Wu, and K. J. R. Liu. Information

forensics: An overview of the first decade. IEFE

Access, 1:167-200, 2013.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolutions. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1-9, 2015.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

