This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603473, IEEE
Transactions on Cloud Computing

An Efficient Strategy for Online Performance
Monitoring of Datacenters via Adaptive Sampling

Tingshan Huang,Member, IEEENagarajan KandasamySenior Member, IEEBHarish Sethu, Member, IEEE,
Matthew C. StammMember, IEEE

Abstract—Performance monitoring of datacenters provides  We consider a server cluster wherein software-based sensors
vital information for dynamic resource provisioning, anomaly measure various performance-related parameters associated
detection, and capacity planning decisions. Online monitoring, \yith the cluster. These measurements include high-level met-

however, incurs a variety of costs: the very act of monitoring . h fi d th hout I |
a system interferes with its performance, consuming network rcs such as response ume an roughput as well as low-

bandwidth and disk space. With the goal of reducing these l€vel metrics such as processor utilizatiof©, memory, and
costs, this paper develops and validates a strategy based onnetwork activity. The information collected by the sensors

adaptive-rate compressive sampling. It exploits the fact that the s transmitted over a network to a monitoring station for
signals of interest often can be sparsified under an appropriate data analysis and visualization. Online monitoring, however,

representation basis and that the sampling rate can be tuned . ety of ts. First. th t of itori
as a function of sparsity. We use the Trade6 application as our Incurs a variety or Costs. FIrst, the very act of monitoring an

experimental platform and measure the signals of interest—in our @pplication interferes with its performance. If sensing-related
case, signals pertaining to memory and disk/D activity—using code is merged with the application code, this change may
adaptive sampling. We then evaluate whether the reconstructed interfere with the timing characteristics of the application or
signals can be used for trend detection to track the gradual dete- if sensors execute as separate processes, they contend for CPU
rioration of system performance associated with software aging. . . S L

Our experiments show that the signals recovered by our methods resoyrces along with the original application. Tra”_sm'“'”g the
can be used to detect, with high confidence, the existence of trendsmonitored data over a network consumes bandwidth. Finally,
within the original signal. We also evaluate the reconstructed logging the data for future use such as analysis aimed at
signals for threshold-violation detection wherein. the magnitude capacity planning consumes disk space.

of the signal exceeds a preset value. Our experiments show that The volume of data that one has to collect and process for

performance bottlenecks and anomalies that manifest themselveseff fi itori f dat ¢ anifi t Bio Dat
in portions of the signal where its magnitude exceeds a threshold ective monitoring of datacenters poses signiiicant big Data

value can also be detected using the reconstructed signals. Mostchallenges in collection, analysis, and storage [5]. In this paper,
importantly, detection of these anomalies is achieved using a we focus on the data collection phase and develop sampling
substantially reduced sample size—a reduction of more than 70% methods to derive a low-dimensional structure as a compact or
when compared to the standard fixed-rate sampling method. 4 rsimonious representation of the original dataset at the local
Index Terms—Online monitoring, anomaly detection, adaptive server prior to transmission to the monitoring station. Using
sampling, compressive sampling. compressive samplingCS [6]-[9] as the theoretical founda-
tion, our methods are designed to exploit any inherent sparsity
in the signal being sampled to reduce the dimensionality of
Online performance monitoring of computing systems artte collected data. A signal or portion thereof is terrapdrse
network infrastructure within a datacenter is vital to ensuririfjit can be concisely represented in the proper basis function;
efficient operation [1]-[3]. The monitored information hashis property can be used to capture the useful information
a variety of uses: it drives real-time performance managesntent embedded in the signal and condense it into a small
ment decisions such as dynamic provisioning of resourcesamount of data. In other words, one can acquire these signals
match the incoming workload as well as anomaly detectioftom the underlying systerdirectly in a compressed form.
diagnosis, and mitigation. The monitored information also From a viewpoint of reducing the costs associated with
drives decisions of a longer-term nature; for example, capacifyonitoring, compressive sampling allows for a very simple
planning that identifies resources that are over-utilized eensing strategy—rather than tailoring the sensing scheme
under-utilized and aims to improve utilization by adding oto the specific signal being measured, a signal-independent
removing appropriate resources. In terms of system securiiftategy such as randomized sampling can be used, signif-
operators who monitor communication networks for malwateantly reducing the intrusion of monitoring on application
or denial-of-service attacks are increasingly dependent on rggdrformance. Also, since signals are acquired directly in
time detection of anomalous behavior in theflicadata [4]. compressed form, the network bandwidth required to transmit

o . . . these few samples to the monitoring station is reduced and so
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thresholding pursuit (HTP) approach [10]. unreleased network sockets and file locks, and unterminated
We focus on two major challenges related to the practicéireads. One way of determining if software aging exists is to
use of CS as a monitoring tool in a datacenter setting. Firstatistically analyze the appropriate signals for the existence of
having to manually select the appropriate representation basgnds [12], [13]. We use a long-running Trade6 application
under which the measured signal is most sparse and tfaing a small memory leak of about 100 K#inute, and
achieves the best reconstruction imposes a substantial burélédluate the performance of C-MON and CS-MON in terms
on the system operator and must be automated. Secongfytheir ability to estimate a positive slope in the reconstructed
the notion that signal sparsity—the information content—'@ata even in the presence of seasonal variations and periodicity
constant or bounded across its entire length rarely holdsiinthe signal.
practice. Therefore, to maximize the overall information con- In terms of the sample collection cost, both strategies
tent captured from the signal while simultaneously reduciraghieve a notable reduction compared to fixed-rate sampling.
the requisite number of samples, it is best to follow an adaptiVéie anomalies described above are detected with high confi-
rather than fixed rate sampling strategy. dence using 12-25% of the samples from the original signals
We address the above challenges by developing a néwthe case of CS-MON and less than 5% in the case
adaptive sampling strategy within the CS framework for onliref C-MON. We also quantify the computation and storage
monitoring, exploiting the fact that the signals of interest ofte¢Psts incurred by CS-MON and C-MON to achieve their
can be sparsified under an appropriate representation basisfg@sgective compression gains, finding that CS-MON imposes
that the sampling rate itself can be tuned as a function significantly less burden on the local server resources than the
sparsity. The following two new data sampling and encodirfg"MON strategy.
strategies are developed and evaluated: The paper is organized as follows. Section Il discusses re-
. . . . lated work and Section IIl describes our experimental testbed.
. We develop a basis selection algorithm cal®est Basis . . .
i . : ection IV demonstrates C-MON, the compression of signals
that automatically adapts the representation basis to t%e : : !
X . , nerated by the testbed using the Best Basis algorithm,
structure of the underlying signal being sampled such that : . .
. . . .and Sections V and VI discuss CS-MON, the compressive
the information can be most concisely represented. Usin : . : : )
impling of signals using an adaptive rate strategy. Section VIl

the best-basis algorithm, we develop a strategy called . .
) - resents experimental results evaluating the performance of
MON that takes advantage of signal compressibility t L . 2 . .
se strategies in recovering the original signals, and in

red.uce the _dat_a transfer and storage costs associated \g@ecting threshold violation and trends. Section VIII provides
online monitoring. .

« We develomdaptive compressive samplindgiere the key some concluding remarks.
idea is to dynamically tune the sampling rate as the signal
sparsity changes: in time windows where the signal is

sparse we reduce the sampling rate and in windows whererq the pest of our knowledge, compressive sampling has not
the signal is less concise the rate is increased, all the Whgey previously studied as a performance monitoring tool in
ensuring that the chosen sampling rate guarantees a UGk context of cloud computing except in our earlier work

defined signal recovery quality. We term this strategy fqf, [14] and [15] where the emphasis was on studying the

online monitoring as CS-MON. feasibility of using fixed-rate compressive sampling for mon-

A major benefit fered by adaptive sampling in the contexitoring server systems. This work has developed an adaptive-
of datacenter operations is in reducing the overhead of geate model that exploits any time-varying sparsity in the signal
erating, storing, and using performance log files for analydis further reduce the number of collected samples.
tasks such as capacity planning, anomaly detection, and trendumaet al. study the applicability of compressive sampling
forecasting. Here we evaluate th&ieacy of detecting thresh- for fine-grained monitoring of processor performance and eval-
old violations and trends using the signals reconstructed viate its performance on signals representing micro-architecture
C-MON and CS-MON. We use IBM’s Trade6 benchmark, aounters within a core [16]. They show that compressive sam-
stock-trading service which allows users to browse, buy, apting can recover these signals if one can identify the bases in
sell stocks, as our testbed and subject it to a dynamic workloatlich the signals can be sparsely represented. Their approach
while measuring signals pertaining to the memory and ditlears some similarity to our work, but the measurements
I/O subsystems. Under the first scenario, the operator wislaes obtained from hardware counters inside various micro-
to detect anomalies that manifest themselves as the magnitadzghitectural components of the processor and the evaluation is
of the signal exceeding some nominal threshold value. Thenited to a signal-to-noise metric—same as the relative error
performance of the C-MON and CS-MON strategies in thismetric used in this paper. In contrast, this paper combines
regard is quantified by a hit-rate metric; we show that bgompressive sampling with sparsity prediction for rate adjust-
selecting the threshold value appropriately, both strategieent, and evaluates its performance in spike detection and
achieve a hit rate of 90% with a false alarm rate of onlirend detection with the reconstructed signal. Besides, rather
0.1%. In the second scenario, the operator wishes to detecttthen using traditional algorithms such as Orthogonal Matching
gradual deterioration of system performance, say over hotasrsuit (OMP) for signal recovery as in [16], we employ a
or days, associated with software aging [11]. Common caudaster iterative Hard Thresholding Pursuit algorithm originally
involve resource exhaustion due to memory leaks and bloptpposed in [10].

Il. ReLatED WORK
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Work on adaptive-rate sampling in other domains include Application tier Database tier
the results reported in [17]-[23]. Mengt al. propose a Workload > Trade6 » DB2
method for distributed state monitoring in Cloud datacenter| [ &neratr | e logic N
wherein the sampling intervals are updated dynamically a__ >e! Server 2 Server 3
cording to the likelihood of detecting a threshold-based star!-6 GHz 8 CPU cores 1.6 GHz, 8 CPU cores 2.3 GHz, 2 CPU cores

and 4GB memory and 4GB memory and 4GB memory

violation [17]. Ward shows in [18] that side information of
cross-validation measurements can be used to improve the
recovery algorithm used in compressive sampling and redur-
the sampling rate. For the similar purpose of improving signe
recovery algorithms under a reduced sample rate for compre
sive sampling of images and videos, Stankatial. use spatial
and temporal correlations within images and videos [20
OMP is employed in [20] as the recovery algorithm. Besides
spatial correlations between non-overlapping blocks of th
same image are exploited in [20] for image recovery, an 1000 2000 3000 4000 5000
temporal correlations between one frame and the previou. Time (in minutes)
frame of a video are exploited for video recovery. Sampling (b) Dynamic workload trace provided to the Trade6 applicatio
rates for compressive sampling are adaptively adjusted l'—ﬁa 1. (a) The overall system architecture hosting the Trade6 application
collect biomedical data [21] and surveillance data [22]. which implements a stock-trading service that allows users to browse, buy,
One of the strategies proposed by Wareehl. for sampling and sell stocks. (b) Example of workload provided to the testbed in our
surveillance videos bears some similarity to our work [23f*Periments plotied in granularity of 30 seconds.
Cross-validation error is used for sparsity estimation. However
only the sparsity of the foreground in each frame needs to 1, X1 _AnanPages
estimated, and the foreground data can be fitted approximat
by Gaussian distribution. The data used in this paper, howev
cannot be easily fitted into any known distributions. Moreove
the scheme proposed in this paper accomplishes sparsity
diction using Kalman filter in addition to sparsity estimation
Finally, it could be argued that any number of existing corr 57 58 59 6 61 62 63 64 65 66 67
pression algorithms, especially lossless ones suchzap2 < 10° CommittedAS
and DEFLATE, could be used to condense the informatiol ° o
monitored at the data center before writing to disk. Howeve
massive data acquisition followed by compression is extreme
wasteful of computing, memory, and network resources. Cor
pressive sampling, on the other hand, enables us to acqt

(a) The Trade6 application.

Number of requests

11f

Memory in kiloBytes
=
i

Memory in kiloBytes
S (5]
&

data directly in compressed form. 17 58 59 6 61 62 63 064 65 66 67
Time (in seconds) x10°
I1l. EXPERIMENTAL SETTING Fig. 2. Measurements corresponding to the AnonPages and Q@b

. . . signals collected over a 48-hour operating period.
Fig. 1(a) shows the system used in our experiments, comt P 9P

prl?ng tr;rfﬁ serv?rs ngnNorkt()eld dv'g avgl\'/lgV?/b't SWECShX \grtua}étes vary significantly within short time periods. A sample
ization o this system IS enabled by are's EV&lorkload is shown in Fig. 1(b), having an average arrival rate
running a Linux RedHat kernel. The operating system on th(? . :

: . . . 4 of 50 requests per second with a/50 mix of buybrowse
virtual machine (VM) is the SUSE Enterprise Linux Serve i L .
Edition. Th tem hosts IBM's Trade6 benchmark ¢ gansactlons. Each data point in the figure represents the

tion. The System Nosts S lrades benchmark, a Stoc 0(}gregated workload in a 30-second interval.
trading application which allows users to browse, buy, an . . .
. : The experiments reported in the paper use the following
sell stocks. Users can perform dynamic content retrieval as . . . s i :
. . - metrics contained within thgproc pseudo file system, specif-
well as transaction commitments, requiring database reads an , .
. X o : . ically the contents of/proc/meminfo that reports real-time
writes, respectively. The application logic for Trade6 reSId?ﬁformation about memory usage in Linux svstems:
within the IBM WebSphere Application Server, which in turn . y i 9 y '
is hosted by the VM on the server within the application *+ Frée memoryThis quantity, termed MemFree, reflects the
tier. The database component is DB2, hosted on the server amount of physical memory left unused in the system.
running SUSE Enterprise Linux. The database maintains 500 Committed memoryThis quantity, termed CommittedAS,
user accounts and information for 3500 stocks. reflects the total amount of memory allocated by pro-
We use httperf [24], an open-loop workload generator, cesses in the system usimglloc() calls, even if the
to send a mix of bufprowse transactions to the Trade6 ~memory has not been used by them as of yet. For
application over a period of 48 hours. The workload traces example, a process may allocate 1 GB of memory but
are synthesized to reflect realistic operating scenarios such as only touch 100 MB of it. Although the current memory

time-of-day variations as well as bursty ftia where request usage is only 100 MB, the 1 GB allocation is memory
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4
TABLE |
THE LIST OF SYMBOLS USED IN THE PAPER AND THEIR DEFINITIONS. Haar scaling function Haar wavelet basis
Notation | Definition 1 ‘\7 1 :
t Index of time window. o o
d Data to be sampled within time windoty . .
N Length of the acquired dathin each time window.
B* Representation basis selected by the Best Basis algorithm. 0 o5 1 15 0 05 18
Xt Representation Gﬂt in basisB. ) db2 scaling function ) db2 wavelet basis
M Length of collected samples in time winddw
Gt Sampling matrix of sizeM x N. 0//\W 0 ;
Vi Compressed samples df using G;.
& The a priori sparsity estimate for time window Y =
& The a posteriori sparsity estimate for time windowv 0 1 2 3 0 1 2 3
ef\/ Cross-validation error of time window ) db4 scaling function ) db4 wavelet basis
that has been committed by the memory subsystem to t 0/\H OJ\/\/P
process and can be used at any time by the process.
-2 -2
. Page tablesThis quantity, termed PageTables, reflects th 0 2 4 e 0 2 4 e
amount of memory dedicated to the lowest level of pag—*'rg. 3.  Waveforms corresponding to three members of the Dk
tables. wavelet family. The Haar is the simplest wavelet that captures discontinuities

: : in the data; db2 and db4 also show similarity with our data but have longer
« Anonymous pagesThls quantity, termed AnonpageSWaveforms, leading to better frequency resolution.

tracks the amount of non-file backed pages mapped to
page tables responsible for the user space. TABLE |I
. . .. 0,
In addltlon tO these featUI’eS, we aISO use dl/ffk BCtIVIty PERCENTAGE OF COEFFICIENTS NEEDED TO KEEP THE RELATIVE ERROR WITHIN 1%
d UNDER EACH REPRESENTATION BASIS.
measurements (sectors rpadtten) as part of our evaluation

. . . Signal Haar db2 db4
experiments. Our goal is to show that the reconstructed signals AnonPages | 0.20% | 0.51% | 0.66%
can be used to detect various system-level faults. The above- Mapped 0.16% | 0.37% | 0.46%
listed features were chosen to support one of the case studies CommittedAS | 0.85% | 1.27% | 1.49%

PP PageTables | 0.57% | 0.64% | 0.83%

discussed in this paper: detection of memory leaks. Here we

he}ve chosgn low-level metrics that are most likely 'mpaCted.Wavelets are able to capture sharp or abrupt changes in the

this fault. Fig. 2 plots a subset of the features collected duri
i

. tal f th tem lasting 48 h The d nal. Fig. 3 shows the waveforms for these wavelets. We
an experimental run ot the system fasting ours. the er the reader to Walker for a primer on wavelets and their
points are sampled once every two seconds.

scientific applications [25]. We analyze the basis functions in
IV. COMPRESSIBILITY OF SIGNALS terms of how concisely they encode the data collected from
The fundamental premise behind signal compression is tigatr system. We first perform a signal transform on each data
many natural signals are sparse in that they have conc#d to find the corresponding dieients within the chosen
representations when expressed in the proper basis; this spagis and sort them in decreasing order of their magnitude.
sity determines the quality of the subsequent reconstructidihien, we use the largest cofficients where k< n < N, set
Using the data collected from our testbed, we show how &l the other cofficients to 0, and reconstruct a new signal
find basis functions in which this data can be most concisen)- A relative error metric captures thefidirence between
represented. We also discuss a basis selection algorithm calfegioriginal and reconstructed signalse@s) = ||d(n)—d]|/[|dl,
Best Basis which automatically adapts the representation baslere|| = || denotes thé,; norm. Finally, we examine how this
to the structure of the sampled signal. Table | summarizes tifdative error changes as the valuerois increased. Table II
key symbols used throughout this paper and their definitionsummarizes the percentage of fia@ents needed to maintain
A. Sparse Representation of Signals the relative error within 1% for each of the bases. In this
Denote the data to be sampled @sa vector of length respect, the Haar yvavele_t represent; our data most_conmsely.
N, and its representation in basi as x. In other words, The fo_rc_egomg discussion makes it cle_ar that_ a S|gna_l can
d = YN xb = Bx, whereB = [b1,by, ..., by]. Here b; be sparsified Whe_n expressegl underﬁed&ant basis—that is,
=1 ’ PR ' the transformed signal contains many fiméents close to or
ﬁ&ual to zero. This is the insight used by both the C-MON
and CS-MON approaches. We now develop a basis selection
strategy that automatically adapts the representation basis to
the structure of the sampled signal such that it can be most
concisely represented.

denotes theé™ column in theN x N matrix B. For example,
if B is selected to be the Haar wavelet basis, the eleme
of the vectorx = [xg, Xp, ..., Xn] are codficients of wavelet
decomposition for signal. Also, if at mostS entries inx are
nonzero, therx is called anS-sparse vector; is is small,d
is said to be sparsely represented in the bBsis

As possible basis functions, we consider the followinB. The Best Basis Algorithm
members of the Daubechies wavelet family that can capturegjyen a set of possible basis functions, we use a thresh-
signal characteristics in both time and frequency domains: dQI:Hing technique to find the basis in which the signal is most
(also known as Haar), db2, and db4 wavelet basese sparse [26]. Assume we have a choice betwkepossible

IHere 'db’ is short for Daubechies and the number after it represents {pases and let (’%16 repr(%sentation ((k))f .the signal inkﬂh@a.Sis
number of vanishing moments for the corresponding wavelet basis. By be x® = [X;7,--- . Xy'] where x” is the value of thath
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coefficient under basi&. Let the magnitude of theM + 1) A. Incoherent Sampling of the Signal
largest coéicient in Bi bety, and denote the recovered signal
using codficients with magnitude larger thagpin basisBy as
dk. Let us define a soft-thresholding function as

Given twoN-dimensional base® and®, the coherence be-
tween these bases is defined as the largest coherence between
any two basis vectors i¥ and ®:

(%) = x?/2, if X< tg 1)
1) =122 otherwise He @) = VN max [(gevy)], 5)
Then for the basis, the function where(¢x, ¥j) is the dot product of the vectors andy; [6].
N ® Typically the coherence between the two bases lies between
R(By) = Zytk(lxi ) (2) 1 and VN, and when the value of coherence is small we
=

consider the two bases to be uncorrelated or incoherent. When
returns the sum of two terms: the quadratic distance betwa@@ sensing and representation bases are uncorrelated, a spike
di and the original signal, and the scaled sparsitdioWithin i, one basis will be represented as a spread-out waveform
the selected basBy. More formally, the cost functionis jn the other. This property allows us to capture the complete
1 d—d 2+t 11 BT 3 information present in the original data using a small number
> | kI + t |l B dk llo ©) of samples obtained by incoherent sampling.
wherel| B} d ||o is the number of nonzero entriesBj d, that ~ AS @ sampling strategy to collect measurements from our
is, the sparsity ofl, in basisBy. Minimizing this cost function testbed, we choose Gaussian random matrices that have a low
obtains the best possible approximatiordafhen represented coherence ofy/2logN relative to any representation matrix
in the most concise basis. In other words, the funcigl,) With high probability. Prior to sample collection, we generate
quantifies the risk, in terms of loss in fidelity, of applyingdh M x N Gaussian random matriG as the underlying
the threshold; on the coéicients in basisy; a smaller risk sampling matrix. Elements in the matrix are independently
means that the corresponding fiogients will provide a better chosen from a standard Gaussian distribution of zero mean

approximation of the original signal. Therefore, and variance IM. To obtain the samples from the input data,
we simply multiply this matrixG by the data vectod. For

B*=arg k:T.i.QK R(B) ) example, assume the data to be sampled islanl vector
provides us with the best basis in which to represent the signal. Bii Biz -~ Bin Xg
C. The C-MON Strategy for Sighal Compression d= B?’l B?‘Z B%‘N X = Bx,
The foregoing discussion suggests a straightforward way : :
of using signal compressibility to reduce the data transfer Bni Bnz -0 Bun /Uy

and storage costs associated with online monitoring. UndeI[] . . :
: . whereB is anNx N matrix corresponding to the Haar wavelet
C-MON, we collectN samples for each signal of interes

.E)asis andx is the representation af in that basis. Suppose

locally at each server or VM at some user-specified sampll%% wish to obtain aVl x 1 vector of sampley. The data is
rate. After the best-basis transformation as per (4), say usmltiplied With a M x N Gaussian matrisG sijch thaty =

wavelet decomposition, on these measurements, we obtai &= GBx = Ax. whereA = GB is aM x N matrix
set of N codficients for the signal and choose thMe largest ' '
codficients in terms of magnitude, wheM < N. TheseM ] o .

codficients along with their positions within the larger seB- Recovering the Original Signal

of N codficients are sent to the monitoring station where To reconstruct the original dath we must solve this inverse
an approximation of the original measurements is recovere;ﬁomem; given a vectoy of length M and matrixA of size
The drawback with C-MON is the CPU overhead imposegh x N whereM < N, find a sparse vectdt of lengthN such

on the local machine due to the sampling and compressigfaty = Ax—that is, we are looking fok as a solution to
process: once th&l measurements are obtained, the best-

basis algorithm must be invoked followed by a sorting routine min ||bJlo subject toiy = Ab, (6)

to arrange the cdicients in order of decreasing magnitude. beR™

This overhead, quantified in Section VII, can interfere witkvhere||b||y is the g norm of b, i.e. the number of nonzero

the execution of other applications running on the server. entries inb. This problem is under-constrained since the
V. COMPRESSIVE SAMPLING OF SYSTEM MEASUREMENTS matrix A has more columns than rows; there are |nf|n|te|y

When the signal can be represented sparsely in an gbqny cand|d§1te signals for which Ab_: y- To so_lve_ this
propriate basis, it can be acquired from the systirectly unde_r-determlned system, the constraint of sparsity is added,
in a compressed form rather than first collecting a numb@lWing only solutions which have a small number of nonzero
of samples and then compressing them, as was done in qegficients. If there is a unique sparse solution, then the CS
MON. This section familiarizes the reader with the concept df2mework allows the recovery of that solution.
incoherencea key condition underlying compressive sampling SiNce minimizing thee norm is a computationally expen-

that afects the way we sample signals. We then discuss hoi¥€ nonlinear optimization problem, a class of reconstruction
the original signal is recovered from a small set of Sammeglgorithms called basis pursuit or iterative hard thresholding
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pursuit (HTP) is used. Here the problem is recast as one Multiply by Send sum and reset back
L . X . sampling waveform to zero at time t = NT Samples
minimizing thel; norm, which is the LP problem: i_G(l’w l_| s P_...:
bng;g llblly  subject toy = Ab. ) —>® @ (= NT y(1)
We use the iterative hard thresholding pursuit techniqu ;6@ ¢_| i—NT :
previously proposed by Foucart [10] to solve (7). b9 —’® ‘@ y(2) §
denotes theS-sparse vector obtained after th& iteration, J_G(B’ t) : :
this method performs the following two steps to obtain the _,® nm t=NT y(3)
next approximation ob: Data d(t) % ;
1) Perform the operation® + AT(y — Ab®) and identify N ‘_| P=NT |
the indices of theS largest coéficients in the resulting —’® '@ : y(4)
N x 1 vector; store these indices in a $&tV. .
2) Solveb®D = arg minueglly — Ab®|,, suppb) c &+, : :
Here, only the coficients residing in the indices pre- ¢_G(M’ t) L_| : ;
viously stored inl 1 are tuned so as to minimize the —»@ @ = NT y(M) |

cost function. The other cfiecients are zeros. R 5
D) = 1 i
The above Steps are repeated urtt) = 149, Reconstruction Fig. 4. Implementation of compressive sampling in our systiesh takesN

of the original signal using HTP is considered to be exact Withita items over a time period as input and retuvhsamples, wher#! < N.
probability exceeding + § when the number of sampled

satisfies the following condition:

al
o

CommittedAS

N
o

M > Cu (¥, ®)?Slog %, (8)

where ¢ is a small constant an@ is some positive con-
stant [27]. The implication of (8) is that when the coherenc
between the representation and sensing baseas well as
the sparsity metricS, are small, we need only a few sample:
to recover the original signal exactly with high probability.

w
o
T

nonPages

N
o
T

Sparsity (as a percentage)
=
o

C. A CS-based Online Monitoring Strategy 10 15 20 2 20 5 40

Window index

Fig. 4 shows the implementation of the CS-based method
within each local server in which the incoming sigrthlis Fig. 5. Change in the sparsity level over time for the AnonBaged
acquired directly in a compressed foynWhen a new data COMMittedAS signals.
item d(t) arrives at timet it is multiplied by the entries in the
sampling matrixG(j,t), j = 1,..., M and the partial products
are accumulated intg(j). After a period of lengthN x T,
whereT is the sampling period, the current valuesyff) are
sent out as théM samples to the monitoring station, and the
reset back to zero. fEectively, y(j) = Zt’il G(j,)d(t), where
j=1,...,M, and thusy = Gd.

At the monitoring station, the original signal is recovere

using the HTP algorithm. The key advantage here is that SIsome relevant side information from the signal—which could

ple, randomized sampling of the data is performed locally gn ) . .
S . . . . . have been under or over sampled during any particular time
each server, significantly reducing the intrusion of monitorin

L : . ﬁ dow—we can estimate the underlying sparsity and predict
on application performance. The computational cost associate L .
Lo , L . It Tor some succeeding time windows. The number of samples
with signal recovery is filoaded to the monitoring station. . .
collected over these windows can then be adjusted based
V1. ADAPTIVE-RATE COMPRESSIVE SAMPLING on the predicted sparsity values. The goal is to achieve an

The previous section assumes that the signal sparsity wifMgrall reduction in sample size without compromising the
represented in the underlying basis is constant or bound&gonstruction quality specified in terms of relative error.
across time windows. Under this assumption, we can use ,

a fixed rate for sampling the signal. This assumption of & Overview of the CS-MON Strategy

constant signal sparsity within each time window, however, Fig. 6 outlines the CS-MON strategy for adaptive-rate
rarely holds in practice. For example, Fig. 5 plots the spasampling, comprising three major algorithmic components: a
sity level in terms of the number of cfigients needed in compressive sampling block; a cross validation block to esti-
the Haar wavelet basis to capture 99% of the informatianate the signal sparsity; and a Kalman filter block to predict
contained within the CommittedAS and AnonPages signalse sparsity over future time windows. The side information
(previously shown in Fig. 2) within dierent time windows. is collected by the cross validation block once ev&rgime

The sparsities change significantly over time. So a fixed-rate
sampling strategy based on an upper bound on the sparsity
level—between 45-50% in this particular case—will collect
100% of the samples at all times. We can perform much
Better in terms of reducing the number of samples needed by
dynamically changing the sampling rate as the signal sparsity
hanges. This section adds a rate adjustment component to
Bg\e aforementioned CS strategy. We show that by collecting
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Fig. 6. Workflow for the adaptive-rate compressive sampling strategy. Tlég. 8. The relative error achieved by various sample sizeengdifferent
workflow comprises three major steps: compressive sampling, cross validatisparsity levels within the AnonPages signal. Best viewed in color.
and prediction of signal sparsity.

Given that signal sparsity can be estimated at each time
Lt t+1 t+ 2 Lo window, we can use this information to adjust the sample

t+K
[ cs Y cs I CS] size such that the desired reconstruction quality is achieved.
Ccv

[ CV] To achieve this objective, a quantitative relationship between
sparsity and sample size needs to be established—empirically,
in our case. Consider the AnonPages signal whose sparsity

a
Al

, o _ _ _ varies over time (see Fig. 5). Here, sparsity is defined as the
Fig. 7. The timeline for the execution of each block in the adaptive-rat

. N .
sampling strategy. Here CS denotes the compressive sampling block, CV, ﬁgercentage of ccﬁﬁme_nts that capture _99'5/0 of the or|_g|nal
cross validation block, and KF, the Kalman filter. data. For data belonging to each sparsity level, we tifdint

sample sizes, reconstruct the data and evaluate the result
windows and the sparsity is predicted for every time windowsing the relative error metric. Fig. 8 shows the relative error
As per Fig. 6, ana priori estimate of the signal sparsityachieved using various sample sizes, giveffiedént sparsity
within the t" time window, §, is obtained (or initialized at levels within the AnonPages signal. As expected, portions of
start up) and the sampling rate is appropriately adjusted fiie signal which are less sparse require a larger sample size
the subsequent time window based on this estimate. Knowittgachieve the same relative error. The figure also implies a
&, we estimate the sparsity for the neiXt time windows, linear relationship between sparsity and sample size: for data
&1, &:2,..., &k, Using a Kalman Filter. These serve as thef length N with sparsity s, a sample size oM(s) = 5s
a priori estimates for time windowst ¢ 1) through { + K) guarantees a reconstruction error below 5% with confidence
and determine the compressive sampling rates within eacheateeding 93%. Therefore,sf i5 the sparsity for time window
the windows. Once everK time widows, cross-validation t, the corresponding sample sik&(%) is chosen as %.”
measurements are collected from the signal and used to I
generate posterioriestimate of the sparsitg, Via maximum- C. The Cross-Validation Block
likelihood estimation. This estimate forms the basis for the Recall from Fig. 6 that the actual sparsity of the underlying
next set of predictions. data being sampled must be measured periodically, as best as
Fig. 7 shows the execution timeline for each block in ourossible, so that aa posteriori estimate can be obtained to
system. The cross-validation and the Kalman filter block argdate the Kalman filter. The cross validation block, executed
executed once evely time windows whereas the compressivence everK windows, serves this purpose by performing the
sampling block is executed every time window. following operations:

(1) Measurementg; = H.d; are collected from the signal
using a cross-validation matrid of size Rx N where
This block performs compressive sampling within each time R is the number of measurements. The entriesHof
window, adjusting the sampling rate for tti& window as per are random numbers independently selected from the
§, the assumed sparsity of the data in this window. Following  Bernoulli distribution with zero mean and variance of
the notation used in Section IV, we denote the data within  1/R. We will explain the choice oR later in this section.
time windowt as anN x 1 vectord, and its representation (2) Matrix H is then applied on the reconstructed dda

B. The Compressive Sampling Block

in basisB as x; such thatd; = Bx;. The sample size is returned by the compressive sampling block, resulting
set to Mi(§&) which is a function of the assumed sparsity. in 2 = Hd,. Note thatd is reconstructed using samples
The M(&) x 1 measurement vector (&) is then obtained obtained under the sparsity assumptionsof ~

via incoherent sampling ag, (&) = G(&)d: = G(&)Bx, (3) The cross-validation error under the current sparsity
whereG(§) is anM(&) x N matrix whose construction was assumptions”is then calculated as the error norm
previously discussed in Section V. The original dd¢as then o .

reconstructed ad;, also as described in Section V. & =lz-2zl.
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(4) Using maximum-likelihood estimation, thee posteriori be able to estimats by observinge?pt(é). Unfortunately, the
estimate for the sparsity is chosen as the vauthat efpt(é) values are unobservable due to the lack of ground truth
maximizes the posterior probabilitP(e” = ef¥|s = for x;, since we do not sample at full rate when CS-MON
i,§=§): is operating. However, we can show that the cross-validation

error can be used to obtain a tight upper and lower bounds

on eP'(8), thereby replacing{™(3) during sparsity estimation.

The cross-validation erragf¥ is observable since both and

2, are known, and its relationship wigf(&),

1
1-¢€

The statistical models pertaining Re®¥|s =i, § = §) are built holds with high probability. Heré is a constant and is the
empirically using a training data set. We use a sliding windoupper bound on the relative error. A direct consequence of (9)
of size N with a step size oL to go through this data set,is that the observed(&) can be used in place (ﬂfp‘(s) for
grouping the time windows based on their actual sparsity. Onitee sparsity estimation.

these windows have been collected, the following process isWe now provide the proof tha?(§) can be bounded by
repeated for each window. First the actual sparsitythe data the cross-validation error as stated in (9) using the Johnson-
within the window is calculated. Then we assumé@aient Lindenstrauss lemma [28]. First we define an approximation
values for thea priori estimate$ (from i = 0 throughN) and error that quantifies the reconstruction quality achieved by the
perform the previously discussed steps (1), (2), and (3) on tb@mpressive sampling block as

data. The empirical distribution @& when<is assumed, but I - .

when the actual sparsity sis then calculated to approximate & (&) =lld—dell =1 x-Xl,

P(e®|s = i,§ = §). It is important to note that though the

empirical distributions are calculated using a particular set Bferext1s the representation ak in basisB. We can provide

AN : opt, .
training data, the fect of the actual and assumed sparsiu.pper and Ic_>\_/ver bounds fa™(8,) in tgrms of (&) with
values on the cross-validation error derived from the traini jgh probability for some constait[18]:
data is representative and is not limited to the data within this OPtray « oBPPray « hefPlia
set? Therefore, there is no need to upd®@"|s=i,5= §). &7 (&) = &7(S) <he™(S) (10)

In the foregoing discussion, we argued that a small numbEne constant depends on the sampling matE() used
of cross-validation measurements can be used to obtain a gdodng compressive sampling. Since the ground trdghis
approximation of the sparsity of the much larger data streaomknown, the exact value fog"(§&) is unknown as well.
In the following we prove this assertion. The Johnson-Lindenstrauss lemma states ¢ff#(&) can be

The relative error between the original and the reconstructedunded by the observable cross-validation error. \lebe
signals is determined by the exact sparsity and the valae Rx N matrix whose entries are realizations of a random
assumed during the signal recovery process. First we sheaiabler with zero mean and variance/R If r follows
that the relative error obtained using the cross-validatid@ernoulli or Gaussian distribution, then, for a predetermined
measurements is a good approximation of the optimal relatidex 1 vectord,
error between the original and reconstructed signals. Given the

. : . : . ' wd |

representation of the signal in th¢h time window,x;, and an 1-€< Tdn <
arbitrary S as the assumed sparsity, we can define the optimal Il
§sparse approximation error a%’“(é) = minp,<s Il Xt — X [, holds true with probability exceeding-16, whereé € (0, 1).
where the search space includes all vectors with sparsgcording to the lemma, if the row dimensioR in the
< & Let s be the exact sparsity that captures- ¥ of the cross-validation matrix is chosen such that it satisfes
signal. If $ = s, then the optimab-3parse approximation errorhe 2 log(1/25) whereh and e are constants (in our caseis
efpt(é) = € || X |l, which is the upper bound on the absolutéhe upper bound for the relative error), then
error. If § < s, thene®(d) > € || x; || since the signal will be
under-sampled, losing information in the process; similarly if < — <
§> s, theng™(8) < € || x, || due to over sampling of the signal. Il de —d |l
The value ofe™(8) is indicative of the dierence between gso holds true with probability exceeding-15. We choose
the actual and assumed sparsities, and therefore we shqHld constants as € (0, ) for the accuracy level antl = 8

to satisfy the equality foR. Algebraic manipulation of the
2The cross-validation error only depends on the actual and the assurgfgﬁvious equation gives us

sparsity values of the signal and not on the individual data values comprisi

the signal. The training dataset includes data corresponding fferadit 1 1

sparsity levels and thus can be used to derive a general model for such I W(gt) < etapp(gt) < _e[CV(gt). (11)
dependency that is representative of all variations of data (which may vary 1+e€ 1-¢

from those in the training set). In other words, we sweep through the entj . . .

range of sparsity values to build our model using the training dataset. So, tgluation (9) follows directly from (10) and (11), proving that

model is representative of the sparsity values that one might see in the sig{§) can indeed be used to estimate the actual sparsity with
captured at run time. high confidence

& CV __ ACV —_i a_a
§ = argizoymlf.a"?(N P =¢€'ls=i,5=§).

P(e®|s = i,5 = §) is the probability density function
of the cross-validation error on the condition thsais”
assumed as the sparsity when sampling the data whereas

the measured cross-validation data has spassity h(1+€)

(&) < P(&) < —€M(%) 9)

l+e

Z—2Z
<||t t||< v e
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D. The Kalman Filter block

We treat thea posteriori estimates of the signal sparsity
5, %,...,% obtained from the cross validation block as time-
series data and use an appropriate forecasting model to e:
timate the sparsity valug,1 for the next time window and
beyond using these past observations. We use the Holt-Winte
model which uses a moving average filter to capture the meal
of the observed data and a slope component to capture th o ‘
trend. A state-space form of this model is developed within %0 Wi, dex 450
the framework of a Kalman Filter. The prediction step of th&ig. 9. Overlay of the actual sparsity of the AnonPages siguith a

: : ; ; teriori values s"obtained by the cross validation block. Here sparsity is
filter uses the state estimate from the previous time step efined as the number of dfieients needed to capture 99% of the original

produce an estimate of the state at the current time step.sihal. The plots show thevalues obtained using the following initial guesses
the update step, the current prediction is combined with currdertthe sparsity levels: 4%, 17%, and 30%.

observations™to further refine the state estimate. Knowledge
of the Kalman state is used to predict the future values. Weolations and trends that could be indicative of performance
refer the interested reader to Harvey for more details on hdwttlenecks or degradation in the system. The CPU and storage
the Kalman Filter can be used for time-series forecasting [29)erhead incurred by these methods is also quantified. The
Use of the predictive filter further reduces the overall sanfesults reported here use data collected from our testbed,
pling cost—by reducing the number of cross-validation megescribed earlier in Section IlI.
surements in this case. If the cross-validation block is executedReconstruction quality can be quantified via the relative-
once everyK time windows, the filter forecasts the sparsit@rror metric that expresses the normalized error between the
values for the nexK—1 time windows s, ..., &.k_1, which original and recovered signals. In many situations, however, it
form the inputs to the compressive sampling block. Note thigtnot essential to recover the original signal exactly, especially
since the filter’s state is only updated once ewérl windows if the operator is mainly interested in detecting performance

by the cross-validation measurements, the filter “coasts” in thgoblems with the system. It is more important that the signals
interim, that is, the gains are set to zero. reconstructed via the C-MON and CS-MON methods preserve

properties in the original signal that can help detect these
problems. We consider two such scenarios:

. The datacenter operator wishes to detect performance-

related bottlenecks or anomalies that manifest themselves

as the magnitude of the signal exceeding some nominal

threshold value.

. The operator wishes to detect the gradual performance
deterioration associated with software aging by analyzing
the signals for the existence of trends.

N
o

Actual
—o— 4%

17%
—5— 30%

w
o
T
I

=
o
T

Sparsity (as a percentage)
n
o

E. Summary of the Adaptive-Rate Model Operation

Let the initial condition be that;, the data to be sam-
pled during time windowt, has some unknown sparsity.
To compressively sample this data, we assume its sparsity
to be some initial values"and use anM(§) x N matrix
G(&) to collect M((&) samples, resulting in measurements
Vi(&) = G(&)d: = G(&)Bx:. Recall thatM(&) = 5&. The data
in this time window is then reconstructed dsas described
in Section V by the compressive sampling block.

Once everK time windows cross-validation measurementg Signal Reconstruction Quality using CS-MON

are collected using aRxN matrix H with R > 8¢ 2 log(1/26), ) )
resulting in measurements = Hd;, = HBx. The cross- We use the signals obtained from our testbed to evaluate

validation error is calculated a¥(&) = || z — Hd || which tr_le performance qf the CS—MON strategy in terms of overall
is then supplied to the maximum-likelihood model to obtaifidnal reconstruction quality, focusing on the performance of
the a posteriori estimate of the sparsity of the current timdhe key blocks comprising the workflow shown in Fig. 6.
window, §&. Once its state is updated usirgg the Kalman Estimating a posteriori signal sparsit¥Ve show that, given
filter forecasts the sparsity over the né«t 1 time windows. an arbitrary initial assumption for the signal sparsity, the cross
The above process repeats itself. validation block can quickly update its estimation about the
Note that the sampling matri®(§) used by the compressiveactual sparsity. In our result, the average estimation error is
sampling block is obtained by randomly selectivg&) rows within 20% of the actual sparsity value, showing the cross
from an N x N random Gaussian matrix, built prior to thevalidation block can closely track the actual sparsity by
sampling process (Section V discusses the construction of tb@lecting cross-validation measurements periodically.
Gaussian matrix.) The sampling mattix for collecting the ~ Assuming & to be thea priori estimate of data sparsity
side information is fixed as long as the paramete@nd s within a time windowt, the compressive sampling block

remain unchanged. collectsM; samples and reconstructs the data. Cross-validation
measurements are also collected within this window and
VII. PERFORMANCE EVALUATION maximum-likelihood estimation is performed on the resulting

We evaluate the performance of the C-MON and CS-MOBtoss-validation error to obtain the posteriori sparsity .
strategies in terms of theirffecacy in: (1) reducing the sam- Since this estimate is influenced by the initial assumption of
ple size while guaranteeing a specified signal reconstructiarsparsity value, we study the quality af 6btained under
quality; and (2) using the recovered signals to detect threshdlidferent assumptions fag, including arbitrary guesses.
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(a) Predicted sparsit = 1. (b) Predicted sparsityK = 4. (c) Relative errorK = 1. (d) Relative errorK = 4.

Fig. 10. Predictions for sparsity values provided by the Kalman filter for the AnonPages signal when the filter's state is updated: (a) during each time
window, that isK = 1, and (b) once every four windowk, = 4. The relative error between the actual and reconstructed signals when the filter state is updated
each window and once every four windows is shown in (c) and (d), respectively.

: . . TABLE Il
F|g- 9 ShO\_NS an overlay O_f the actual §|gnal sparsity (thgm AVERAGE SAMPLE SIZE USED BY CS-MONTO RECONSTRUCT THE ANONPAGES AND
green plot) with the posteriorivaluess; obtained by the cross CoMMITTEAS SIGNALS FOR DIFFERENT SPARSITY LEVELS.
validation block for various initial sparsity guesses. Values
. . AnonPages CommittedAS
along the y-axis correspond to the number of fioents Error tolerance —p————p 71K =117 K=2
needed to capture 99% of the AnonPages signal—our defi- 5% 32.94% | 32.80% | 28.44% | 29.13%
nition of sparsity here. The length of each time window is 10% 27.44% | 27.28% | 17.19% | 17.05%
15% 24.69% | 23.94% | 11.50% | 10.76%

set toN = 64. Let us focus on the plot in red, illustrating
the case in which during the start of each time window, thS(?1

. . . . ows that although our sparsity prediction is not exact, it
compressive sampling block reconstructs the underlying signal . .
. . o ) nevertheless provides a performance guarantee for monitoring
assuming a sparsity of 4%, that $s = 0.04N. In this case,

2 - . ) systems in terms of reconstruction quality.
the a priori value & used for compressive sampling severely Note that in the ideal case, the relative error achieved as

underestimates the actual sparsity during time windows 3goresult of using the actual sparsity is around 1%, which is

through 425. However, by the end of each of these tm;g be expected since the sparsity accounts for 99% of the

windows, the cross validation block is able to correct thi :
. . L ata. The relative error between the actual and reconstructed
estimate and obtain a reasonably close approximation of the . - :
. 2 . signals is shown in Figs. 10(c) and 10(d) when using the actual
actual sparsity. Also, tha posteriori values obtained under

: g . . o parsity and the sparsity predictions provided by the filter,
differenta priori sparsity assumptions lie fairly close to eac . L .
o o respectively. When sparsity is underestimated, the recovered
other, and they are not overly sensitive to thgriori value

sigpal incurs a higher relative error, whereas the error is low if

§&. However, we do observe that guesses closer to the actu
. . ore than the necessary number of samples are collected due
value lead to more accurate estimates. The average estimation

o . g'an overestimation of the sparsity. We observe that, although
error is within 20% of the actual sparsity value regardless 0 . . : .
the initial guess. we underestimate the sparsity after a sudden increase in the

actual value, the resulting reconstruction penalty is small: the
Predicting sparsity for future time windowRecall from the relative error as a result of using predicted sparsity is rarely
CS-MON workflow that once the signal sparsity is estimatagigher than 7%.

by the cross-validation block, a Kalman filter is used to predi

. X _ Beduction in sample sizé-inally, we demonstrate that the
the sparsity for the next few time windows to further reduce t

i head involved in obtaining th lidati mple size needed to reconstruct the signal while achieving
sampling overnead involved in obtaining the cross-validatiqne yegjreq quality is substantially reduced using the adaptive-

measurements. Our result shows that the prediction error of f model. Our result shows that the adaptive-rate model
Kalman filter block falls within 20% of the actual sparsity. ,qpieves the same reconstruction quality while reducing the
Figs. 10(a) and 10(b) show the Kalman predictions igympie size by 70% when compared with fixed-rate compres-
relation to the actual sparsity for the AnonPages signal. Age sampling.
before, the window size is set ¥ = 64 and the sparsity 'S In general, the error tolerance criteria for recovery quality
defined as the number of déeients needed to capture 99%g g jication-specific, which in turn defines the sparsity level.
of the data. Fig. 10(a) shows the case in which the croggpe | jists the average sample size used by the adaptive-
validation block is invoked every time window. Fig. 10(b}5te model per time window to reconstruct the AnonPages and
shows the case in which the frequency is once every foEgmmittedAS signals underfiérent sparsity criteria. We also
windows and the Kalman filter is required to predict the valugg, o\ the two cases where the Kalman filter's state is updated
for the windows in between. Since a linear model is used in OHfiring each time window, i.eK = 1, and updated once every
filter implementation, the prediction process underestimates, - windows. i.e.K = 4. ’The sam;’:)Ie sizes are reported as a
the actual sparsity in cases of sudden fluctuations in 1§ centage of the total number of data poiNtsvithin a time
sparsity. However, our results show that the predictions traﬁ}fndow with N = 64. The listed sample sizes include the

the overall trend exhibited by the actual values, and the averaggnper of samples obtained for both compressive sampling
prediction error is within 20%. and for cross validation.

Signal reconstruction qualityWe now evaluate the recovery Table Il shows that the adaptive-rate strategy guarantees
quality achieved by the CS block using the sparsity predictioasreconstruction quality with 5% relative error using sub-
provided by the Kalman filter for each time window. Our resulitantially small sample sizes for the signals considered in
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Fig. 11. The original CommittedAS and AnonPages signals, and the same signals recovered by C-MON using 5% fifdieatsae the basis found by
the best basis algorithm. The signal recovered by CS-MON with 15% error tolerance is also shown for comparison purposes.

. TABLE IV
this paper, for exampler about 33% for AnonPages, and 28%LATIVE ERROR BETWEEN THE ORIGINAL ANONPAGES AND COMMITTEDAS SIGNALS,

for CommittedAS. The sample size needed for a 15% error AND THE CORRESPONDING RECONSTRUCTIONS, ACHIEVED BY C-MON.
tolerance is even lower: around 25% for AnonPages and 12% % of samples Ni/N x 100)

. . . . . . Signal Basis
for CommittedAS. Without accounting for time-varying signal 9 2% 5% 10%
Haar | 70.56% | 0.34% | 0.16%

sparsity, an upper bound on the sample size, determined by the Anonp db2 | 79279% | 43.09% | 0 26%
least sparse portion(s) of the signal, must be used over all time NONFages | gb4 | 84.54% | 67.50% | 56.42%
windows to guarantee reconstruction quality. For example, BB | 70.56% | 0.34% | 0.16%

Haar | 70.35% | 0.80% | 0.37%

referring back to Flg. 5, the upper bound onlthe sparsity level commiteqas | 002 | 78.68% | 42.11% | 0.62%
of the AnonPages signal is around 30%. So, if one always uses db4 | 84.19% | 67.33% | 56.58%
this bound for sampling purposes, a sample size corresponding BB | 70.35% | 0.80% | 0.37%

to 30% signal sparsity, i.e., a sample size of 100% is required
at all imes. This is quite wasteful in terms of sample collectiofignals with lower reconstruction quality, specifically $ko
since in many portions of the signal, the sparsity is lower thagconstructed to achieve a 15% error tolerance, can be used
5% implying that the sampling rate can be adjusted to be mughdetect performance issues with high confidence.
lower—around 20%—during these portions. ) )

The collection of side information does not add mucR- €omparing the CS-MON and C-MON Strategies
to the sampling cost. We find that the number of cross- We now compare the adaptive sampling strategy to an al-
validation measurements needed by CS-MON is quite sma#rnative method also aimed at compressing the data collected
for example, to achieve a relative error of 5% the numbat the server—the C-MON strategy discussed in Section IV.
of additional measurements due to the cross-validation blodke find that for varying values dfl, C-MON compresses the
accounts for only @1% of the overall sample size. Thesignal much better than CS-MON, resulting in a lower data
number of cross validation measurements is even smaller wheansfer overhead to the monitoring station. Table IV sum-
a larger reconstruction error can be tolerated. marizes the relative error achieved by C-MON as a function

Table Il also shows that to achieve a low error tolerancef sample size. Here the original data set comprides 64
more samples are needed. We also observéfereince in sam- samples and the signal is reconstructed udihgodticients
ple size wherK, the frequency at which the cross validatiofirom the wavelet decomposition. The results show that the
block is invoked, is set to one versus four time windows. ThBest Basis (BB) algorithm successfully identifies the basis
difference is primarily caused by prediction results that eithender which the signal can be most concisely represented—
under or overestimate the signal sparsity. For example, whehich happens to be the Haar wavelet for the AnonPages and
K = 4, the Kalman filter provides sparsity predictions withouEommittedAS signals—thereby achieving good reconstruction
any input from the cross validation block for three timeuality while using very few cd@écients. Fig. 11(a) plots
windows leading to prediction errors—mostly underestimatirtpe CommittedAS signal recovered by C-MON using 5% of
the sudden increase in the sparsity. Consequently, the undke codficients. The CS-MON reconstruction with 15% error
sampling during those time windows results in a smalléolerance is also shown for comparison purposes. Fig. 11(b)
sample size. shows the same set of results for the AnonPages signal. One

Moreover, recall that to detect performance-related issuesy conclude from the results summarized in Tables Il and IV
with the system, it is not necessary to recover the origindat C-MON exploits the compressibility of the underlying
signal exactly but to just preserve properties in it that casignals better than CS-MON.
help detect these problems. We show later in this section thatVe quantify the computation and storage costs imposed
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Fig. 12. The CPU overhead incurred by the sampling and engqaiiocesses Fig. 13. The relative error achieved by C-MON and CS-MON wheimgi
associated with the C-MON and CS-MON strategies on the local machirsmaller measurement windows.
The signal reconstruction overhead incurred by the monitoring station is not

included here. Both strategies were implemented in MATLAB and executed TABLE VI
on an AMD Athlon Il 3.0 GHz processor. THE PACKETIZATION DELAY INCURRED IN SECONDS FOR VARIOUS LENGTHS OF THE
MEASUREMENT WINDOW AND SAMPLING RATE.
TABLE V
. Sampling rate
SrorRAGE cosTS INCURRED BY C-MON aND CS-MON UNDER DIFFERENT SPARSITY Window length,N 05 Hz T 5 Hz plO% Hz T 1000 Az
LEVELS WHEN SAMPLING THE ANONPAGES SIGNAL. 32 64 64 032 003
Storage overhead (in KB 64 128 | 12.8 0.64 0.06
Error tolerance =5 CS-MON 128 256 | 25.6 1.28 0.13
5% 1.50 0.16
10% 1.50 0.13 . . . .
15% 150 0.12 Another equally interesting aspect to consider is how the

size of the measurement window—setNo= 64 to obtain the
on the local server by the two strategies to achieve thég@sults reported in Tables Il and IV—facts the monitoring
respective compression levels. Fig. 12 quantifies the CRperation. We test C-MON and CS-MON on measurement
overhead incurred on a per-window basis by the sampling awindows of various lengths and plot, in Fig. 13, the relative
encoding processes associated with C-MON and CS-MON eéffor achieved by these two strategies as a function of sample
the local machine for various values Bf C-MON incurs a Size for small measurement windows for the AnonPages
higher CPU overhead since the encoding process requiresignal. The advantage of C-MON and CS-MON in exploiting
wavelet transformation on thid values followed by a sorting the compressibility of the signal shrinks with window size.
routine to extract the large$fl codficients. In the CS-MON  Recall thatN samples must first be collected at the server
implementation, the process of incoherent sampling is simpy some sampling rate to generate a packeMoflata items
the multiplication of anM x N matrix with anN x 1 vector, to transmit to the monitoring station, whed <« N. The
as shown in Fig. 4. So, CS-MON incurs considerably lesize of this measurement window dictates how far behind
CPU overhead, running about an order of magnitude fastbe monitor lags the actual execution of the system, a delay
than C-MON. Moreover, since this overhead is incurred onvee call the packetization delayTable VI shows this delay,
per-signal basis, CS-MON can be quite CPfeient when in seconds, as a function di and the sampling rate. For
monitoring large numbers of signals on a single server.  example, ifN = 128 with a sampling rate of 0.5 Hz, the delay
C-MON also incurs an increased storage cost over Ci8-256 seconds. That is, the monitor lags about 4 minutes
MON, needing a bfiier size ofO(N) to accommodat&l data behind the system. So, as a practical matter, smaller values of
items whereas a lfier size of M < N is required for CS- N are better suited for real-time monitoring of the system.
MON. Table V shows the storage overhead when using @-key difference between the two strategies is that in the
MON and CS-MON on the AnonPages signal for a windowase of CS-MON the compressed samples are ready to be
size of N = 64. The overhead due to C-MON includes thé&ransmitted immediately upon receiving the last data point
buffers needed to store the measurements obtained usingiththe measurement window, whereas the packetization delay
lengthN time window and to store the sorted ¢deients after for C-MON includes the additional time required for wavelet
the wavelet transformation in the Daubechies basis. Howevggnsformation and sorting to obtain telargest cofficients.
if the data is transformed in the Haar basis, this can be im-The foregoing discussion exposes some interesting tfialeo
plemented entirely in place—on the measuremeffiiebitself. between the C-MON and CS-MON strategies, particularly
So, the storage required in this specific case is arousiiBl  those related to the choice of the measurement windowNsize
On the other hand, the CS-MON implementation shown in choosing the appropriatd, one must consider the trad&o
Fig. 4 requires a Htier to simply store the compressed dathetween the CPU and storage overhead due to these strategies
that is generated as the measurements stream in. and the resulting network ftfizc. If responsive operation is
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Fig. 14. The W_rite_activity sig_nal collected from the testbed that measuregiy 15 Hit rate when detecting a6% violation in thewrite activity

the number of disk sectors written. signal, achieved by C-MON, CS-MON, and random sampling. The length of
the measurement window N = 64.

desired therN must be small. However, when monitoring the

system for faults that manifest themselves over many minutsginal signal exactly, using a sample size that is smaller
or hours, such as memory leaks, or with the intent of simptihian the sparsity still enables us to preserve abrupt changes of
logging the data for f-line analysisN can be made larger to the signal. In summary, both C-MON and CS-MON achieve
better exploit the compressibility of the underlying signals. a hit rate greater than 90%, with C-MON able to better
- compress the signal, using about 4% of the original signal.

C. Case Studies Note, however, that the previously discussed trédeetween

We test the signals reconstructed via C-MON and CS-MON.MON and CS-MON, in terms of data transfer, CPU, and
to detect two special cases: abrupt changes in performangl%-rage overhead, applies in this scenario as well.

related data and gradual exhaustion of system resources. Detection of Trendsin the second case. we evaluate C-MON
Detection of Threshold Violation#s discussed earlier, theregng cS-MON for trend detection, whic'h can help detect, for
are situations in which it is not essential to recover th@xample,whetherasystem resource is slowly being consumed
original signal exactly. If the datacenter operator is mainky exhaustion. We use a long-running Trade6 application
interested in detecting performance bottlenecks, hot spaigecuting over a period of 48 hours and inject a small memory
or anomalies fiecting the computing system that manifeskak of about 100 KBninute at around the 24-hour mark.
themselves as abrupt changes in the signals being monitored, i, simplify the problem, we use time bins that each includes
is more important that the reconstructed signal preserve thqg4 data points in 34 minutes. Sampling and reconstruction
characteristics. We evaluate how well th_reshold violationge applied on each time bin separately. To estimate the global
are detected by C-MON and CS-MON using as an exampl@nd, we use a 24-hour sliding window, which includes 40
the write_activity signal shown in Fig. 14. This signal wastjme bins, and move the sliding window by one time bin at
collected from our testbed during an experimental run and thgqp, step. We use the linear modet axt+b, whered is the
signal measures the number of sectors written to the hard dié{ierage of reconstructed data points within each timettis,
Fundamentally, we are interested in how well the reconstructgg, beginning time of the sliding window, is the slope, and
write_activity signal preserves the abrupt changes and spikgss the intersection. For each sliding window, 40t pairs
present in the original. More formally, i is the signal of are applied to this model and the slope within each sliding
interest, we considai(i), thei®" data point within the signal, \yindow is estimated along with the 95% confidence interval.
a p% violation if it satisfiesd(i) > Q(d,100- p), where  rig 16 shows the estimated global slope for CommittedAS,
Q(d, 100-p) is the (106-p)-th percentile of observations  for the first 24 hours followed by the second 24 hours,
We use &hit-rate metric to characterize the number of abru%dicating that both C-MON and CS-MON perform better than
changes that can be detected using the reconstructed siggahiom sampling: the width of the 95% confidence interval is
by defining a hit as follows: at timéwithin the original and {jghter than the one obtained using random sampling, indicat-
recovered signals, a spike occurring in the recovered SigRg) greater certainty in detecting the slope. We also observe an
matches a similar spike in the original signal. _ increasing trend in the estimated slope. For CommittedAS, the
_Fig. 15 shows the hit rate achieved when detecting a 1.6%timate is around 0 at the beginning indicating no increasing
violation in the write_activity signal as a function of the yeng associated with this feature. Then, the slope values
sample size used to recover this signal. The baseline methQgdease and the lower bound on their 95% confidence interval

used for comparison is random sampling and its hit rate i3comes positive, indicating an increasing trend by the end of
linear with the sample size, as expected. The hit rate achieygd experiment.

by CS-MON is significantly better than random sampling at
the same sampling rate: greater than 90% when using 25%
of the original samples, for example. We observe that theThe adaptive sampling strategy developed here exploits
spikes in the original write activity are underestimated if aany available time-varying sparsity information within the
smaller sample size is used, leading to a lower hit rate. Wmderlying signal to reduce the number of samples collected
also observe that the sample size required to detect thedeen compared to a fixed-rate scheme. The reconstructed
spikes is much lower than the sparsity of the writetivity —signal adequately preserves properties in the original signal
signal, which is around 50% when the window length is 64hat are useful for performance management and anomaly de-
This result shows that when it is not essential to recover thection. The sensing scheme has low computation and storage

VIII. ConNcLusIONs
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