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Abstract—Existing approaches to camera model identification
frequently operate by building a parametric model of a camera
component, then using an estimate of these model parameters to
identify the source camera model. Since many components in a
camera’s processing pipeline are both complex and nonlinear, it
is often very difficult to build these parametric models or improve
their accuracy. In this paper, we propose a new framework
for identifying the model of an image’s source camera. Our
framework builds a rich model of a camera’s demosaicing
algorithm inspired by Fridrich et al.’s recent work on rich models
for steganalysis. We present experimental results showing that
our framework can identify the correct make and model of an
image’s source camera with an average accuracy of 99.2%.

I. INTRODUCTION

Blindly determining the make and model of an image’s
source camera is an important forensic problem. Information
about an image’s source can be used to verify its authenticity
and origin. This is particularly important since digital images
are often used as evidence during criminal investigations and
as intelligence in military and defense scenarios. Additionally,
source camera identification techniques can be used to uncover
similarities between different camera’s internal processing,
thus potentially exposing intellectual property theft [1].

Many forensic techniques have been proposed to perform
camera model identification [2]. Though some of these per-
form identification using a set of heuristically designed fea-
tures [3], the majority operate by building a parametric model
of a camera component or the artifacts it leaves behind,
then using an estimate of these model parameters to identify
the source camera model. Techniques have been proposed to
identify the model of an image’s source camera using models
of a camera’s demosaicing algorithm [1], [4], imaging sensor
noise [5], lens induced chromatic aberration [6], [7], and
proprietary implementations of JPEG compression [8].

Much of the research aimed at increasing the performance of
these techniques’ performance has focused on improving these
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parametric models. Most components in a camera’s processing
pipeline, however, are complex and highly nonlinear. This
makes it extremely difficult, if not impossible, to build para-
metric models that accurately capture intricate characteristics
of these components.

Recently, Fridrich et al. developed a novel method of
dealing with a similar problem in steganography. Rather than
attempting to build accurate parametric models of cover and
stego images, Fridrich et al. proposed building a rich model
by grouping together a diverse set of simple submodels [9].

In this paper, we propose a new framework for identifying
the model of an image’s source camera. Our framework
builds a rich model of a camera’s demosaicing algorithm by
grouping together a set of submodels. Each submodel is a
non-parametric model designed to capture partial information
of the demosaicing algorithm. By enforcing diversity among
these submodels, we form a comprehensive representation of a
camera’s demosaicing algorithm. We then build an ensemble
classifier trained on the information gathered by each sub-
model to identify the model of an image’s source camera. We
demonstrate the effectiveness of our framework through a set
of camera model identification experiments performed on a
large database of images.

II. BACKGROUND

When a digital camera captures an image, light reflected
from a real-world scene passes through the camera’s lens
and optical filter before hitting the imaging sensor. Since
most cameras are equipped with only one sensor, they cannot
simultaneously record all three primary colors of light at
each pixel location. To solve this dilemma, most commercial
cameras place a color filter array (CFA) immediately before
the sensor. The CFA allows only one color component of light
to pass through it at each position before reaching the sensor.
As a result, the sensor records only one color value at each
pixel location.

Next, the two unobserved color values at each pixel location
must be interpolated using a process known as demosaicing.
There are generally two types of demosaicing algorithms:
non-adaptive and adaptive. Non-adaptive demosaicing algo-
rithms apply a uniform strategy to interpolate unobserved
colors throughout the whole image. Most of modern cameras,
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Fig. 1. The processing pipeline in a digital camera.

however, employ adaptive demosaicing algorithms which can
provide higher picture quality. In order to prevent blurring
artifacts in textured regions, adaptive algorithms interpolate
missing colors in a manner that varies according to the image
content. They may also adopt different strategies in different
color channels, or interpolate one color channel using the pixel
values of other channels. This will introduce complex intra-
channel and inter-channel dependencies, making the demosaic-
ing algorithm very nonlinear.

After demosaicing, the image often undergoes a set of
post-processing operations such as white balancing, gamma
correction, and JPEG compression. A complete overview of a
camera’s image processing pipeline is shown in Fig. 1.

Though the processing pipeline of virtually all digital cam-
eras are composed of the same components, the implementa-
tion of each component typically varies from manufacturer to
manufacturer, and from model to model. Furthermore, many of
these components leave behind traces in an output image. As
a result, many forensic techniques have been developed that
use these traces to identify the make and model of an image’s
source camera. Most of these techniques roughly operate by
developing a parametric model of a specific component, or the
trace it leaves behind. Next, these parameters are estimated for
each image on a large training database of images captured by
a variety of different camera models. Finally, these parameter
values are used as features to train a classifier to identify an
image’s source camera.

A significant amount of previous camera model identifi-
cation research has focused on two components: the CFA
pattern and demosaicing algorithm. In [1], Swaminathan et
al. jointly estimate the CFA pattern and the demosaicing filter
/coefficients, then use these coefficients as features to train a
support vector machine to determine the source camera model.
To do this, they assume that the color interpolation algorithms
are local linear in different textural regions. In their algorithm,
images are divided into three different regions according to the
gradients, and the color interpolation parameters of each region
are estimated linearly. The CFA pattern is determined at last by
choosing the candidate CFA pattern that yeilds the smallest re-
interpolation error. Cao and Kot develop a partial second-order
derivative correlation model to formulate the demosaicing pro-
cess [4]. They divide all demosaiced color components into 16
categories and build a set of linear demosaicing equations from
the partial derivative correlation model for every category.
An expectation-maximization reverse classification (EMRC)
algorithm is applied to estimate the demosaicing weights for
each category. Finally, estimated weights, error statistics and
category sizes are used as features for classification.

While both of these algorithms can achieve good perfor-

Fig. 2. The Bayer pattern.

mance, they are limited by the fact that both essentially utilize
linear or local linear parametric model of the demosaicing pro-
cess. As we mentioned above, modern demosaicing algorithms
are both non-linear and adaptive, and contain complexities that
are difficult to capture using these linear models. Furthermore,
these complexities may be difficult or impossible to accurately
represent even using sophisticated parametric models. While
this poses a difficult challenge for camera model identification
research, it does not mean that these deomsaicing algorithms
cannot be accurately represented. In the next section, we
propose a new method to accurately capture the effects of
demosaicing algorithms for camera model identification.

III. SOURCE CAMERA IDENTIFICATION FRAMEWORK

In our proposed framework, we avoid building parametric
models and estimating model coefficients because it’s difficult
to accurately approximate the components in real cameras.
We use another way to represent the CFA pattern and color
interpolation algorithm inspired by Fridrich and Kodovsky’s
work in [9].

Fridrich and Kodovsky developed an universal strategy
for steganalysis. They first predict pixel values based on
the neighboring pixels with various prediction filters. Under
the assumption that natural images are smooth and noise
in images is independent of content, the prediction error of
stego images which contains hidden information embedded
by some steganography techniques will present a different
statistical characteristic compared to the error of authentic
images. They design a set of diverse submodels to represent
the joint probability distribution for each type of prediction
error. Each submodel can capture a slightly different trace left
by embedding algorithms. Hence, the rich model consisting
of diverse submodels can provide powerful information about
the embedding algorithms.

We adopt this approach for our source camera identification
problem. We build a rich model of demosaicing algorithm
used in a camera by generating a diverse set of submodels.
Each submodel can only capture part of information about
the demosaicing algorithm. To obtain an overall picture of the
demosaicing algorithm of a camera, we enforce the diversity
of submodels by designing different ways to generate them so
that every submodel conveys different aspects of demosaicing
information. Thus with a large number of diverse submodels,
the rich model grouped from them can yield a much more
comprehensive representation of the sophisticated, non-linear
color interpolation strategy in cameras compared to mathemat-
ical parametric models. We then form our feature space by
merging all submodels together and feed them into a multi-
class ensemble classifier for camera model identification.



Fig. 3. Architecture of our camera model identification framework.

As is shown in Fig. 3, we reconstruct image data of a
camera by re-sampling color components according to the
CFA pattern and re-interpolating missing colors with M pre-
selected baseline demosaicing algorithms. We then end up
with M demosaicing errors which are the differences between
the original images and our reconstructed versions. For every
demosaicing error, we design K different geometric structures
and build submodels by calculating co-occurrence matrices
over each geometric structure. The co-occurrence matrix is
essentially a way to represent the joint probability distribution
of demosaicing errors. A more detailed description of co-
occurrence matrix is presented later in this paper. The geomet-
ric structure of the joint error distribution can take both dif-
ferent color layers and relative positions in the assumed CFA
pattern into account. Thus the M×K submodels formed from
K geometric structures and M baseline demosaicing errors
can capture both intra-channel and cross channel correlation of
camera’s demosaicing algorithm. We now describe the details
of how we implement our proposed framework.

A. Feature Collection

1) Re-sampling and Re-interpolation: Among all CFA pat-
terns, the Bayer pattern is the most commonly used. In this
paper, we assume all the cameras we inspect employ the Bayer
pattern shown in Fig. 2. Since only one color is recorded at
one pixel, the blank blocks denote the missing colors in every
channel which have to be interpolated. For a particular image
X = {R,G,B} where R,G,B represent red, green and
blue channel of X respectively, we apply demosaicing process
Demos with re-sampling CFA pattern denoted as CFA and
baseline interpolation algorithm H . Then the demosaicing
error E is obtained as follows.

E = X−DemosCFA,H(X) (1)

In the demosaicing process, we re-sample the pixel values
in three channels according to the chosen CFA pattern. The
re-sampled pixel values are supposed to be directly captured
by the sensor and have no errors. Then, the other missing
two color components have to be domosaiced with nearest
neighbor interpolation, bilinear interpolation or other content-

adaptive demosaicing algorithms. The error is calculated as
the difference between reconstructed image and original one.

2) Quantization and Truncation: After demosaicing with
various baseline demosaicing algorithms, we get a set of differ-
ent demosaicing errors. Every error is a three-layer matrix and
pixel values in the positions which should be directly observed
by the Bayer pattern are all zeros. If we want to use co-
occurrence matrices to approximate its empirical probability
distribution, we have to control the value and range of the
error. Therefore, we quantize it with step q and truncate it
with threshold T .

E← truncT

(
round

(
E

q

))
(2)

We choose q = 2 and T = 3 to build co-occurrence matrices in
our experiment. However, the quantization step and truncation
threshold are not unchangeable. In fact, we believe that by
closely examining the distribution of demosaicing errors, there
should be more efficient and adaptive way to decide their
values.

3) Co-occurrence Matrix: We want to find the statistical
property of demosaicing errors by building co-occurrence
matrices (i.e. each submodel) which are an approximation of
the joint probability distribution of error values on designed
geometric patterns. The reason why we don’t treat error value
in every position independently is that there are dependencies
not only among errors on different positions within one
channel but also among errors in different channels due to
the adaptive property of real demosaicing algorithms. Co-
occurrence matrices built within and between color channels
can capture these intra-channel and inter-channel dependen-
cies which tell us information about demosaicing strategy in
cameras.

The format of our demosaicing errors provide us with
flexibility to build co-occurrence matrices. Ignoring pixels in
every channel which are directly observed according to the
CFA pattern, we can design a lot of geometric structures
to calculate diverse co-occurrence matrices from demosaiced
pixel values. Each co-occurrence matrix conveys its own part
of statistical characteristics of the demosaicing error. Here we
show an example of generating co-occurrence matrix within



Fig. 4. An example of geometric structure to build co-occurrence matrix of
red channel.

red channel in (3) and (4) where G1, B, R and G2 are the
sets of pixel locations which supposed to be directly observed
by the Bayer pattern. C

(R)
CFA,H(d1, d2, d3) denotes the co-

occurrence of red channel with CFA and H as the assumed
CFA pattern and demosaicing algorithm. | · | is the cardinality
of a set and 1(·) is the indicator function. We count frequency
of the triple (d1, d2, d3) appearing in the geometric format
shown in Fig. 4 as the joint probability distribution of the three
demosaiced values of red channel within the Bayer pattern.

G1 = {(i, j)|i odd, j odd}
B = {(i, j)|i odd, j even}
R = {(i, j)|i even, j odd}
G2 = {(i, j)|i even, j even}

(3)

C
(R)
CFA,H(d1, d2, d3) =

1

|G1|
∑

(i,j)∈G1

1
(
(Ri,j ,Ri,j+1,Ri+1,j+1) = (d1, d2, d3)

)
(4)

To capture the inter-channel correlation of demosaicing
algorithm, we can design co-occurrence between red and green
channel like (5). We calculate two co-occurrence matrices
according to the upper and lower geometric structures in Fig. 5
and add them together as the final co-occurrence for red-green
channel.

C
(RG)
CFA,H(d1, d2, d3) =

1

|G1|
∑

(i,j)∈G1

1
(
(Ri,j ,Ri,j+1,Gi,j+1) = (d1, d2, d3)

)
+

1

|G2|
∑

(i,j)∈G2

1
(
(Ri,j ,Ri−1,j ,Gi−1,j) = (d1, d2, d3)

)
(5)

After calculating all designed co-occurrence matrices for
all demosaicing errors, we merge (unite) these matrices as
the feature set for classification. In our experiment, we only
design two geometric patterns to generate co-occurrence ma-
trices because the more co-occurrences we have, the higher
dimension of features we get. Due to the curse of dimension
in machine learning, overfitting problem easily happens under
the circumstances of high dimensional features and insufficient
data. Given that it is not feasible gather a tremendous amount
of data for every camera model to overcome this problem,
dimension of feature is controlled by using a small number of
co-occurrences. In the experimental results, we will show that
the two designed co-occurrences can still capture an effective
amount of demosaicing information to distinguish different
camera models.

Fig. 5. An example of geometric structure to build co-occurrence matrix of
red-green channel.

B. Ensemble Classifier

1) Multi-class Ensemble Classifier: After feature extrac-
tion, we merge information from each submodel using a multi-
class ensemble classifier. The multi-class classifier is built
by grouping a set of binary ensemble classifiers together
and using majority voting to fuse all decisions from binary
classifers. A more detailed description of these binary en-
semble classifiers will be included in Section III-B2. Here
we apply all-vs-all strategy [10] to build multi-class classifier
from binary classifiers. Suppose we have N camera models to
identify, to train a N -class classifier, we have to train a binary
ensemble between every possible pair of N camera models
and each binary ensemble classifier can only differentiate two
camera models which it is trained on. As a result, we end up
with a number of N × (N − 1)/2 binary ensemble classifiers.
Since every binary classifier is an ensemble classifier, our
multi-class classifier is essentially an ensemble of ensemble
classifiers.

2) Binary Ensemble Classifier: The binary ensemble clas-
sifier we use to form our multi-class classifier is a modified
version of the classifier proposed by Kodovsky et at. [11]. A
diagram illustrating the architecture of each binary ensemble
classifier is shown in Fig. 6. The binary ensemble classifier
is substantially a random forest with a diverse set of L base
learners. Each base learner is a Fisher Linear Discriminant
(FLD) classifier whose features are a dsub-dimensional random
subspace of the full feature space. To enforce diversity, a
different set of dsub feature subset is generated uniformly at
random for each base learner. The decision of binary ensemble
classifier is reached by performing majority voting amongst
the outputs of every base learner.

When training the binary ensemble classifier, we generate
different feature subspace of dimension dsub and different
bootstrap sample with replacement with roughly 63% unique
training samples for each base learner. In Fig. 7, we show the
training framework of binary ensemble classifier. For every
particular base learner, there are roughly 37% remaining train-
ing samples which haven’t been used in its training phase and
can be exploited to test the trained base learner. After training
all base learners and testing on corresponding remaining data,
each sample in training data can gather on average 0.37 × L
votes. Majority voting is applied again to get the decisions for
all the training samples. We then can calculate “out-of-bag”
(OOB) error of the training data which is an unbiased estimate
of the testing error. The two parameters of binary ensemble



Fig. 6. Flow chart of binary ensemble classifier architecture.

Fig. 7. Flow chart of binary ensemble classifier training.

classifier, optimal dimension of feature subspace dsub and the
number of base learners L, are determined through searching
algorithms proposed in [11]. The goal of searching is to
minimize OOB error. For more detailed algorithms, readers
can refer to the original publication.

IV. SIMULATIONS AND RESULTS

To demonstrate the effectiveness of our proposed camera
model identification framework, we constructed an experi-
mental database of images to evaluate its performance. We
constructed this database by using 12 different camera models.
Each camera was used to capture between 128 and 601 images.
This resulted in a set of 3250 full resolution images. Each
image was captured and stored as a JPEG using the camera’s
default settings. A list of the camera models used to collect
these images is shown in Table I.

Next, we divided each of these images into a set of
512 × 512 pixel subimages. To ensure that each subimage
was suitable for extracting information about the demosaicing
algorithm, we measured the texture, intensity, and flatness of
each subimage using the features proposed in [12]. Subimages
that were saturated or that contained insufficient texture or
illumination were excluded. This is acceptable because in
practice, an investigator will only make use of blocks of
a full resolution that are suitable for forensic examination.
The remaining subimages were used to form an experimental
database of 58445 512 × 512 pixel images, with between
2118 and 10398 images from each camera model.

A. Experiment 1

We used this database to experimentally measure the perfor-
mance of our camera model identification framework. In this
experiment, we randomly chose 90% of the images from each
camera to use for training our classifier. The remaining 10%
of images from each model were used for testing our trained
classifier.

As we discussed in Section III, we wish to capture as much
interpolation information as possible by designing a large set

TABLE I
CAMERA MODELS USED IN OUR EXPERIMENT

Camera ID Make Model
1 Nikon D7100
2 Canon PowerShot SX500 IS
3 Canon PowerShot N2
4 Sony Alpha 58
5 Sony A6000
6 Xiaomi Mi 1S
7 Samsung Galaxy S4
8 Samsung Galaxy S5
9 Motorola Moto X 2013
10 Motorola Moto X 2014
11 Apple iPhone 5S
12 Apple iPhone 6

of co-occurrence matrices. If too many submodels are used,
however, the dimensionality of the feature space may grow
too large relative to the amount of training data, and we risk
overfitting.

To avoid overfitting in this experiment, we used four
submodels to construct our feature space. These submod-
els were built using two baseline demosaicing algorithms:
nearest neighbor and bilinear interpolation. When computing
the demosaicing residual for each of these algorithms, we
resampled each image using the Bayer mask. We then formed
one intra-channel (red channel) and one inter-channel (red-
green channel) co-occurrence matrix from the residuals of each
baseline demosaicing algorithm according to (4) and (5).

When constructing the co-occurance matrices, we used a
quantization step q = 2 and truncation threshold T = 3. As
a result, the dimension of the 3-D co-occurrence matrix for
each submodel was (2T + 1)3 = 343. After merging all co-
occurrences together, the dimension of full feature space was
343× 4 = 1372.

After training our classifier, we used it to identify the
model of the source camera of each image in the test set.
The classification results of this experiment are shown in
the confusion matrix in Table II. The percentage of images
correctly classified for each model are highlighted in bold.

From these results, we can see that our classifier achieved
an average accuracy of 99.2%. The minimum classification
accuracy of 97.3% was obtained for Camera 12 (iPhone
6). These results verify the ability of our framework to
effectively identify make and model of an image’s source
camera. Furthermore, we can also see that the most mixture
of Camera 12 (iPhone 6) is with Camera 11 (iPhone 5S).
This is likely because both of these cameras are made by
the same manufacturer, so it is possible that their demosaicing
algorithms have aspects in common.

B. Experiment 2

We conducted a second experiment to verify that our classi-
fier is not overfitting to device-specific information. To do this,
we gathered a set of images from an iPhone 5S and two iPhone
6’s that were not used to create our first experimental database.
We then pre-processed these images in the exact same way
as the first experiment by dividing them into subimages and
excluding overly smooth or saturated blocks. This resulted



TABLE II
CONFUSION MATRIX SHOWING CLASSIFICATION RESULTS OF EXPERIMENT 1

True Model
1 2 3 4 5 6 7 8 9 10 11 12

Id
en

tifi
ed

M
od

el

1 99.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 0.0% 100% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0%
3 0.2% 0.0% 99.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.5%
4 0.2% 0.0% 0.0% 99.8% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0% 99.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
6 0.0% 0.0% 0.0% 0.0% 0.0% 99.6% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0%
7 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 99.5% 0.4% 0.0% 0.0% 0.0% 0.0%
8 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.5% 99.3% 0.0% 0.4% 0.0% 0.0%
9 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 98.6% 0.4% 0.1% 0.2%

10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.3% 98.3% 0.1% 0.2%
11 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 98.8% 1.8%
12 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.9% 0.8% 97.3%

TABLE III
CLASSIFICATION RESULTS OF NEW CAMERA DATA IN EXPERIMENT 2

True Model
11-A 12-A 12-B

Id
en

tifi
ed

M
od

el

1 0.0% 0.0% 0.0%
2 0.1% 0.3% 0.0%
3 0.0% 1.6% 0.0%
4 0.1% 0.0% 0.0%
5 0.0% 0.0% 0.0%
6 0.1% 0.0% 0.0%
7 0.0% 0.0% 0.0%
8 0.1% 0.2% 0.0%
9 0.5% 0.4% 0.0%
10 0.0% 0.5% 0.0%
11 99.0% 0.8% 0.9%
12 0.3% 96.3% 99.1%

between 1911 and 3951 512 × 512 pixel testing images for
each new camera.

Next, we used our trained classifier from our first experi-
ment to identify the model of the source camera of each of
these new images. The classification results of this experiment
are shown in Table III. Entries highlighted in bold correspond
to correct classification results.

From these results, we can see that the accuracy of testing
on totally new data is consistent with the results presented
in the confusion matrix in Table II. This verifies that our
framework is not overfitting to characteristics of individual
devices. Furthermore, it reinforces that our proposed frame-
work can learn color interpolation information and identify
source camera models with high accuracy.

We note that in this experiment, the classification accuracy
for the first new iPhone 6 (12-A) decreases slightly to 96.3%.
After checking the pre-selected testing subimages from this
camera, we found there are a small amount of dark and noisy
subimages. When extracting feature from these subimages,
noise components may be dominant over color interpolation
information and confuse our classifier. This also tells us that
our designed pre-selection strategy according to three image
features can be improved. In future work, we plan to come up
with more effective strategy to ensure the quality of data.

V. CONCLUSION

In this paper, we propose a new framework for performing
source camera identification. Instead of building a parametric

model of a camera’s demosaicing algorithm, we build a rich
model from a diverse set of submodels. We compute a set
of demosaicing errors, which are the differences between
an image and a re-interpolated of it using several baseline
demosaicing algorithms. Each submodel is formed as a struc-
tured joint distribution of the demosaicing errors (represented
as co-occurrence matrix). Each submodel can capture partial
information about the demosaicing algorithm in a camera. We
then combine all submodels together, and feed them into a
multi-class ensemble classifier. We verify the effectiveness of
our proposed framework through a series of experiments. Our
experimental results show that our framework can identify the
correct make and model of an image’s source camera with an
average accuracy of 99.2%.
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origin and integrity using sensor noise,” Information Forensics and
Security, IEEE Transactions on, vol. 3, no. 1, pp. 74–90, 2008.


