
Efficient Online Performance Monitoring of
Computing Systems using Predictive Models

Salvador DeCelles, Matthew C. Stamm, Nagarajan Kandasamy

ECE Department, Drexel University
Philadelphia, PA 19104, USA

Email: {sid28, mstamm, kandasamy}@drexel.edu

Abstract—Performance monitoring of datacenters provides
vital information for dynamic resource provisioning, anomaly
detection, capacity planning, and metering decisions. Online
monitoring, however, incurs a variety of costs: the very act of
monitoring a system interferes with its performance, consuming
network bandwidth and disk space. With the goal of reducing
these costs, we develop and validate a strategy based on ex-
ploiting the underlying structure of the signal being monitored
to sparsify it prior to transmission to a monitoring station
for analysis and logging. Specifically, predictive models are
designed to estimate the signals of interest. These models are
then used to obtain prediction errors—the error between the
signal and the corresponding estimate—that are then treated
as a sparse representation of the original signal while retaining
key information. This transformation allows for far less data
to be transmitted to the monitoring station, at which point the
signal is reconstructed by simply using the prediction errors.
We show that classical techniques such as principal component
analysis (PCA) can be applied to the reconstructed signal for
anomaly detection. Experimental results using the Trade6 and
RuBBoS benchmarks indicate a significant reduction in overall
transmission costs—greater that 95% in some cases—while
retaining sufficient detection accuracy.
Index Terms—Online monitoring, anomaly detection, predic-

tive models, principal component analysis.

I. INTRODUCTION

Online monitoring of performance-related metrics—high-
level metrics such as response time and throughput as well as
low-level metrics such as processor utilization, disk I/O, mem-
ory, and network activity—is a necessary first step towards de-
tecting anomalies in computing systems. These measurements
can help detect performance-related hotspots and bottlenecks
as well as incipient faults associated with gradual resource
exhaustion—the so-called software aging problem [1]–[3]. The
data can also help detect security breaches resulting in the
computers being infected by malicious software [4].
We consider a server cluster wherein software-based sen-

sors embedded within the infrastructure measure various
performance-related parameters associated with the cluster.
The measured information is transmitted over a network
to a monitoring station for data analysis and visualization.
Online monitoring, however, incurs a variety of costs. First,
the very act of monitoring an application interferes with
its performance. If sensing-related code is merged with the
application code, this change may interfere with the timing
characteristics of the application or if sensors execute as

separate processes, they contend for CPU resources along with
the original application. Transmitting the monitored data over
a network consumes bandwidth. Finally, logging the data for
future analysis consumes disk space.
With the goal of reducing the above-described costs, we

develop and validate a strategy based on exploiting the under-
lying structure of the signal being monitored to sparsify it, that
is encode it concisely, prior to transmission to a monitoring
station for analysis and logging. Specifically, predictive models
are designed to estimate the signals of interest. These models
are then used to obtain prediction errors—the error between
the signal and the corresponding estimate—that are then
treated as a sparse representation of the original signal while
retaining key information. This transformation allows for far
less data to be transmitted to the monitoring station, at which
point the signal is reconstructed by simply using the prediction
errors.
The proposed method borrows from the dual-prediction

scheme used in MPEG encoding of video frames [5].1 Since
a scene typically changes very little over a short period
of time, a great deal of redundancy exists between video
frames. The MPEG video encoder exploits this redundancy by
predicting each video frame from other frames, then storing
only the necessary information to predict each frame, along
with the prediction error. To reconstruct the video, the decoder
creates a prediction of each video frame from previously
decoded frames using the same predictor employed by the en-
coder. Since the encoder and decoder use the same predictive
model, their prediction errors will be identical. This allows
the decoder to then reconstruct the video frame by adding
the prediction error stored by the encoder to the decoder’s
predicted frame.
Sparsifying the data acquired at a local server prior to

transmission to the monitoring station can be performed in
one of two ways: the collected features, that is the raw data,
can be sparsified, or one can sparsify an appropriate signal
that is derived from this raw data—in our case, the entropy
of the data. We show that using the entropy of the raw data
results in significant transmission savings. The very process
of calculating entropy involves summarizing the information

1The method is also commonly known as differential pulse code modulation
or DPCM.

2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing

978-1-4503-3890-5/15 $31.00 © 2015 IEEE

DOI 10.1109/UCC.2015.31

152

2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing

978-0-7695-5697-0/15 $31.00 © 2015 IEEE

DOI 10.1109/UCC.2015.31

152

contained within a larger data set by a single value; sparsifying
the resulting signal results in further savings. We also show
that these entropy signals capture enough information about
the raw data to be useful in detecting incipient faults.
We illustrate the advantages of the proposed approach

in terms of the reduction in data transmission with respect
to the baseline case in which the entirety of the data is
transmitted to the monitoring station. Our case studies involve
two long-running enterprise benchmark applications, IBM’s
Trade Performance Benchmark (also known as Trade6) and
RuBBoS, and the specific experiments are aimed at detecting
memory leaks within these applications. We are able to show
that the sparsified signals can be recovered at the monitoring
station with sufficient fidelity for PCA-based methods to be
successfully used for anomaly detection. Current state-of-the-
art performance analysis techniques invariably deal with high-
dimensional datasets of increasingly larger size—thus, it is
important to derive a low-dimensional structure as a compact
representation of the original dataset. Principal component
analysis (PCA) allows us to examine the linear relationship
between features of interest and derive a reduced set of
unrelated features that are linear combinations of the original
features [6]. The high-dimensional dataset is transformed into
new bases called principal components that are ordered by the
strength of the correlations exhibited by the data along their
respective directions.
We quantify our results in terms of transmission savings

and detection latency. Through the sparsification process using
proper threshold settings, we achieve transmission savings of
more than 95% when compared to the baseline case for both
Trade6 and RuBBoS. Regarding the detection of anomalies,
we demonstrate that with appropriately tuned parameters, we
can minimize the occurrence of false alarms and misses. The
approach is capable of successfully detecting the presence of
a fault in under thirty minutes for both applications used in
the case study.
The paper is organized as follows. Section II discusses the

experimental testbed. Section III describes the sparsification
process and Section IV discusses the application of PCA-
based anomaly detection on the reconstructed data. Section V
presents the case studies. Section VI discusses related work
and Section VII provides some concluding remarks.

II. TESTBED DESCRIPTION

Fig. 1a shows the system setup used in our experiments,
comprising three servers networked via a gigabit switch.
Virtualization of this system is enabled by VMWare’s ESX
Server running a Linux RedHat kernel. The operating system
on the virtual machine (VM) is the SUSE Enterprise Linux
Server Edition. The system hosts the following applications:

• IBM’s Trade6 benchmark, a stock-trading application
which allows users to browse, buy, and sell stocks.
Users can perform dynamic content retrieval as well as
transaction commitments, requiring database reads and
writes, respectively. The application logic for Trade6
resides within the IBM WebSphere Application Server,

Trade6/
RuBBoS

(a) The testbed comprising Trade6 and RuBBoS applications.

Time (in minutes)
0 1000 2000 3000 4000 5000

N
um

be
r

of
 r

eq
ue

st
s

0

1000

2000

3000

4000
WL_1

WL_2

(b) Dynamic workload trace provided to the applications.

Fig. 1. The system hosting the Trade6 and RuBBoS applications, and
examples of workload traces, labeled WL 1 and WL 2, provided to the
testbed in our experiments. Incoming requests are plotted in granularity of
30 seconds.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
iz

e
(k

B
)

×105

0.95

1

1.05

1.1

1.15

1.2
AnonPages

Time (sec)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
iz

e
(k

B
)

×105

3.5

4

4.5

5

5.5
CommittedAS

Fig. 2. Measurements corresponding to the AnonPages and CommittedAS
signals collected over a 24-hour operating period.

which in turn is hosted by the VM on the server within
the application tier. The database component is DB2,
hosted on the server running SUSE Enterprise Linux. The
database maintains 500 user accounts and information for
3500 stocks.

• A servlet implementation of RuBBoS, a bulletin-board
benchmark similar to Slashdot with the capability to
browse for, and post messages. We host RuBBoS on
an Apache Tomcat application server with DB2 as the
database component.

We use httperf [7], an open-loop workload generator, to
send a mix of buy/browse and browse/post transactions to the
Trade6 and RuBBoS applications, respectively, over a period
of 24 hours. The workload traces are synthesized to reflect
realistic operating scenarios such as time-of-day variations as
well as bursty traffic where request rates vary significantly

153153

+
-

Threshold

filter

Delay

Predictor

+ +

e(t)xs(t) δ(t)

x̂m(t)

x̂(t|t− 1)

x̂(t)

Delay

Data transfer

Local server

x̂(t)

x̂(t|t− 1)

x̂m(t)

Predictor

+
+

Monitoring station

Fig. 3. The dual-prediction scheme used to sparsify the signal.

within short time periods. Some Sample workload traces are
shown in Fig. 1b. Each data point in the figure represents the
aggregated workload in a 30-second interval.
Our experiments use the following metrics contained within

the /proc pseudo file system at the application tier, specifi-
cally the contents of /proc/meminfo that report real-time
information about memory usage in Linux systems:

• MemFree. This quantity reflects the amount of physical
memory left unused in the system.

• CommittedAS. This quantity reflects the total amount
of memory allocated by processes in the system using
malloc() calls, even if the memory has not been used
by them as of yet. For example, a process may allocate
1 GB of memory but only touch 100 MB of it. Although
the current memory usage is only 100 MB, the 1 GB
allocation is memory that has been committed by the
memory subsystem to the process and can be used at
any time by the process.

• PageTables. This quantity reflects the amount of memory
dedicated to the lowest level of page tables.

• AnonPages. This quantity tracks the amount of anony-
mous or non-file backed pages mapped to page tables
responsible for the user space.

The above-listed features were chosen to support the case
study involving the detection of memory leaks. Here we have
chosen low-level metrics that are most likely impacted by this
fault. Figure 2 plots two of the features collected during an
experimental run of the system lasting 24 hours. The data
points are sampled once every two seconds.

III. SPARSIFYING SIGNALS VIA DUAL PREDICTION

We describe the spasification process, starting with acquir-
ing the signal of interest at the local server to its reconstruction
at the monitoring station. Figure 3 illustrates this process in
its entirety, and we use the AnonPages signal in Fig. 2 as the
running example to explain the theory behind it.
We periodically sample the noise influenced signal y(t) on

the server side as

y(t) = x(t) + n(t),

where x(t) is the true measurement and n(t) is the noise
process corrupting it. The observed signal is then passed
through a denoising filter to produce a close estimate of our
signal, shown as xs(t) in Fig. 3. Simultaneously, we predict
the signal’s value at time t, x̂(t), via a feedback loop as a
function of the k previous values as

x̂(t|t− 1) = g
(
x̂m(t− 1), . . . , x̂m(t− k)

)
,

where g is the predictor function. Here, x̂(t|t− 1) denotes the
predicted value of x(t) obtained at time t− 1. We then delay
this prediction to the next iteration of the process. Next we
compute the prediction error e(t) as the difference between
x̂(t) and xs(t):

e(t) = xs(t)− x̂(t).

At the monitoring station, using a prediction loop mirroring
that in the server, we calculate x̂m(t) in parallel with the
generation of xs(t). Finally, to reconstruct the signal at the
fusion center, we add to x̂m(t) the filtered prediction error
δ(t) received from the server:

x̂m(t) = x̂(t) + δ(t).

The prediction error, as the deviation between the signal and
its corresponding prediction, tends to be rather sparse, that is to
say many of its values are zero or close to zero. Furthermore,
one may omit values near zero without losing any critical
information, depending on the scale of the featured signal.
As such, for our purposes, the prediction error is the ideal
signal to transfer from the server to the monitoring center. To
reduce overall communication, we subject e(t) to a threshold
filter, only passing deviations which are sufficiently large, say
greater than a threshold value η. The resultant signal δ(t) is
then transmitted to the fusion center so long as the value is
not zero.

δ(t) =

{
e(t), if e(t) ≥ η
0, if e(t) < η

During iterations when δ(t) is zero no information is trans-
mitted; δ(t) at the monitoring station, synchronized with the
iteration time of the server, takes the value of zero by default.
To illustrate the sparsification process, we apply the above

discussed technique to the CommittedAS signal, previously

154154

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
iz

e
(k

B
)

×105

3.5

4

4.5

5
CommittedAS

(a) Estimated signal on the local server, xs(t).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
iz

e
(k

B
)

×104

-4

-2

0

2

4

6

(b) The prediction error, δ(t).

Time (sec)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
iz

e
(k

B
)

×105

3.5

4

4.5

5

(c) The reconstructed signal at the monitoring center, x̂m(t).

Fig. 4. Application of SPARSE R method on the CommittedAS signal.

shown in Fig. 2, which is sampled once every two seconds
from our system. One may notice the presence of data-spikes
throughout the signal. To remove these so that we could work
with a much cleaner signal, we denoise it using a simple
median filter as

xs(t) = med�
(
y(t+ �

2
), . . . , y(t− �

2
)
)
,

where l is the filter width. The resulting signal is shown in
Fig. 4a. Also, common among the features related to the
memory subsystem is a behavior where the signal would
remain steady for lengthy durations interspersed with brief
jumps in value. Given this pattern, we employ a simple
predictor which returns the previous value in anticipation that
no change has occurred as

x̂(t|t− 1) = x̂m(t− 1).

As such, we effectively reduce the prediction error to the
difference between the current and previous signal value.

e(t) = xs(t)− x̂(t) = xs(t)− x̂m(t− 1)

By filtering out the e(t) values that do not exceed the specified
threshold, we produce Δ(t), seen in Fig. 4b, which need
only be transmitted at moderate changes of the signal. At
the monitoring center, we reconstruct x̂m(t) with the received
δ(t). With our predictor simply passing the previous value,
δ(t) is effectively the difference between consecutive values.
We reconstruct x̂m(t) as a cumulative sum of δ(t):

x̂m(t) = x̂(t) + δ(t) = x̂m(t− 1) + δ(t)

The resulting reconstruction is shown in Fig. 4c.
This paper addresses two variants of the above-described

process, termed as SPARSE R and SPARSE E. These two
methods differ in the point at which the sparsification process
is performed in the overall flow. In SPARSE R, the raw feature
data is sparsified and reconstructed—as was just discussed
using the CommittedAS signal. In this particular example, with
the threshold set at η = 10, we gain 68.2% in transmission
savings compared to the base case in which the entire data is
transferred to the monitor.
The SPARSE E method, as a preprocessing step, summa-

rizes the expected value of the information associated with the
data set using Shannon entropy. This step reduces the amount
of data to be transferred, even prior to the sparsification
process, since a larger data set is now reduced a single
value. It also reduces the computational burden incurred by
the anomaly detection process at the monitor by reducing
the amount of data to be processed. A data set comprising
discrete values—for example, CommittedAS—can be binned
within a histogram which is a graphical representation of
the data set’s distribution where each bin is weighed by
how often a data item falls within it. Using the concept of
entropy which measures the spread of a distribution, we can
further summarize the contents of the histogram to a single
scalar value: the amount of information that it represents.
Given a histogram comprising k equally-sized bins with values
{b0, b1, . . . , bk−1}, the corresponding entropy is defined as

H = −
k−1∑
i=0

p(bi) log p(bi),

where p(bi) = bi/
∑k−1

j=0
bj . Given the above definition,H lies

within 0 and logn, and so the normalized entropy value that
lies between 0 and 1 is calculated as H/ logn. A low entropy
value corresponds to a skewed distribution highly focused on
just a few values and a high entropy value corresponds to a
uniform distribution with a minimal focus on any bin value.
When applying SPARSE E to the CommittedAS signal, we

use the already compressed entropy data shown in Fig. 5 as the
starting point for the sparsification process. In this example,
we compute entropy on distinct groups, 312 data points in size.
Using this preprocessing step, we accumulate transmission
savings of 99.68%. With threshold set at η = 0.02, we achieve
an additional 15.4% in transmission savings by sparsifying
this signal for a combined savings of 99.73%. Generally for
the signals we test, savings in SPARSE R far surpass those
in SPARSE E, since the entropy is often changing, leading
to more frequent transmission of prediction-error signals;
however, for the purposes of transmission, the savings in
SPARSE E stack with the consolidation of entropy rather than
compete against it as with the case of SPARSE R.
Regarding matters of reconstruction, note that x̂m(t) will

always match xs(t) with a variance based mostly on the
chosen transmission threshold. So long as the threshold is kept
sufficiently low, the predictor, no matter how accurate or poor,
will not cause any great deviation between x̂m(t) and xs(t).

155155

10 20 30 40 50 60 70 80 90 100

E
nt

ro
py

0

0.2

0.4

0.6
CommittedAS

Estimated signal
Reconstructed signal

(a) Estimated and reconstructed signals, xs(t) and x̂m(t).

Time (iterations)
10 20 30 40 50 60 70 80 90 100

E
nt

ro
py

-0.2

-0.1

0

0.1

0.2

(b) The prediction error, δ(t).

Fig. 5. Application of SPARSE E on the CommittedAS signal.

This is because the predictors at both the server and monitoring
station are identical and process the same data concurrently.
As such, the accuracy of the predictor will not impact the
overall detection scheme; rather, predictor accuracy directly
leads to superior transmission efficiency. Nevertheless, for our
purposes, a simple previous-value predictor will suffice. More
advanced predictors based on Kalman filters or neural net-
works can certainly be introduced within the dual-prediction
scheme with the aim of further reducing data transfer cost.

IV. PCA-BASED ANOMALY DETECTION

Principal component analysis (PCA) is a dimension re-
duction technique frequently used for anomaly detection [8],
[9]. It transforms a high-dimensional dataset into new bases
called principal components that are ordered by the strength
of the correlations exhibited by the data along their respective
directions. As a result, the first principal component captures
the strongest correlation pattern of the original data, the second
principal component captures the second strongest correlation
pattern, and so on [6]. The first few principal components are
often chosen as the signature pattern of the data.
For a system with m features and n data points per feature,

we clarify the key steps involved in the PCA process using
a simple example in which m = 2 and n = 10. Figure 6a
shows data points corresponding to the CommittedAS and
AnonPages signals in a 2-dimensional feature space. The data
is “mean centered” by subtracting the mean from individual
data points—a necessary step to ensure that the first princi-
pal component describes the direction of maximum variance
and not to the mean of the data. The eigenvectors of the
covariance matrix corresponding to the mean-centered data
are then calculated, defining the pattern of data dispersion
across the dimensions; of these eigenvectors, the one with the
highest eigenvalue would be the principal component which
best defines the data trend. Figure 6a also shows the two
principal components in which the first principal component
p0 describes the direction of the largest variance in the data
set and the second principal component p1 describes the next

Anon Pages
-0.15 -0.05 0.05 0.15

C
om

m
itt

ed
A

S

-0.15

-0.05

0.05

0.15 p
1 p

0

(a) Mean-centered data with the
corresponding principal compo-
nents.

Component 1
-0.15 -0.05 0.05 0.15

C
om

po
ne

nt
 2

-0.15

-0.05

0.05

0.15 p
1

p
0

(b) Data projected on to the new
bases.

Component 1
-0.15 -0.05 0.05 0.15

C
om

po
ne

nt
 2

-0.15

-0.05

0.05

0.15 p
1

p
0

(c) Complete removal of the mi-
nor component from the trans-
formed data.

Anon Pages
0.3 0.4 0.5 0.6

C
om

m
itt

ed
A

S

0.3

0.4

0.5

0.6

Original
Restoration

(d) Data restored to its original
basis after removal of the second
principal component.

Fig. 6. The major steps comprising PCA-based anomaly detection.

largest variance in the orthogonal direction. The m×m matrix
of eigenvectors V serves to map the data to a new coordinate
system as per

D̂ = V (D − μ(D)),

such that the greatest variance obtained by any projection of
the data lies on the first coordinate p0, the second greatest
variance on p1, and so on. Here, D denotes the original m×n
data set, μ(D) its mean, and D̂ its transformation. Figure 6b
shows the transformed data within the new coordinate system.
Moreover, since the above equation describes a linear trans-
formation, the original data can be restored or reconstructed
via the inverse operation

D̃ = V T D̂ + μ(D),

where D̃ is the restored data and V = V −T . Now, an
incomplete matrix V in which one or more eigenvectors are
omitted can also be plugged into the above equations to obtain
D̃. This restored data will differ from the original data in
that the influence of the component corresponding to the
omitted eigenvectors will be completely neutralized. Figure 6c
shows the effect of removing the minor component on the
transformed data, and Fig. 6d shows an overlay of the restored
data (after mapping back to the original coordinate system and
adjusting its mean) along with the original data.
The error between the original and reconstructed signals is

computed as

ε =
N∑
i=1

||di − d̂i||,

where di and d̂i denote the ith data item within the original and
reconstruction signal, respectively. Our detector, ultimately,
is a measurement of slope, calculated as a difference in ε
over a period of time, that is dε/dt. We employ this slope

156156

×104
3 3.5 4 4.5 5 5.5

S
iz

e
(k

B
)

×105

0.95

1

1.05

1.1

1.15
AnonPages

Fault injection

×104
3 3.5 4 4.5 5 5.5

S
iz

e
(k

B
)

×105

4

4.5

5

CommittedAS

Time (sec) ×104
3 3.5 4 4.5 5 5.5

S
iz

e
(k

B
)

2000

2100

2200

PageTables

Fig. 7. Effect of the memory leak on the features of interest.

measurement as our detector, since anomalies in our system
are often characterized by a rising slope in ε.
The overall anomaly detection scheme is iterative and uses

a sliding-window based method wherein during each iteration
we select consecutively sampled feature data in a structure
comprised of n subwindows of size w each. For each subwin-
dow, we compute the entropy of the contained data. With the
resultant n entropy values, we generate ε and consequently the
detector through PCA. Between iterations we slide the n-by-
w window along the feature data to select the next batch of
values. Once the set is ready, we repeat the process.

V. PERFORMANCE EVALUATION

A detailed case study illustrating the advantages of
SPARSE R and SPARSE E in terms of reducing data trans-
mission cost is now presented. In the case of SPARSE R,
the raw data is sparsified at the server and transmitted to the
monitor where it’s reconstructed and the entropy calculated
prior to applying PCA; whereas for SPARSE E, the entropy
signal is calculated at the server, sparsified, and sent to the
monitor which performs the analysis on the reconstructed data.
As such the local server takes upon itself the computational
cost of the entropy calculation; however, in exchange, we
reduce the number of transmissions by the rate at which
entropy compresses the data.
We consider long-running instances of the Trade6 and RuB-

BoS applications over a 24-hour period, and our experiments
are aimed at detecting memory leaks within these applications.
Figure 7 shows the impact on the individual features—a
slightly discernible upward trend—when a small memory leak

Trade6 RuBBoS
η Anon Comm Page Anon Comm Page
0 0.036 0.231 0.004 0.286 0.284 0.013
10 0.017 0.194 0.004 0.254 0.248 0.013
20 0.013 0.188 0.002 0.243 0.246 0.012
30 0.009 0.183 0.002 0.163 0.244 0.011

Fig. 8. Average transmission rate per unit sample as a function of η for the
signals, Anon(Pages), Comm(ittedAS), and Page(Tables).

or bloat of about 100 KB/minute is injected at around the 12-
hour mark. We analyze data from Trade6 and RuBBoS under
the two workload traces, WL 1 and WL 2, shown previously
in Fig. 1b. For our denoiser, we use a median filter with a
filter length of 5 units. For the detector, we compute the slope
of ε over a period of approximately one hour.

A. Effect of the Transmission Threshold

The threshold η sets the minimum limit in magnitude for
transferable prediction-error values. Higher the value, the more
restrictive the transmitter becomes, and the smaller the overall
cost of transmissions incurred. Generally η serves as a filter
that eliminates from the prediction error, minor static variance,
which contributes in no way to fault detection, and thus is
unnecessary to preserve. This variance differs from feature to
feature; as such, η needs to be carefully determined for each
feature. Figure 8 shows the cost incurred by SPARSE R as a
rate of data transfer per unit sample for the three features
of interest. Transmission rate is calculated as the ratio of
transmitted data over total data. As anticipated, overall, higher
thresholds result in diminished costs. Efficiency is particularly
high for PageTables and to a lesser extent AnonPages. Com-
mittedAS, on the other hand, has transmission cost of 1 every 3
samples, as a result of its scale and consequentially high vari-
ance. Overall transmission costs are greater for data associated
with RuBBoS over that of Trade6. This is a consequence of
features in RuBBoS, which are more sensitive to workloads,
being much less uniform and a bit more complex.
While a larger η value achieves greater transmission effi-

ciency, it may also diminish detection quality. In general, a
memory leak in the system may manifest as a trend in each of
the features, which in the sparsified prediction-error signal is
captured as a collection of impulses; and η, if large enough,
may impact these impulses, effecting the fault’s representation.
This, of course, does not completely eliminate all indication
of the fault in the data, as the trend remains through the
conversion of many small impulses into fewer larger spikes;
however, while not destroying evidence of the fault’s presence
in the data, this change may diminish the detector’s overall
quality. Figure 9 shows detector performance under both
faulty and nominal cases for AnonPages when w = 300 and
n = 50. One can see the overall, gradual deterioration of
detection quality as η is made larger. Of particular note is
the fact that AnonPages under the Trade6 application can be
rather sensitive to this effect such that an increase in η may
significantly damage the detector. This can be seen in Fig. 9a,
where if 5 < η < 10, this completely negates the fault-
indicative crest; likewise under the nominal conditions, η > 10

157157

0 10 20 30 40 50 60 70

sl
op

e(
ε
)

-0.3

-0.2

-0.1

0

0.1

0.2

η = 0
η = 5
η = 10
η = 15

Fault injection

(a) Trade6 subjected to workload WL 2 with the fault injected.

Time (iterations)
10 20 30 40 50 60 70

sl
op

e(
ε
)

-0.2

-0.1

0

0.1

0.2

(b) Trade6 subjected to workload WL 1 under nominal conditions.

Fig. 9. Effect of varying η on detector performance. The red line indicates
the approximate time of fault injection.

results in higher detector variance, increasing the likelihood
of false alarms. This generally results from the elimination
of certain behavior-defining data, which in AnonPages can be
rather small. As such, it is prudent to keep η settings relatively
low. For each feature there are regions at which transmission
rate drops abruptly, signifying a loss of characterizing data.
As a general rule for choosing η, one should set the value at
approximately 2σ, where σ refers to the static variance in the
respective feature. For the duration of this paper we maintain
the η settings at 0, 10, 10, for AnonPages, CommittedAS, and
PageTables, respectively.

B. Detector Stability and Fault Detection Latency

The subwindow size w is a parameter which determines the
number of data points used per entropy-value calculation. As
a parameter of the analysis phase which follows transmission,
w doesn’t impact transmission cost. Figure 10 shows the
detector performance with η and n fixed at (0, 10, 10), and 50
respectively for the RuBBoS application. Here we demonstrate
a critical point in the setting of w. In this particular case, we
lose detectability at lower settings of w (less than 300) in-so-
much as a false alarm would overshadow the fault-indicative
crest in magnitude. For higher settings of w, the detector
generally achieves greater stability, resulting in a more reliable
fault-indicative crest while reducing potential false alarms;
however, by increasing the number of data-points required
for each analysis step, we effectively establish a time-buffer,
forcing longer minimum detection-latency periods. Similarly,
with so large an evaluation window, we require a longer start-
up period.
The subwindow count n is a parameter which sets the

number of entropy points used for a single PCA calculation
and has no bearing on transmission efficiency. Larger values
of n would result in better detector stability. The expanded
window length will not increase latency by virtue of the growth

-10 0 10 20 30 40 50 60 70

sl
op

e(
ε
)

-0.1

0

0.1

0.2
Fault injection

(a) Subwindow size, w = 290

-10 0 10 20 30 40 50 60

sl
op

e(
ε
)

-0.1

0

0.1

0.2

(b) Subwindow size, w = 300

Time (iterations)
-10 0 10 20 30 40 50 60

sl
op

e(
ε
)

-0.1

0

0.1

0.2

(c) Subwindow size, w = 310

Fig. 10. Effect of varying w on RuBBoS data running WL 1. Solid line
depicts the leak-influenced detector; broken line represents the nominal case.

in data points required for the analysis window due to each
analyzer step only adding a portion to the full window; how-
ever, growth in the total number of points used in PCA does
effectively result in weakened influence of each individual
point. As such, the presence of a fault may take longer to
manifest in the detector, ultimately causing a greater detection
latency. Figure 11 shows the change in the detector for varied
values of n with transmission threshold and w fixed at (0, 10,
10) and 312 respectively. Like the subwindow size, n has a
direct relationship with detector stability. Here we demonstrate
a critical point around n = 45: below this region, our detector
would fail; above this, its detectability would suffice.
Now while increases in either w or n should provide

detector stability, growth in the w-by-n analysis window may
lead to a major problem in our system: the larger the analysis
window, the greater duration of time it encompasses. To
generate ε, we would require a minimum of nw data samples.
With a sampling rate of once every two seconds, at the higher
ranges of w and n, the observation window will extend beyond
a duration of 10 hours. This means that before we can make
any detection, the system must collect 10 or more hours of
data. The problem occurs in the scenario where a fault arises
during this training period. Due to the nature of our detection
via fault-indicative crest at the onset of the anomaly, a fault
which manifests in the training period may go unnoticed.
Later we will discuss a method to minimize this start-up cost.
Nevertheless, it is ideal to keep both w, n and the analysis

158158

-20 -10 0 10 20 30 40 50 60

sl
op

e(
ε
)

-0.1

0

0.1

0.2
Fault injection

(a) Number of subwindows, n = 40

-10 0 10 20 30 40 50 60

sl
op

e(
ε
)

-0.1

0

0.1

0.2

(b) Number of subwindows, n = 45

Time (iterations)
-10 0 10 20 30 40 50 60

sl
op

e(
ε
)

-0.1

0

0.1

0.2

(c) Number of subwindows, n = 50

Fig. 11. Effect of varying n on RuBBoS data running WL 1. Solid line
depicts the leak-influenced detector; broken line represents the nominal case.

window by extension as small as possible while maintaining
a sufficient level of detectability. For this reason, we maintain
w and n at 312 and 50 respectively.
Detection latency is measured as the duration of time from

the moment the fault enters the system to the point at which the
detector exceeds a specified detection threshold. The detector
used in our system is constructed from the effective slope (cal-
culated as a difference over a set time) of the ε signal produced
through PCA; as such, when evaluating differing shifts of the
analysis window, we accommodate the increase in iterations
per period resulting from the transitional entropy calculations
while maintaining equivalent periods by applying a difference
inversely proportional to the shift count. Figure 12 summarizes
the detection latencies for two scenarios with varying detection
thresholds including the results when reducing shift. Please
note that the remaining cases have also been tested, yielding
similar results. Changes in shift do not appear to result in
any definitive trends in regard to both stability and latency.
Though one might expect shift reduction to result in a decrease
in latency since increasing the effective checking rate should
result in detection at the same moment or sooner, this is not
quite so, as other factors in the detection process may interfere.
Overall, detection of the fault is generally quick with most
latencies well under an hour.
One should note that in tuning our parameters w and n, we

aim to minimize detection latency as well as maximize the
feasible threshold range by strengthening the detection crest

Detection Trade6 under WL 1 RuBBoS under WL 2
threshold w w/2 w/3 w w/2 w/3

0.06 0.347 0.433 0.578 FA FA FA
0.10 0.52 0.607 0.636 0.347 0.26 0.289
0.14 0.693 0.693 0.693 0.52 0.347 0.347
0.18 0.693 0.78 0.867 0.52 0.433 0.462

Fig. 12. Latency (in hours) as a function of detection threshold, for shifts
of w, w/2 and w/3 units under SPARSE R. A false alarm is indicated as FA.

Trade6 under WL 1 RuBBoS under WL 2
η w w/2 w/3 w w/2 w/3
0 0.993 0.996 0.998 0.993 0.996 0.998

0.02 0.764 0.576 0.478 0.729 0.599 0.501
0.04 0.573 0.366 0.272 0.522 0.372 0.298
0.06 0.494 0.277 0.202 0.395 0.254 0.200
Base 0.003 0.006 0.01 0.003 0.006 0.01

Fig. 13. Average transmission rate per entropy sample for CommittedAS
when using SPARSE E. Also shown is the base reduction achieved by
transmitting just the entropy values. We test the system for subwindow shifts
of w, w/2, and w/3, where w = 312.

and diminishing any noise-produced rises. In certain scenarios
the detection crest may not be particularly large; in these cases
in order to prevent missed detection of a fault, one must keep
the threshold sufficiently small in line with the crest. Likewise,
at points in the detector, certain rises hold the potential of
creating false positives; to avoid these false alarms, we need to
select a threshold sufficiently high, bypassing the rises. For the
tested scenarios, we achieve a fair threshold range with viable
settings between 0.08 and 0.155. Below 0.08, false alarms may
rise significantly; above 0.155, our hit rate will suffer.

C. Performance of SPARSE E

Recall under SPARSE E, we now transmit entropy values
from the server rather than the original feature data. So, we
no longer contend with potentially high-variance data as the
entropy values will naturally be somewhat normalized. As such
we opt to use a η value consistent for each feature. Figures 13
and 14 list transmission efficiencies for the CommittedAS
and PageTables signals as a function of η. Consider column
two in Fig. 13 that lists transmission efficiencies for Trade6
when the window shift equals w. The base transmission rate is
shown as 0.3% of the original raw data since only the entropy
values are to be transmitted to the monitor. When η = 0.06,
we achieve a further reduction in transmission cost of 49%
over this base rate due to sparsifying the entropy signal.
Additionally we test the impact on transmission when reducing
the subwindow shift—effectively increasing the entropy data
to be transmitted. In general, increase in the number of
values will improve relative efficiency but decrease overall
transmission efficiency when considering entropy savings;
however, the loss of efficiency will be relatively small for
higher thresholds and in return, the increased quantity of
entropy data may potentially be exploited for cleaner detection
and better latency. Comparing overall efficiencies listed in
Fig. 13 and 14 to that in Fig. 8, one can see that the gain from
SPARSE E is rather significant. In only one case—pageTables
under Trade6—does SPARSE R actually surpass the alternate
in overall efficiency.

159159

Trade6 under WL 1 RuBBoS under WL 2
η w w/2 w/3 w w/2 w/3
0 0.688 0.532 0.464 0.955 0.906 0.879

0.02 0.656 0.492 0.413 0.837 0.757 0.694
0.04 0.567 0.428 0.357 0.725 0.625 0.556
0.06 0.522 0.397 0.307 0.653 0.525 0.429
Base 0.003 0.006 0.01 0.003 0.006 0.01

Fig. 14. Average rate of transmission per entropy sample for PageTables
under SPARSE E. As before, we test the system for various subwindow shifts
where w = 312.

0 10 20 30 40 50 60

sl
op

e(
ε
)

-0.2

-0.1

0

0.1

0.2

0.3 leak; w
leak; w/3
nominal; w
nominal; w/3

Fault injection

(a) Trade6 subjected to workload trace WL 2.

Time (iterations)
-10 0 10 20 30 40 50 60

sl
op

e(
ε
)

-0.1

0

0.1

0.2

(b) RuBBoS subjected to workload trace WL 1.

Fig. 15. Detector performance under SPARSE E when using subwindow
shifts of w and w/3. Solid lines depict the leak-influenced detectors; broken
lines represent the nominal cases.

Considering performance under SPARSE E, the detector
should not deviate greatly from that in SPARSE R. Basically
the only difference as far as PCA is concerned would be
whether the feature data (in SPARSE R) or the entropy data
(in SPARSE E) is filtered through the conditional transmis-
sion system. The data ultimately processed via PCA should
mostly be the same regardless of approach. We evaluate
detector performance with the inclusion of transitional entropy
calculations—produced by reducing the sliding window’s sam-
ple shift per calculation. For these cases, rather than evaluating
n consecutively computed entropy values, we analyze the
entropy data corresponding to nw consecutive feature values;
per iteration we effectively shift this nw sized window. While
this technique allows us to generate ε over smaller intervals
of time, some smoothing is required to keep the detector at
optimal stability. To this end, we apply a trailing mean filter
with length corresponding to the transitional rate.
Figure 15 shows detector performance under different shift

values. We set our window parameters to ideal arrangements:
w = 312 and n = 50. The transmission threshold, η, as
with the original approach will deteriorate the detector at
high settings. In this approach, the transmission rate versus
η relationship is smooth and lacking abrupt drops; as such,
in selecting η, we choose the knee-point, at which savings
per increase in the threshold value begin to diminish. For our

Detection Trade6: WL 1 RuBBoS: WL 2
Threshold w w/2 w/3 w w/2 w/3

0.06 0.347 0.347 0.462 FA FA FA
0.10 0.52 0.607 0.578 0.347 0.26 0.289
0.14 0.693 0.607 0.636 0.347 0.347 0.347
0.18 0.693 0.607 0.809 0.52 0.52 0.462

Fig. 16. Table summarizing detection latency for various levels of detection
threshold with shifts of w, w/2 and w/3 units under SPARSE E. The latency
is measured in hours. A false alarm is indicated by FA.

purposes, we evaluate the detector with η = 0.02—a modest
setting—for each of the three features. Each plot shows the
fault-influenced and nominal cases. By decreasing the shift
value, we effectively increase the resolution of the detector
(note that in Fig. 15, the detector curves corresponding to
the reduced shift cases are scaled in respect to the quantity
of iterations to be comparable time-wise). This can, in some
cases, improve the general stability of the detector; however,
for the most part, the change is not very significant, as one
can see from the plots.
Figure 16 summarizes the detection latencies for two work-

load scenarios under SPARSE E. Note that the remaining
cases have also been tested, yielding like results. Similar to
SPARSE R, reductions in shift, though often reducing overall
latency, do not always yield beneficial results. Comparing
these results to those of the original approach, we see that nei-
ther is definitively superior in regards to detection. In general,
the detection latencies are equivalent with slight variance, most
keeping under an hour in time. Under SPARSE E, the feasible
threshold range remains fair. With thresholds at or above 0.1,
most false alarms are kept under check. While holding a 0.16
or lower threshold, we maintain crest detection.

VI. RELATED WORK

We discuss related research in two areas: adaptive sampling
of data using predictive models, and PCA-based anomaly de-
tection in computer networks and systems. The work reported
in this paper differs from prior work in the follow aspects. We
apply the dual-prediction approach towards sparsifing features
one expects to measure in a typical datacenter setting. We also
experimentally evaluate if the recovered data retains critical
correlation information for subsequent PCA-based anomaly
detection methods to be successfully applied.
Sampling of data using predictive models has been stud-

ied previously in the context of sensor networks where the
objective is to reduce transmission costs between the source
(sensors) and the sink (the base station). Le Borgne et al. [10],
for example, achieve efficient transmission from sensor to
sink using a predictive model as well as adaptive model
selection. Specifically, on both ends of the system, a model
is used to predict the signal’s behavior. So long as the model
remains accurate to the true signal’s pattern, no transmission
is necessary; however, if the true value deviates from the
prediction, the model is then updated to one that better fits the
new behavior, and the data summarizing the updated model is
transmitted to the sink resulting in reduced communication.
Goel et al. [11] develop an energy-efficient framework for

large sensor networks, again using predictive models. Here, the

160160

monitoring station collects data from the sensor set and with
it generates prediction models for these sensors. These models
exploit the spatial and temporal correlation present when
dealing with adjacent sensor nodes in order to predict behavior.
After receiving their respective models from the monitor, the
sensors, for the duration of the model’s lifetime, transmit
updates only when the sensed data sufficiently deviates from
the model. In this manner, energy is conserved at the sensor
through a reduction of necessary transmissions at the expense
of greater costs on the monitoring end.
Lakhina et al. develop a PCA-based method for real-time

detection of anomalies in computer networks [12]. Here, PCA
is applied to high-dimensional network-wide traffic data to
extract normal traffic patterns which have a highly reduced
dimension. During the detection phase, traffic that does not
correspond to the normal pattern is identified as an anomaly.
The patterns extracted by this approach comprise the so-
called normal subspace; so it is also referred to as the PCA-
based subspace method. Recent extensions of this method for
network anomaly detection include [13]–[15]. We have also
seen PCA-based methods developed for anomaly detection
in cloud computing systems [8]. Here, PCA is applied to
the run-time performance data collected from each server to
extract relevant features, which are then used to train decision
tree classifiers for anomaly detection. The aforementioned
techniques for anomaly detection have been shown to be
quite effective in detecting anomalies affecting network and
computing systems. However, these techniques require the
full-length data stream to perform the necessary analysis.
Finally, the authors have previously designed a method to

detect incipient faults in software systems, combining tools
from information theory and statistics such as entropy and
PCA [16]. We have shown that memory leaks can be detected
under dynamic workload patterns quickly and with a low false
alarm rate. The work reported here builds on these results,
specifically in terms of sparsifying signals of interest for more
efficient transmission to the monitoring station, and analyzing
the consequences of sparsification on the anomaly detection
capability of PCA-based methods.

VII. DISCUSSION

We have established a technique capable of online anomaly
detection via the use of statistical tools such as entropy and
PCA. This technique uses a dual-predictor scheme for the
sparsification and efficient transmission of data, and in this
context, we proposed two approaches based on the position
of the transmitter in the overall flow of the system. Both
approaches are viable and comparable in terms of detectabil-
ity and latency; however, the second approach, SPARSE E,
surpasses SPARSE R in overall transmission savings, making
it the superior approach.
In the interest of providing design guidelines to system oper-

ators, we studied the effects of tuning the parameters, n, w, and
η, as well as shift size, on detector performance. Both n and w
serve to maintain stability; however, these parameters must be
kept only as large as necessary to prevent an overly complex

analysis window. Also, η yields transmission efficiency at the
expense of stability, so this parameter must be kept generally
low. Reducing the shift size increases the resolution of the
detector; however, as its benefits are not definitive, application
of this parameter does not merit it’s implementation cost.
Returning to the matter of start-up cost, a large n-by-w

analysis window can be detrimental to the overall worth of
the detector due to an increased likelihood of missing faults
that emerge in its start-up period; however, there are ways
to mitigate this cost without even reducing window size.
Under nominal conditions, the features exhibit fairly periodic
behavior which could be modeled. If the system were to store
prerecorded feature information from known nominal data,
this information could be used to buffer the analysis window,
effectively simulating a fault-free start. Given the nature of
these models, we only need wait for the first delta-based
impulse to synchronize the prerecorded data to the sampled
data. This should reduce start-up cost to that of at most half
the signal period.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, 2009.

[2] A. Avritzer et al., “Performance assurance via software rejuvenation:
Monitoring, statistics and algorithms,” in Proc. IEEE Conf. Dependable
Syst. Netw. (DSN), 2006, pp. 435–444.

[3] K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for
software rejuvenation,” IEEE Trans. Dependable Secur. Comput., vol. 2,
no. 2, pp. 124–137, April 2005.

[4] R. Canzanese, M. Kam, and S. Mancoridis, “Toward an automatic, online
behavioral malware classification system,” in Proc. IEEE 7th Int’l Conf.
Self-Adaptive and Self-Organizing Systems (SASO), 2013, pp. 111–120.

[5] T. Sikora, “The mpeg-4 video standard verification model,” IEEE Trans.
Circuits & Systems Video Technology, vol. 7, no. 1, pp. 19–31, 1997.

[6] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons, 2012.

[7] D. Mosberger and T. Jin, “httperf: A tool for measuring web server
performance,” Perf. Eval. Review, vol. 26, no. 3, pp. 31–37, 1998.

[8] S. Fu, “Performance metric selection for autonomic anomaly detection
on cloud computing systems,” in IEEE Global Communications Confer-
ence, Exhibition & Indudstry Forum (GLOBECOM), 2011, pp. 1–5.

[9] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring
metric subspace in cloud computing infrastructures,” in IEEE Int’l Symp.
Reliable Distributed Systems, Sept 2013, pp. 205–214.

[10] Y.-A. Le Borgne, S. Santini, and G. Bontempi, “Adaptive model se-
lection for time series prediction in wireless sensor networks,” Signal
Process., vol. 87, no. 12, pp. 3010–3020, Dec. 2007.

[11] S. Goel and T. Imielinski, “Prediction-based monitoring in sensor
networks: Taking lessons from mpeg,” SIGCOMM Comput. Commun.
Rev., vol. 31, no. 5, pp. 82–98, Oct. 2001.

[12] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide
traffic anomalies,” ACM SIGCOMM Computer Communication Review,
vol. 34, no. 4, pp. 219–230, Aug. 2004.

[13] C. Pascoal, M. Rosario de Oliveira, R. Valadas, P. Filzmoser, P. Salvador,
and A. Pacheco, “Robust feature selection and robust PCA for Internet
traffic anomaly detection,” in Proc. IEEE INFOCOM, Mar. 2012, pp.
1755–1763.

[14] T. Kudo, T. Morita, T. Matsuda, and T. Takine, “PCA-based robust
anomaly detection using periodic traffic behavior,” Proc. IEEE Int’l
Conf. on Communications, pp. 1330–1334, June 2013.

[15] C. Callegari, L. Gazzarrini, S. Giordano, M. Pagano, and T. Pepe,
“Improving PCA-based anomaly detection by using multiple time scale
analysis and kullback–leibler divergence,” International Journal of Com-
munication Systems, vol. 27, no. 10, pp. 1731–1751, 2014.

[16] S. DeCelles and N. Kandasamy, “Entropy-based detection of incipient
faults in software systems,” in IEEE Pacific Rim Int’l Symp. Dependable
Computing (PRDC), Nov 2012, pp. 70–79.

161161

