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Abstract—The volume of data to be collected and processed for
effective real-time monitoring of large-scale computing systems
and networks poses significant Big Data challenges, and a scal-
able solution requires a systematic approach to dimensionality
reduction during the data collection, transmission, and analysis
phases. Compressive sampling can reduce the dimensionality
of the data collected at the source prior to transmission to
the monitoring station. Exploiting the fact that the compressed
samples preserve in approximate form, the correlation infor-
mation between data points in the original full-length signal,
we develop a low-cost anomaly detection technique based on
principal component analysis (PCA) aimed at incipient faults
such as software aging—the key idea being PCA is performed
directly on the compressed samples without having to reconstruct
the original signal. Using case studies involving long-running
enterprise benchmark applications, Trade6 and RuBBoS, with
injected memory leaks, we show that the performance of the
PCA-based detector when using just the compressed data is
almost equivalent to the case in which the raw data is completely
available, but achieved using significantly fewer samples with a
compression rate exceeding 75%.

Index Terms—Online monitoring, anomaly detection, principal
component analysis, compressive sampling

I. INTRODUCTION

Online performance monitoring of computing systems and
network infrastructure is vital to ensuring efficient opera-
tion [1], [2]. The monitored information has a variety of uses
including: (i) anomaly detection, diagnosis, and mitigation; (ii)
browsing back through historical data to help support cyber-
incident event reconstruction and analysis; and (iii) providing
real-time detection of anomalous behavior for operators who
monitor communication networks for malware or denial-of-
service attacks [3]. This paper considers a setting wherein
software-based sensors embedded within the IT infrastruc-
ture measure performance-related parameters associated with
server and network performance.1 Measurements can include
high-level metrics such as response time and throughput as
well as low-level metrics such as processor utilization, disk
I/O, memory, and network activity. Online monitoring of such
a system incurs various costs:

• The very act of monitoring a system interferes with
its performance. If sensing-related code is merged with
the application code, this change may interfere with the

1The work reported in this paper was performed while the second author,
T. Huang, was a student at Drexel University.

timing characteristics of the application or if sensors
execute as separate processes, they contend for CPU
resources along with the original application.

• The information collected by the sensors is typically
transmitted over the network to a central monitoring
station for analysis and visualization—especially to detect
anomalies that become apparent only upon an examina-
tion of correlations in the data acquired from multiple
locations. Transmitting large amounts of monitored data
over a network consumes bandwidth.

• Logging the data for future use such as analysis aimed
at capacity planning consumes disk space.

The volume of data that one has to monitor and process
for effective real-time monitoring of systems and networks
poses significant Big Data challenges in collection, analysis,
and storage [4]. Current state-of-the-art performance analysis
invariably deals with high-dimensional datasets of increasingly
larger size. Thus, it is important to derive a low-dimensional
structure as a compact or parsimonious representation of the
original dataset—by taking a systematic approach to dimen-
sionality reduction during the data collection and transmission
phases, as well as during the analysis phase.

From the viewpoint of reducing the dimensionality of the
data collected right at the source—server, router, or end
point—before transmitting to the monitoring station, compres-
sive sampling (CS) allows us to exploit any inherent sparsity
in the signal being sampled to reduce the dimensionality of
the collected data. The fundamental idea is that a signal can
be sparsified, that is, have a concise representation when
expressed in the proper basis; this property can be used to
capture the useful information content embedded in the signal
and condense it into a small amount of data. In other words,
one can acquire these signals from the underlying system
directly in a compressed form. In previous work, we have
shown that various signals from processor, memory, network,
and disk sub-systems can be acquired from servers running
enterprise benchmark applications in compressed form, and
that the recovered signals can be used to detect, with high
confidence, the existence of trends as well as abrupt changes
within the original signal [5]. Detection is achieved using
a substantially reduced sample size—a 70% reduction when
compared to traditional fixed-rate sampling.
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CS offers key advantages during the data collection and
transmission phases: (i) rather than tailoring the sensing
scheme to the specific signal being measured, a simple signal-
independent strategy such as randomized sampling can be
used, significantly reducing the intrusion of monitoring on
application performance; and (ii) since signals are acquired
directly in compressed form, the network bandwidth required
to transmit these few samples is reduced and so is the space
required to store them.

When operators wish to recover the original full-length
signal from the sample set at the monitoring station, the
process is posed as a linear programming (LP) problem and
solved under some sparsity assumptions using a class of recon-
struction algorithms called basis pursuit [6]. Though modern
solvers are quite efficient at processing large LP problems,
the computational burden of recovering and analyzing a large
number of signals from multiple servers at the monitoring
station may become substantial. In recent work, Huang et
al. [7] proved from a theoretical viewpoint that the data
samples acquired via compressive sampling preserve, in an
approximate form, properties such as mean and variance,
as well as spectral properties such as correlation between
data points. So, instead of having to reconstruct the original
signal—and incurring the associated computational cost—this
result points to the feasibility of applying well-known anomaly
detection methods such as principal component analysis (PCA)
directly on the compressed samples.

This paper builds on the theoretical results reported in
Huang et al. as well as previous work by DeCelles et al. [8]
and makes the following contributions:

• An anomaly detection process aimed at incipient faults
such as software aging, that is gradual resource ex-
haustion due to memory leaks and bloat [9]–[11]. Our
approach is one of PCA-based multi-variate analysis on
features capturing memory performance that are compres-
sively sampled in real time. The key point is that the PCA
is performed directly on compressed samples.

• We analyze the performance of the detector using case
studies involving two long-running enterprise benchmark
applications: IBM’s Trade Performance Benchmark (also
known as Trade6) and RuBBoS. The specific experiments
are aimed at detecting memory leaks within these ap-
plications. Experimental results show that the detector
performance using just the compressed feature data is
almost equivalent to the case in which the raw data
is completely available. Furthermore, this performance
is achieved using significantly fewer samples with a
compression rate exceeding 75%.

The paper is organized as follows. Section II discusses
related work in the area of compressive sampling and PCA-
based anomaly detection. Section III describes the experimen-
tal testbed and Section IV develops the anomaly detection
scheme and its performance is analyzed in Section V. We
conclude the paper in Section VI.

II. RELATED WORK

The variance-based subspace method, based on PCA, was
first proposed for anomaly detection in [12] and later improved
in [13] to explore the deviation in the network-wide traffic
volume and feature distributions caused by anomalies. The
scheme proposed in [12] applies PCA on training data and
separates the high-dimensional space of network traffic into
two subspaces: the normal subspace and the anomalous sub-
space. The normal subspace is low-dimensional and captures
high variance of normal traffic data, thus modeling the normal
behavior of a network. The projections of measurement data
onto the anomalous subspace are used to signal, identify and
classify anomalies.

Chitradevi et al. [14] propose a mechanism to detect anoma-
lies in wireless sensor networks through the use of a PCA-
based data model. This model depicting normal behavior of
sensor data is generated from principal components of nominal
data; similar to our work, it detects anomalies via PCA residual
from real-time data. To enhance the PCA model avoiding
its sensitivity to outlier values, the model employs a robust
estimator in the form of either the minimum volume ellipsoid
or the minimum covariance determinant. On the matter of cost,
while it keeps a modest computational complexity, it does not
make any strides to reduce communication overhead.

To improve their computational efficiency, PCA-based
methods have been decentralized for a variety of purposes in-
cluding anomaly detection [15]–[19]. A distributed framework
for PCA is proposed in [18] to achieve accurate detection
of network anomalies through monitoring of only the local
data. A distributed implementation of PCA is developed for
decomposable Gaussian graphical models in [19] to allow
decentralized anomaly detection in backbone networks. Dis-
tributed gossip algorithms using only local communication for
subspace estimation have been used in the context of sensor
networks [20], [21].

Kung et al. [22] use compressive sampling to reduce the
data-collection cost incurred in monitoring MapReduce ap-
plications for “stragglers” in a datacenter setting. Zhang et
al. [23] use it as a compressed storage technique for distributed
data analytics. Rather than store the complete data vector, each
storage node maintains a compressed snapshot of this vec-
tor. The reconstructed data provides approximate, but useful,
results for top-K queries, outlier and major mode detection.
A key difference is that in our work, anomaly detection is
performed using just the compressed samples; reconstructing
the original data is not necessary. There have been a few recent
attempts focused on anomaly detection using compressed data
obtained from the underlying system [24], [25]. These papers
also show that the performance of spectral-based methods
using only knowledge of the compressed samples is similar
to that of knowing the original data.

We build on the theoretical results reported in [7], [24]
to develop a low-cost detector aimed at incipient faults in
software systems operating in a cloud-based setting. Note that
Our previous work reported in [8] also focused on detecting
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(a) The testbed comprising Trade6 and RuBBoS applications.
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(b) Dynamic workload trace provided to the applications.

Fig. 1. The system hosting the enterprise applications, and examples of
workload traces, labeled WL 1 and WL 2, provided to the testbed in our
experiments. Incoming requests are plotted in granularity of 30 seconds.
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Fig. 2. Measurements corresponding to the AnonPages and CommittedAS
signals collected over a 24-hour operating period.

these types of faults using a combination of entropy and
PCA—the key difference being the use of the full-length data
set rather than the compressed samples.

III. TESTBED DESCRIPTION

Figure 1a shows the system setup used in our experiments,
comprising three servers networked via a gigabit switch.
Virtualization of this system is enabled by VMWare’s ESX
Server running a Linux RedHat kernel. The system hosts the
following applications:

• IBM’s Trade6 benchmark, a stock-trading application
which allows users to browse, buy, and sell stocks. Users
can perform dynamic content retrieval as well as transac-
tion commitments, requiring database reads and writes,
respectively. The application logic for Trade6 resides
within the WebSphere Application Server, which in turn
is hosted by the VM on the server within the application

tier. The database component is DB2, hosted on the server
running SUSE Enterprise Linux. It maintains 500 user
accounts and information for 3500 stocks.

• A servlet implementation of RuBBoS, a bulletin-board
benchmark similar to Slashdot with the capability to
browse for, and post messages. We host RuBBoS on
an Apache Tomcat application server with DB2 as the
database component.

We use httperf [26], an open-loop workload generator, to
send a 50% mix of buy/browse and browse/post transactions
to the Trade6 and RuBBoS applications, respectively, over
a period of 24 hours. The workload traces are synthesized
to reflect realistic operating scenarios such as time-of-day
variations as well as bursty traffic where request rates vary
significantly within short time periods. Example workload
traces are shown in Fig. 1b where each data point represents
the aggregated workload in a 30-second interval.

The anomaly detector uses the following features contained
within the /proc pseudo file system at the application tier,
specifically the contents of /proc/meminfo that report real-
time information about memory usage in Linux systems:

• MemFree. This quantity reflects the amount of physical
memory left unused in the system.

• CommittedAS. This quantity reflects the total amount
of memory allocated by processes in the system using
malloc() calls, even if the memory has not been used
by them as of yet.

• PageTables. This quantity reflects the amount of memory
dedicated to the lowest level of page tables.

• AnonPages. This quantity tracks the amount of anony-
mous or non-file backed pages mapped to page tables
responsible for the user space.

The above-listed features were chosen to support the case
study involving the detection of memory leaks. Here we have
chosen low-level metrics that are most likely impacted by this
fault. Figure 2 plots two of the features collected during an
experimental run of the system lasting 24 hours. The data
points are sampled once every two seconds.

IV. ANOMALY DETECTION USING COMPRESSED SAMPLES

Figure 3 shows the flow of the proposed anomaly detection
method which can be broken down into two distinct phases:
(i) compressed sampling of features at the local server; and
(ii) data analysis at the monitoring station to obtain the error
residuals. These are discussed in greater detail in this section.

A. Data Sampling and Transmission

In the data preparation phase, we isolate potential anoma-
lous information from the raw feature data before reducing
its size for transfer efficiency. More specifically, first from
the observed feature data, we construct a model of generally
normal behavior, implemented through the use of a simple
threshold-based filter, which compares the differences between
sequential observations. If the difference exceeds a set thresh-
old, it passes; otherwise, the value is set to zero. Our rationale
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Fig. 3. N data samples corresponding to each feature of interest are com-
pressively sampled to generate M samples for transmission. Here M << N .

is that under normal circumstances we should not observe
small trickling changes in the data. As for the threshold, we
select a value approximately equal to one standard deviation of
the respective feature data taken in a fault-free environment.
Next we take the difference between the observed data and
our model, separating out potential anomalies. Regarding the
overall approach, one might ask why it is necessary to model
the feature data. Our goal in employing the modeling process
is to eliminate the periodic behavior of the features so that we
may directly analyze the prediction residuals alone. Our model
is designed to isolate the underlying structure of our sampled
features. As such, by taking the difference between our actual
and modeled features, we may extract just the underlying
prediction errors for analysis.

The following brief discussion familiarizes the reader with
the basic concepts underlying compressive sampling. We refer
the reader to [27] for a more detailed (and gentle) introduction.
The fundamental premise behind compression is that a signal
can be sparsified, that is, have a concise representation when
expressed in the proper basis; this sparsity determines the
quality of the subsequent reconstruction. Denote the data to
be sampled as d, a vector of length N, and its representation
in basis B as x. In other words, d =

∑
N

i=1
xibi = Bx, where

bi denotes the ith row in the N ×N matrix B. For example,
if B is selected to be the Haar wavelet basis, the elements of
the vector x represent the coefficients obtained after wavelet
decomposition of the signal d. If the chosen basis B concisely
represents d, then a large number of the coefficient entries
in x will be zero or close to zero and can be ignored when
reconstructing the data. More precisely, if at most S entries
in x are nonzero, then x is called an S-sparse vector; if S is
small, d is said to be sparsely represented in the basis B.

Previously, we have shown that various members of the
Daubechies wavelet family can capture abrupt changes as
well as trends in various signals measured from computing
systems [5]. The signals were measured from a server exe-
cuting enterprise applications and included CPU utilization,
disk sectors read/written, network packets sent/received, and
memory and page table allocation. Moreover, the bases in the
wavelet family were able to sparsify the signal substantially
while maintaining good reconstruction quality: less than 2%
of the coefficients were needed to maintain the relative error

between the original and reconstructed signals within 1%.
When the signal can be represented sparsely in an appro-

priate basis, it can be acquired directly in a compressed form
rather than first collecting a number of samples and then
compressing them. The sampling strategy is quite simple and
is independent of the signal being measured. Prior to sample
collection, we generate an M × N Gaussian random matrix
G as the underlying sampling matrix, where N is the length
of the input data and M is the desired number of samples.
Elements in the matrix are independently chosen from a
standard Gaussian distribution of zero mean and variance
1/M . Suppose we wish to convert an N × 1 vector x to an
M×1 vector of samples y. The data is multiplied with G such
that y = GD = GBx = Ax, where A is a M ×N matrix.

B. Data Analysis

If we choose to reconstruct the original data d at the
monitoring station, this inverse problem must be solved: given
the vector y and matrix A, find a sparse vector x̃ of length N
such that y = Ax̃; i.e., we are looking for x̃ as a solution to

min
b∈RN

‖ b ‖0 subject to: y = Ab,

where ‖b‖0 is the l0 norm of b, i.e. the number of nonzero
entries in b. This problem is under-constrained since the
matrix A has more columns than rows; there are infinitely
many candidate signals b for which Ab = y. To solve
this under-determined system, the constraint of sparsity is
added, allowing only solutions which have a small number of
nonzero coefficients. If there is a unique sparse solution, then
the compressive sampling framework allows for the recovery
of that solution using basis pursuit strategies such as hard
thresholding pursuit.

Our method forgoes the above-described reconstruction
process and applies PCA directly on the compressed samples.
The key result that allows for this approach is explained later
in the section. PCA is a widely used tool that allows us
to derive a reduced set of the most significant uncorrelated
features that are linear combinations of the original set of
features [28]. Given K features, one selects k � K most
significant principal components out of K to define a k-
dimensional subspace based on observations of normal data
patterns. An underlying assumption in this approach is that a
very small number of principal components capture most of
the variance in the data. As a result, this approach typically
chooses k as the number of principal components which
capture a pre-defined percentage (say, 99%) of the variance in
the normal data. Then, a significant deviation in the projection
of the K-dimensional observed data onto this k-dimensional
reference (normal) subspace can be defined as an anomaly for
purposes of detection [12]. This approach is referred to as the
variance-based subspace method.

Recall that for every N data points associated with each
feature, M samples are generated via compressive sampling.
For a system with K features, the data in the K-dimensional
space is “mean centered” by subtracting the mean from
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individual data points—a necessary step to ensure that the
first principal component describes the direction of maximum
variance and not to the mean of the data. The eigenvectors
of the covariance matrix corresponding to the mean-centered
data are then calculated, defining the pattern of data dispersion
across the dimensions; of these eigenvectors, the one with the
highest eigenvalue would be the principal component which
best defines the data trend. Applying PCA on the sample sets
gives us K principal components p

1
, · · · , p

K
, each a length-

M vector. The K×K matrix of eigenvectors V serves to map
the data to a new coordinate system as per D̂ = V(D−μ(D)),
such that the greatest variance obtained by any projection of
the data lies on the first coordinate p1, the second greatest
variance on p2, and so on. Here, D denotes the original K×M
data set, μ(D) its mean, and D̂ its transformation. Moreover,
since the above equation describes a linear transformation, the
original data can be restored or reconstructed via the inverse
operation D̃ = VT D̂ + μ(D), where D̃ is the restored data
and V = V−T . Now, an incomplete matrix V in which
one or more eigenvectors are omitted can also be plugged
into the above equations to obtain D̃. This restored data
will differ from the original data in that the influence of the
component corresponding to the omitted eigenvectors will be
completely neutralized. The error or the projection residual
between the original and reconstructed signals is computed
as ε =

∑
M

i=1
||di − d̃i||, where di and d̂i denote the ith data

item within the original and reconstruction signal, respectively.
During each iteration of the analysis step, we measure the
residual from an M -sized block received per feature from the
server side. With the anomalies here manifesting as rises in
the data, we arrive at our detector signal by removing outliers
and smoothing our results via median filter.

The PCA-based detection described above is based on the
fact that the projection residual as a result of our detection
process is sufficiently similar to the residual obtained using
the full-length data to allow the use of ε for anomaly de-
tection. More specifically, we find that when the test data is
normal, key statistical properties of the distribution of ε, the
projection residual as a result of applying PCA directly on the
compressed samples, is related to those of the distribution of
the projection residual of the original full-length data [7].

Finally, we would like to make the case for multi-variate
analysis using PCA for detecting incipient faults. Figure 4
shows the difficulty of detecting faults by simply analyzing
the behavior of the raw low-level metrics. The plot focuses on
the metrics collected from the RuBBoS application between
8 and 16 hours of a 48-hour execution run; a 100 KB/min
leak is injected around the 12-hour mark. The PageTables
signal shows no discernable difference whereas AnonPages
and CommittedAS trend upwards ever so slightly. Note also
that these signals exhibit a periodic or seasonal pattern which
makes detecting faults using simple trend detection even more
difficult. Therefore, we believe that a multivariate analysis
technique that focuses on correlations between these met-
rics, such as the one presented in this paper, is necessary
for effective detection of small, incipient faults. PCA can
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Fig. 4. Effect of the memory leak on the features of interest for the RuBBoS
application. Plots show the full-length signals corresponding to each feature.

detect underlying patterns and correlations present in the M -
dimensional data set of compressed values. Here, the hypoth-
esis is that under nominal operating conditions, these values
remain correlated and stable, whereas as the fault starts to
manifest itself, they become less correlated and more erratic.
PCA is able to detect this (subtle) distortion in correlation.

V. PERFORMANCE EVALUATION

We consider long-running instances of the Trade6 and
RuBBoS applications over a 24-hour period, and our exper-
iments are aimed at detecting memory leaks within these
applications. We analyze data from Trade6 and RuBBoS under
the two workload traces, WL 1 and WL 2, shown previously
in Fig. 1b. All experiments described in this section were
conducted with the following settings. In the preparation phase
the raw feature data undergoes median filtering for denoising
purposes. This filter is set with a width of 5 units. In the
analysis phase the PCA residual, ε, is passed through a median
filter to clean and smooth the result for interpretation. For
these experiments, the post-process median filter was set with
a width of 30 units. In the course of experimentation, we
tested various compression rates, ranging from 50%, that is
1/2 the base sampling rate, to 98.4%, 1/64 the sampling rate.
Additionally, we experimented with three distinct block sizes
as inputs to the compressive sampling block: N = 128,
N = 256, and N = 512.

A. Baseline Comparison

As a point of reference, consider residuals generated under
three different approaches. Figure 5 shows our baseline case;
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Fig. 5. Projection residuals corresponding to analysis of the raw features,
reconstructed features and compressed features respectively using a Trade6
application. Effective fault-injection point is indicated.

this residual results from PCA being directly applied to the
raw feature data. Also present is the middle-ground case; here
the residual is generated via an approach through which the
feature data is condensed using compressive sampling then
reconstructed prior to PCA. Finally there is the approach
discussed in this paper; for this residual, PCA is applied to
the compressed data without reconstruction. Due to the 75%
compression rate applied to the data and consequent loss of
information, this residual magnitude is a bit diminished in
comparison to the other two. In all three cases, the residual
forms a clear crest indicative of a fault’s presence. With a
properly set threshold, one can detect anomalies via any of
these approaches without much difficulty.

These approaches differ when it comes to overall costs. In
the baseline case, we analyze the undisturbed feature data;
this is ideal for spotting any or all presence of faults, but
also requires the full cost of transmitting feature data from
the local server to the monitor. On the other hand, the middle-
ground case mitigates this transmission cost by reducing the
data to be transmitted then reconstructing it on the other
side. On the matter of detection, this may result in some loss
of information; though sufficient critical data should remain.
Unfortunately, depending on method used, the reconstruction
process could prove to be costly to the system. This brings
us to the focal approach of our paper. By applying PCA
directly on the compressively sampled data, which retains the
fault behavior information, we remove reconstruction from our
overall system. As such, this approach avoids both a high
cost of transmission and the full cost of reconstruction, while
maintaining sufficient detectability.

B. Sensitivity to Compression Rate

In the transmission phase, we reduce feature data through
compressive sampling. Greater reductions of data in this man-
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Fig. 6. Effect of varying compression rate on the residual corresponding to
workload WL 1 on RuBBoS. Block size is fixed at 256 units. Fault injection
point is indicated.

ner, of course, directly lead to fewer necessary transmissions.
This improved transmission efficiency is ideal for practical
use and as such, we would aim to maximize compression rate
whenever possible.

A potential limiting factor in our choice of compression
rate would be the ease of detection of possible faults from
the reduced data. Would fault indicators in the feature data
remain as detectable no matter how much compression is
applied? One would expect eventual loss as the rate increases.
By the very nature of compression, not all information can
be maintained; generally, this would imply that at greater
compression rates, there is an increased likelihood of key
data being lost within the converted form. Now one may
argue that due to the nature of degradation from software
aging, rather than having key data indicating the fault, all
data would effectively convey fault presence. This line of
thought would imply that compression would have no impact
on detectability; however, while true on some level, there is a
point at which data loss is so great that it becomes impossible
to differentiate fault indicators from noise. Furthermore, PCA
is limited by the quantity of analyzed data. A residual cannot
be produced when fewer than three data points are available.
With this in mind, we analyzed changes in the residual for six
different compression rates: 50%, 75%, 87.5%, 93.7%, 96.9%
and 98.4%. We tested these rates on performance data taken
from systems running workload WL 1 or WL 2 on one of
the two applications. In all scenarios, we experimented on a
nominal case wherein no fault is present through the full run
and a fault-influenced case in which a 100 KB per minute leak
is injected at the midpoint of a 24-hour run.

Figure 6 shows the impact of compression rate on detection
with a block size of N = 256 data points. One can see that
generally detection magnitude appears to taper off around the
96.9% and higher compression rates as was expected. With a
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few exceptions, the residual seems to maintain its magnitude
in levels with 50% and 75% generating the greatest residual,
87.5% and 93.7% yielding a lesser residual and so forth. In
the exceptional cases, the residual for rates such as 87.5%
and 93.7% vary in a way with some larger and some weaker
magnitudes. One should note that the nominal case residual
in RuBBoS under WL 1 reaches a height close to if not
surpassing cases in which a fault is present. This certainly
could pose a problem for designing a proper detector as
depending on choice of threshold, either false alarms or misses
in detection may result.

C. Sensitivity to Sample-Block Size

We select two block sizes for comparison, N = 128 and
N = 512 data points. One should note that changes in block
size will directly effect the time interval between samples of
the resulting residual. This simply follows from the fact that
each block encompasses time-series data sampled at a uniform
rate; a block of half the size would naturally represent a period
of half the duration.

When block size is reduced to 128 data points, there is
overall no significant difference in the potential for detection
between these results and that from the 256 block size; how-
ever, there is a general dip in magnitude of the residual. For the
most part, all potential false alarms and misses present in the
256 block size residuals are retained in the 128 unit variation.
Due to changes in time-scale and post-process filtering, one
may speculate that potential latencies would be reduced in
these cases. Figure 7 shows residuals for a block size of 512
units. Again, in general behavior there is not much difference
in this from the 128 and 256 variants. In terms of magnitude,
there is an overall increase in the residuals; moreover, this rise
in magnitude is much more profound in the leak-indicative
crests than the static rises under nominal conditions (as seen
in Figs. 7a and 7b). This change in the effective range between
nominal and fault-indicative peak allows for better overall
detection resulting in fewer potential misses and false alarms
with the larger block size. In trade-off, latency to detection
might be greater for these cases.

D. Detector Performance

We now analyze performance of the detection scheme for
the previously discussed settings in terms of latency of detec-
tion (shown as number of analyzed blocks) as well as false
alarms and misses. To this end, we test the detector with an
appropriate range of threshold values. We measure latency for
each of the tested block sizes; however for purposes of being
concise, we only consider a single compression rate (75%), as
we established a general trend of diminishing detection with
higher compressions.

Figures 8 through 10 show latency times in addition to
indicating whether or not the particular experiment resulted
in a false alarm or missed detection. Different block sizes
correspond to different effective time durations in terms of
the analysis latency. In the majority of tested cases with block
sizes of 128 and 256 (see Figs. 8 and 9), the residual used
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Fig. 7. Residual used for detection under workload WL 1. Both fault
indicative and nominal cases shown. Fault injection is indicated.

Trade6 RuBBoS
Threshold WL 1 WL 2 WL 1 WL 2

0.25 16 41 FA FA
0.5 39 157 FA 20
1.0 miss miss FA 59
1.5 miss miss FA miss
2.0 miss miss 81 miss

Fig. 8. Detection latency in blocks (4 min) as a function of threshold. Block
size and compression rate are set to 128 units and 75% respectively.

for detection does not exceed a magnitude of 1 or 2 (in the
respective cases of 128 and 256 block sizes) resulting in misses
for higher thresholds. This becomes particularly problematic
when one considers the fact that the WL 1 workload using
RuBBoS under the same settings can generate residual of 2
or higher magnitude under nominal conditions. As such, for
these block settings, regardless of chosen threshold, there may
be a likely occurrence of false alarm or missed detection. This
problem is, of course, mitigated with the selection of a higher
block size, such as 512. With this block size (see Fig. 10), the
analysis at each iteration sufficiently indicates the presence of
the fault in terms of residual magnitude for each case (not
simply the RuBBoS WL 1 case). As such, we see from the
figure a clear range around which we may set our threshold
to minimize the chance of false alarm and missed detection.
Note that given the direct impact that compression rate has
on all residual magnitude, proper threshold range becomes a
function of compression rate. In our experiment, we see that
for a rate of 75%, the ideal threshold range would be between
a residual magnitude of 3 and 4. For a block size of 512, this
range would yield a latency of around approximately 21 and
35 blocks, in which a block would correspond to 17 minutes
of collected data.
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Trade6 RuBBoS
Threshold WL 1 WL 2 WL 1 WL 2

0.5 17 22 FA FA
1.0 31 61 FA 21
1.5 77 miss FA 35
2.0 miss miss FA 78
2.5 miss miss 31 miss

Fig. 9. Detection latency in blocks (8.5 min) as a function of threshold.
Block size and compression rate are set to 256 units and 75% respectively.

Trade6 RuBBoS
Threshold WL 1 WL 2 WL 1 WL 2

0.5 11 14 FA FA
2.0 25 25 FA 22
3.0 27 30 21 25
3.5 28 34 22 26
4.5 28 miss 26 30

Fig. 10. Detection latency in blocks (17 min) as a function of threshold. Block
size and compression rate are set to N = 512 units and 75%, respectively.

E. Computational Complexity

Our approach performs compressive sampling on both the
feature data and its model. This process can be reduced to
a simple matrix multiplication converting N values into M
for each of K features, resulting in a cost of O(NMK).
Additionally, we compute a residual via PCA on a set of
compressed data blocks originating from our features. With
M data points per block and K features, we have a cost
of O(MK2 + K3) based on covariance matrix computation
and eigenvalue decomposition. The remaining operations in
our approach, including median filtering and generating the
model output, have a cost of O(n) making their impact on
the whole negligible. As such, the overall complexity becomes
O(NMK + MK2 + K3). This cost is fairly minimal when
one considers the fact that the variable of largest growth, the
feature count, is generally kept small in these experiments.

VI. CONCLUSIONS

Building on theoretical results that compressively sampled
data preserves in approximate form, the correlation informa-
tion between data points in the original full-length signal,
we have developed an anomaly detection technique based on
PCA aimed at incipient faults such as software aging. Using
case studies involving the Trade6 and RuBBoS benchmarks,
we showed that the PCA-based detector performance using
just the compressed data is almost equivalent to the case in
which the raw data is completely available, but achieved using
significantly fewer samples with a compression rate exceeding
75%. Using higher compression rates we gain significant
reduction in communication overhead at the cost of detection
accuracy. We have also shown that a stable detector in the
sense of reduced false alarms and misses can be achieved by
appropriately tuning the block size and threshold parameters.
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