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Abstract—Performance monitoring of datacenters provides
vital information for dynamic resource provisioning, anomaly
detection, and capacity planning decisions. Online monitoring,
however, incurs a variety of costs: the very act of monitoring
a system interferes with its performance, consuming network
bandwidth and disk space. With the goal of reducing these
costs, this paper develops and validates a strategy based on
adaptive-rate compressive sampling. It exploits the fact that the
signals of interest often can be sparsified under an appropriate
representation basis and that the sampling rate can be tuned
as a function of sparsity. We use the Trade6 application as our
experimental platform and measure the signals of interest—in our
case, signals pertaining to memory and disk I/O activity—using
adaptive sampling. We then evaluate whether the reconstructed
signals can be used for trend detection to track the gradual dete-
rioration of system performance associated with software aging.
Our experiments show that the signals recovered by our methods
can be used to detect, with high confidence, the existence of trends
within the original signal. We also evaluate the reconstructed
signals for threshold-violation detection wherein the magnitude
of the signal exceeds a preset value. Our experiments show that
performance bottlenecks and anomalies that manifest themselves
in portions of the signal where its magnitude exceeds a threshold
value can also be detected using the reconstructed signals. Most
importantly, detection of these anomalies is achieved using a
substantially reduced sample size—a reduction of more than 70%
when compared to the standard fixed-rate sampling method.

Index Terms—Online monitoring, anomaly detection, adaptive
sampling, compressive sampling.

I. Introduction

Online performance monitoring of computing systems and
network infrastructure within a datacenter is vital to ensuring
efficient operation [1]–[3]. The monitored information has
a variety of uses: it drives real-time performance manage-
ment decisions such as dynamic provisioning of resources to
match the incoming workload as well as anomaly detection,
diagnosis, and mitigation. The monitored information also
drives decisions of a longer-term nature; for example, capacity
planning that identifies resources that are over-utilized or
under-utilized and aims to improve utilization by adding or
removing appropriate resources. In terms of system security,
operators who monitor communication networks for malware
or denial-of-service attacks are increasingly dependent on real-
time detection of anomalous behavior in the traffic data [4].
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We consider a server cluster wherein software-based sensors
measure various performance-related parameters associated
with the cluster. These measurements include high-level met-
rics such as response time and throughput as well as low-
level metrics such as processor utilization, I/O, memory, and
network activity. The information collected by the sensors
is transmitted over a network to a monitoring station for
data analysis and visualization. Online monitoring, however,
incurs a variety of costs. First, the very act of monitoring an
application interferes with its performance. If sensing-related
code is merged with the application code, this change may
interfere with the timing characteristics of the application or
if sensors execute as separate processes, they contend for CPU
resources along with the original application. Transmitting the
monitored data over a network consumes bandwidth. Finally,
logging the data for future use such as analysis aimed at
capacity planning consumes disk space.

The volume of data that one has to collect and process for
effective monitoring of datacenters poses significant Big Data
challenges in collection, analysis, and storage [5]. In this paper,
we focus on the data collection phase and develop sampling
methods to derive a low-dimensional structure as a compact or
parsimonious representation of the original dataset at the local
server prior to transmission to the monitoring station. Using
compressive sampling(CS) [6]–[9] as the theoretical founda-
tion, our methods are designed to exploit any inherent sparsity
in the signal being sampled to reduce the dimensionality of
the collected data. A signal or portion thereof is termedsparse
if it can be concisely represented in the proper basis function;
this property can be used to capture the useful information
content embedded in the signal and condense it into a small
amount of data. In other words, one can acquire these signals
from the underlying systemdirectly in a compressed form.

From a viewpoint of reducing the costs associated with
monitoring, compressive sampling allows for a very simple
sensing strategy—rather than tailoring the sensing scheme
to the specific signal being measured, a signal-independent
strategy such as randomized sampling can be used, signif-
icantly reducing the intrusion of monitoring on application
performance. Also, since signals are acquired directly in
compressed form, the network bandwidth required to transmit
these few samples to the monitoring station is reduced and so
is the hard-disk space required to store them. When operators
wish to analyze the original signal, there is a way to use
numerical optimization to reconstruct the full-length signal
from the sample set. The recovery process is typically posed
as a linear programming problem and solved using the hard



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2603473, IEEE
Transactions on Cloud Computing

2

thresholding pursuit (HTP) approach [10].
We focus on two major challenges related to the practical

use of CS as a monitoring tool in a datacenter setting. First,
having to manually select the appropriate representation basis
under which the measured signal is most sparse and thus
achieves the best reconstruction imposes a substantial burden
on the system operator and must be automated. Secondly,
the notion that signal sparsity—the information content—is
constant or bounded across its entire length rarely holds in
practice. Therefore, to maximize the overall information con-
tent captured from the signal while simultaneously reducing
the requisite number of samples, it is best to follow an adaptive
rather than fixed rate sampling strategy.

We address the above challenges by developing a new
adaptive sampling strategy within the CS framework for online
monitoring, exploiting the fact that the signals of interest often
can be sparsified under an appropriate representation basis and
that the sampling rate itself can be tuned as a function of
sparsity. The following two new data sampling and encoding
strategies are developed and evaluated:

• We develop a basis selection algorithm calledBest Basis
that automatically adapts the representation basis to the
structure of the underlying signal being sampled such that
the information can be most concisely represented. Using
the best-basis algorithm, we develop a strategy called C-
MON that takes advantage of signal compressibility to
reduce the data transfer and storage costs associated with
online monitoring.

• We developadaptive compressive samplingwhere the key
idea is to dynamically tune the sampling rate as the signal
sparsity changes: in time windows where the signal is
sparse we reduce the sampling rate and in windows where
the signal is less concise the rate is increased, all the while
ensuring that the chosen sampling rate guarantees a user-
defined signal recovery quality. We term this strategy for
online monitoring as CS-MON.

A major benefit offered by adaptive sampling in the context
of datacenter operations is in reducing the overhead of gen-
erating, storing, and using performance log files for analysis
tasks such as capacity planning, anomaly detection, and trend
forecasting. Here we evaluate the efficacy of detecting thresh-
old violations and trends using the signals reconstructed via
C-MON and CS-MON. We use IBM’s Trade6 benchmark, a
stock-trading service which allows users to browse, buy, and
sell stocks, as our testbed and subject it to a dynamic workload
while measuring signals pertaining to the memory and disk
I/O subsystems. Under the first scenario, the operator wishes
to detect anomalies that manifest themselves as the magnitude
of the signal exceeding some nominal threshold value. The
performance of the C-MON and CS-MON strategies in this
regard is quantified by a hit-rate metric; we show that by
selecting the threshold value appropriately, both strategies
achieve a hit rate of 90% with a false alarm rate of only
0.1%. In the second scenario, the operator wishes to detect the
gradual deterioration of system performance, say over hours
or days, associated with software aging [11]. Common causes
involve resource exhaustion due to memory leaks and bloat,

unreleased network sockets and file locks, and unterminated
threads. One way of determining if software aging exists is to
statistically analyze the appropriate signals for the existence of
trends [12], [13]. We use a long-running Trade6 application
having a small memory leak of about 100 KB/minute, and
evaluate the performance of C-MON and CS-MON in terms
of their ability to estimate a positive slope in the reconstructed
data even in the presence of seasonal variations and periodicity
in the signal.

In terms of the sample collection cost, both strategies
achieve a notable reduction compared to fixed-rate sampling.
The anomalies described above are detected with high confi-
dence using 12–25% of the samples from the original signals
in the case of CS-MON and less than 5% in the case
of C-MON. We also quantify the computation and storage
costs incurred by CS-MON and C-MON to achieve their
respective compression gains, finding that CS-MON imposes
significantly less burden on the local server resources than the
C-MON strategy.

The paper is organized as follows. Section II discusses re-
lated work and Section III describes our experimental testbed.
Section IV demonstrates C-MON, the compression of signals
generated by the testbed using the Best Basis algorithm,
and Sections V and VI discuss CS-MON, the compressive
sampling of signals using an adaptive rate strategy. Section VII
presents experimental results evaluating the performance of
these strategies in recovering the original signals, and in
detecting threshold violation and trends. Section VIII provides
some concluding remarks.

II. RelatedWork

To the best of our knowledge, compressive sampling has not
been previously studied as a performance monitoring tool in
the context of cloud computing except in our earlier work
in [14] and [15] where the emphasis was on studying the
feasibility of using fixed-rate compressive sampling for mon-
itoring server systems. This work has developed an adaptive-
rate model that exploits any time-varying sparsity in the signal
to further reduce the number of collected samples.

Tumaet al. study the applicability of compressive sampling
for fine-grained monitoring of processor performance and eval-
uate its performance on signals representing micro-architecture
counters within a core [16]. They show that compressive sam-
pling can recover these signals if one can identify the bases in
which the signals can be sparsely represented. Their approach
bears some similarity to our work, but the measurements
are obtained from hardware counters inside various micro-
architectural components of the processor and the evaluation is
limited to a signal-to-noise metric—same as the relative error
metric used in this paper. In contrast, this paper combines
compressive sampling with sparsity prediction for rate adjust-
ment, and evaluates its performance in spike detection and
trend detection with the reconstructed signal. Besides, rather
than using traditional algorithms such as Orthogonal Matching
Pursuit (OMP) for signal recovery as in [16], we employ a
faster iterative Hard Thresholding Pursuit algorithm originally
proposed in [10].
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Work on adaptive-rate sampling in other domains includes
the results reported in [17]–[23]. Menget al. propose a
method for distributed state monitoring in Cloud datacenters
wherein the sampling intervals are updated dynamically ac-
cording to the likelihood of detecting a threshold-based state
violation [17]. Ward shows in [18] that side information of
cross-validation measurements can be used to improve the
recovery algorithm used in compressive sampling and reduce
the sampling rate. For the similar purpose of improving signal
recovery algorithms under a reduced sample rate for compres-
sive sampling of images and videos, Stankovicet al.use spatial
and temporal correlations within images and videos [20].
OMP is employed in [20] as the recovery algorithm. Besides,
spatial correlations between non-overlapping blocks of the
same image are exploited in [20] for image recovery, and
temporal correlations between one frame and the previous
frame of a video are exploited for video recovery. Sampling
rates for compressive sampling are adaptively adjusted to
collect biomedical data [21] and surveillance data [22].

One of the strategies proposed by Warnellet al. for sampling
surveillance videos bears some similarity to our work [23].
Cross-validation error is used for sparsity estimation. However,
only the sparsity of the foreground in each frame needs to be
estimated, and the foreground data can be fitted approximately
by Gaussian distribution. The data used in this paper, however,
cannot be easily fitted into any known distributions. Moreover,
the scheme proposed in this paper accomplishes sparsity pre-
diction using Kalman filter in addition to sparsity estimation.

Finally, it could be argued that any number of existing com-
pression algorithms, especially lossless ones such asbzip2

and DEFLATE, could be used to condense the information
monitored at the data center before writing to disk. However,
massive data acquisition followed by compression is extremely
wasteful of computing, memory, and network resources. Com-
pressive sampling, on the other hand, enables us to acquire
data directly in compressed form.

III. Experimental Setting

Fig. 1(a) shows the system used in our experiments, com-
prising three servers networked via a gigabit switch. Virtual-
ization of this system is enabled by VMWare’s ESX Server
running a Linux RedHat kernel. The operating system on the
virtual machine (VM) is the SUSE Enterprise Linux Server
Edition. The system hosts IBM’s Trade6 benchmark, a stock-
trading application which allows users to browse, buy, and
sell stocks. Users can perform dynamic content retrieval as
well as transaction commitments, requiring database reads and
writes, respectively. The application logic for Trade6 resides
within the IBM WebSphere Application Server, which in turn
is hosted by the VM on the server within the application
tier. The database component is DB2, hosted on the server
running SUSE Enterprise Linux. The database maintains 500
user accounts and information for 3500 stocks.

We use httperf [24], an open-loop workload generator,
to send a mix of buy/browse transactions to the Trade6
application over a period of 48 hours. The workload traces
are synthesized to reflect realistic operating scenarios such as
time-of-day variations as well as bursty traffic where request
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Fig. 1. (a) The overall system architecture hosting the Trade6 application
which implements a stock-trading service that allows users to browse, buy,
and sell stocks. (b) Example of workload provided to the testbed in our
experiments, plotted in granularity of 30 seconds.
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Fig. 2. Measurements corresponding to the AnonPages and CommittedAS
signals collected over a 48-hour operating period.

rates vary significantly within short time periods. A sample
workload is shown in Fig. 1(b), having an average arrival rate
of 50 requests per second with a 50/50 mix of buy/browse
transactions. Each data point in the figure represents the
aggregated workload in a 30-second interval.

The experiments reported in the paper use the following
metrics contained within the/proc pseudo file system, specif-
ically the contents of/proc/meminfo that reports real-time
information about memory usage in Linux systems:

• Free memory. This quantity, termed MemFree, reflects the
amount of physical memory left unused in the system.

• Committed memory. This quantity, termed CommittedAS,
reflects the total amount of memory allocated by pro-
cesses in the system usingmalloc() calls, even if the
memory has not been used by them as of yet. For
example, a process may allocate 1 GB of memory but
only touch 100 MB of it. Although the current memory
usage is only 100 MB, the 1 GB allocation is memory
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TABLE I
The list of symbols used in the paper and their definitions.

Notation Definition
t Index of time window.
dt Data to be sampled within time windowt.
N Length of the acquired datad in each time window.
B⋆ Representation basis selected by the Best Basis algorithm.
xt Representation ofdt in basisB.
Mt Length of collected samples in time windowt.
Gt Sampling matrix of sizeMt × N.
yt Compressed samples ofdt using Gt.
ŝt The a priori sparsity estimate for time windowt.
s̃t The a posteriori sparsity estimate for time windowt.
ecv

t Cross-validation error of time windowt.

that has been committed by the memory subsystem to the
process and can be used at any time by the process.

• Page tables. This quantity, termed PageTables, reflects the
amount of memory dedicated to the lowest level of page
tables.

• Anonymous pages. This quantity, termed AnonPages,
tracks the amount of non-file backed pages mapped to
page tables responsible for the user space.

In addition to these features, we also use disk I/O activity
measurements (sectors read/written) as part of our evaluation
experiments. Our goal is to show that the reconstructed signals
can be used to detect various system-level faults. The above-
listed features were chosen to support one of the case studies
discussed in this paper: detection of memory leaks. Here we
have chosen low-level metrics that are most likely impacted by
this fault. Fig. 2 plots a subset of the features collected during
an experimental run of the system lasting 48 hours. The data
points are sampled once every two seconds.

IV. Compressibility of Signals

The fundamental premise behind signal compression is that
many natural signals are sparse in that they have concise
representations when expressed in the proper basis; this spar-
sity determines the quality of the subsequent reconstruction.
Using the data collected from our testbed, we show how to
find basis functions in which this data can be most concisely
represented. We also discuss a basis selection algorithm called
Best Basis which automatically adapts the representation basis
to the structure of the sampled signal. Table I summarizes the
key symbols used throughout this paper and their definitions.
A. Sparse Representation of Signals

Denote the data to be sampled asd, a vector of length
N, and its representation in basisB as x. In other words,
d =

∑N
i=1 xibi = Bx, where B = [b1, b2, . . . , bN]. Here bi

denotes theith column in theN × N matrix B. For example,
if B is selected to be the Haar wavelet basis, the elements
of the vectorx = [x1, x2, . . . , xN] are coefficients of wavelet
decomposition for signald. Also, if at mostS entries inx are
nonzero, thenx is called anS-sparse vector; ifS is small,d
is said to be sparsely represented in the basisB.

As possible basis functions, we consider the following
members of the Daubechies wavelet family that can capture
signal characteristics in both time and frequency domains: db1
(also known as Haar), db2, and db4 wavelet basis.1 These

1Here ’db’ is short for Daubechies and the number after it represents the
number of vanishing moments for the corresponding wavelet basis.
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Fig. 3. Waveforms corresponding to three members of the Daubechies
wavelet family. The Haar is the simplest wavelet that captures discontinuities
in the data; db2 and db4 also show similarity with our data but have longer
waveforms, leading to better frequency resolution.

TABLE II
Percentage of coefficients needed to keep the relative error within 1%

under each representation basis.

Signal Haar db2 db4
AnonPages 0.20% 0.51% 0.66%

Mapped 0.16% 0.37% 0.46%
CommittedAS 0.85% 1.27% 1.49%

PageTables 0.57% 0.64% 0.83%

wavelets are able to capture sharp or abrupt changes in the
signal. Fig. 3 shows the waveforms for these wavelets. We
refer the reader to Walker for a primer on wavelets and their
scientific applications [25]. We analyze the basis functions in
terms of how concisely they encode the data collected from
our system. We first perform a signal transform on each data
set to find the corresponding coefficients within the chosen
basis and sort them in decreasing order of their magnitude.
Then, we use then largest coefficients where 1≤ n ≤ N, set
all the other coefficients to 0, and reconstruct a new signal
d̃(n). A relative error metric captures the difference between
the original and reconstructed signals ase(n) = ‖d̃(n)−d‖/‖d‖,
where‖ ∗ ‖ denotes thel2 norm. Finally, we examine how this
relative error changes as the value ofn is increased. Table II
summarizes the percentage of coefficients needed to maintain
the relative error within 1% for each of the bases. In this
respect, the Haar wavelet represents our data most concisely.

The foregoing discussion makes it clear that a signal can
be sparsified when expressed under a different basis—that is,
the transformed signal contains many coefficients close to or
equal to zero. This is the insight used by both the C-MON
and CS-MON approaches. We now develop a basis selection
strategy that automatically adapts the representation basis to
the structure of the sampled signal such that it can be most
concisely represented.

B. The Best Basis Algorithm

Given a set of possible basis functions, we use a thresh-
olding technique to find the basis in which the signal is most
sparse [26]. Assume we have a choice betweenK possible
bases and let the representation of the signal in thekth basis
Bk be x(k) = [x(k)

1 , · · · , x(k)
N ] where x(k)

i is the value of theith
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coefficient under basisk. Let the magnitude of the (M + 1)th

largest coefficient inBk be tk, and denote the recovered signal
using coefficients with magnitude larger thantk in basisBk as
dk. Let us define a soft-thresholding function as

γtk(x) =















x2/2, if x < tk
tkx− tk2/2, otherwise.

(1)

Then for the basisBk, the function

R(Bk) =
N
∑

i=1

γtk(|x
(k)
i |) (2)

returns the sum of two terms: the quadratic distance between
dk and the original signal, and the scaled sparsity ofdk within
the selected basisBk. More formally, the cost function is

1
2
‖ d − dk ‖2 + tk ‖ BT

k dk ‖0 (3)

where‖ BT
k dk ‖0 is the number of nonzero entries inBT

k dk, that
is, the sparsity ofdk in basisBk. Minimizing this cost function
obtains the best possible approximation ofd when represented
in the most concise basis. In other words, the functionR(Bk)
quantifies the risk, in terms of loss in fidelity, of applying
the thresholdtk on the coefficients in basisBk; a smaller risk
means that the corresponding coefficients will provide a better
approximation of the original signal. Therefore,

B∗ = arg min
k=1,··· ,K

R(Bk) (4)

provides us with the best basis in which to represent the signal.

C. The C-MON Strategy for Signal Compression

The foregoing discussion suggests a straightforward way
of using signal compressibility to reduce the data transfer
and storage costs associated with online monitoring. Under
C-MON, we collect N samples for each signal of interest
locally at each server or VM at some user-specified sampling
rate. After the best-basis transformation as per (4), say using
wavelet decomposition, on these measurements, we obtain a
set of N coefficients for the signal and choose theM largest
coefficients in terms of magnitude, whereM ≪ N. TheseM
coefficients along with their positions within the larger set
of N coefficients are sent to the monitoring station where
an approximation of the original measurements is recovered.
The drawback with C-MON is the CPU overhead imposed
on the local machine due to the sampling and compression
process: once theN measurements are obtained, the best-
basis algorithm must be invoked followed by a sorting routine
to arrange the coefficients in order of decreasing magnitude.
This overhead, quantified in Section VII, can interfere with
the execution of other applications running on the server.

V. Compressive Sampling of System Measurements

When the signal can be represented sparsely in an ap-
propriate basis, it can be acquired from the systemdirectly
in a compressed form rather than first collecting a number
of samples and then compressing them, as was done in C-
MON. This section familiarizes the reader with the concept of
incoherence, a key condition underlying compressive sampling
that affects the way we sample signals. We then discuss how
the original signal is recovered from a small set of samples.

A. Incoherent Sampling of the Signal

Given twoN-dimensional basesΨ andΦ, the coherence be-
tween these bases is defined as the largest coherence between
any two basis vectors inΨ andΦ:

µ(Ψ,Φ) =
√

N max
1≤ k, j ≤N

∣

∣

∣〈φk, ψ j〉
∣

∣

∣ , (5)

where〈φk, ψ j〉 is the dot product of the vectorsφk andψ j [6].
Typically the coherence between the two bases lies between
1 and

√
N, and when the value of coherence is small we

consider the two bases to be uncorrelated or incoherent. When
the sensing and representation bases are uncorrelated, a spike
in one basis will be represented as a spread-out waveform
in the other. This property allows us to capture the complete
information present in the original data using a small number
of samples obtained by incoherent sampling.

As a sampling strategy to collect measurements from our
testbed, we choose Gaussian random matrices that have a low
coherence of

√

2 logN relative to any representation matrix
with high probability. Prior to sample collection, we generate
an M × N Gaussian random matrixG as the underlying
sampling matrix. Elements in the matrix are independently
chosen from a standard Gaussian distribution of zero mean
and variance 1/M. To obtain the samples from the input data,
we simply multiply this matrixG by the data vectord. For
example, assume the data to be sampled is anN × 1 vector

d =



































B1,1 B1,2 · · · B1,N

B2,1 B2,2 · · · B2,N
...

...
. . .

...

BN,1 BN,2 · · · BN,N





































































x1

x2
...

xN



































= Bx,

whereB is anN×N matrix corresponding to the Haar wavelet
basis andx is the representation ofd in that basis. Suppose
we wish to obtain aM × 1 vector of samplesy. The data is
multiplied with a M × N Gaussian matrixG such thaty =
Gd = GBx = Ax, whereA = GB is a M × N matrix.

B. Recovering the Original Signal

To reconstruct the original datad, we must solve this inverse
problem: given a vectory of length M and matrixA of size
M×N whereM ≪ N, find a sparse vector̃x of lengthN such
that y = Ax̃—that is, we are looking for̃x as a solution to

min
b ∈RN

‖ b ‖0 subject to:y = Ab, (6)

where ‖b‖0 is the l0 norm of b, i.e. the number of nonzero
entries in b. This problem is under-constrained since the
matrix A has more columns than rows; there are infinitely
many candidate signalsb for which Ab = y. To solve this
under-determined system, the constraint of sparsity is added,
allowing only solutions which have a small number of nonzero
coefficients. If there is a unique sparse solution, then the CS
framework allows the recovery of that solution.

Since minimizing thel0 norm is a computationally expen-
sive nonlinear optimization problem, a class of reconstruction
algorithms called basis pursuit or iterative hard thresholding
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pursuit (HTP) is used. Here the problem is recast as one of
minimizing thel1 norm, which is the LP problem:

min
b ∈RN

‖b‖1 subject to:y = Ab. (7)

We use the iterative hard thresholding pursuit technique
previously proposed by Foucart [10] to solve (7). Ifb(k)

denotes theS-sparse vector obtained after thekth iteration,
this method performs the following two steps to obtain the
next approximation ofb:

1) Perform the operationb(k) + AT(y − Ab(k)) and identify
the indices of theS largest coefficients in the resulting
N × 1 vector; store these indices in a setI (k+1).

2) Solveb(k+1) = arg minbN∈R‖y−Ab(k)‖2, supp(b) ⊆ I (k+1).
Here, only the coefficients residing in the indices pre-
viously stored inI (k+1) are tuned so as to minimize the
cost function. The other coefficients are zeros.

The above steps are repeated untilI (k+1) = I (k). Reconstruction
of the original signal using HTP is considered to be exact with
probability exceeding 1− δ when the number of samplesM
satisfies the following condition:

M ≥ Cµ (Ψ,Φ)2 S log
N
δ
, (8)

where δ is a small constant andC is some positive con-
stant [27]. The implication of (8) is that when the coherence
between the representation and sensing bases,µ, as well as
the sparsity metric,S, are small, we need only a few samples
to recover the original signal exactly with high probability.

C. A CS-based Online Monitoring Strategy

Fig. 4 shows the implementation of the CS-based method
within each local server in which the incoming signald is
acquired directly in a compressed formy. When a new data
item d(t) arrives at timet it is multiplied by the entries in the
sampling matrixG( j, t), j = 1, . . . ,M and the partial products
are accumulated intoy( j). After a period of lengthN × T,
whereT is the sampling period, the current values ofy( j) are
sent out as theM samples to the monitoring station, and then
reset back to zero. Effectively, y( j) =

∑N
t=1 G( j, t)d(t), where

j = 1, . . . ,M, and thusy = Gd.
At the monitoring station, the original signal is recovered

using the HTP algorithm. The key advantage here is that sim-
ple, randomized sampling of the data is performed locally on
each server, significantly reducing the intrusion of monitoring
on application performance. The computational cost associated
with signal recovery is offloaded to the monitoring station.

VI. Adaptive-rate compressive sampling

The previous section assumes that the signal sparsity when
represented in the underlying basis is constant or bounded
across time windows. Under this assumption, we can use
a fixed rate for sampling the signal. This assumption of a
constant signal sparsity within each time window, however,
rarely holds in practice. For example, Fig. 5 plots the spar-
sity level in terms of the number of coefficients needed in
the Haar wavelet basis to capture 99% of the information
contained within the CommittedAS and AnonPages signals
(previously shown in Fig. 2) within different time windows.

G(1, t)

G(2, t)

G(3, t)

G(4, t)

G(M, t)

Data d(t)

sampling waveform

t = NT

t = NT

t = NT

t = NT

t = NT

to zero at time t = NT

Multiply by Send sum and reset back

Samples

y(1)

y(2)

y(3)

y(4)

y(M)

Fig. 4. Implementation of compressive sampling in our systemthat takesN
data items over a time period as input and returnsM samples, whereM ≪ N.
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Fig. 5. Change in the sparsity level over time for the AnonPages and
CommittedAS signals.

The sparsities change significantly over time. So a fixed-rate
sampling strategy based on an upper bound on the sparsity
level—between 45-50% in this particular case—will collect
100% of the samples at all times. We can perform much
better in terms of reducing the number of samples needed by
dynamically changing the sampling rate as the signal sparsity
changes. This section adds a rate adjustment component to
the aforementioned CS strategy. We show that by collecting
some relevant side information from the signal—which could
have been under or over sampled during any particular time
window—we can estimate the underlying sparsity and predict
it for some succeeding time windows. The number of samples
collected over these windows can then be adjusted based
on the predicted sparsity values. The goal is to achieve an
overall reduction in sample size without compromising the
reconstruction quality specified in terms of relative error.

A. Overview of the CS-MON Strategy

Fig. 6 outlines the CS-MON strategy for adaptive-rate
sampling, comprising three major algorithmic components: a
compressive sampling block; a cross validation block to esti-
mate the signal sparsity; and a Kalman filter block to predict
the sparsity over future time windows. The side information
is collected by the cross validation block once everyK time
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a priori
estimateŝt+k

Compressive
sampling block

k = K?

Cross validation block
a posteriori
estimates̃t

Kalman filter block

yes

no

k = 0, t = t + K

k = k+ 1

Fig. 6. Workflow for the adaptive-rate compressive sampling strategy. The
workflow comprises three major steps: compressive sampling, cross validation,
and prediction of signal sparsity.

t t + 1 t + 2 ... t + K ...

CS

CV

KF

CS CS ...

...

CS

CV

KF

CS ...

...

Fig. 7. The timeline for the execution of each block in the adaptive-rate
sampling strategy. Here CS denotes the compressive sampling block, CV, the
cross validation block, and KF, the Kalman filter.

windows and the sparsity is predicted for every time window.
As per Fig. 6, ana priori estimate of the signal sparsity

within the tth time window, ŝt, is obtained (or initialized at
start up) and the sampling rate is appropriately adjusted for
the subsequent time window based on this estimate. Knowing
s̃t, we estimate the sparsity for the nextK time windows,
ŝt+1, ŝt+2, . . . , ŝt+K , using a Kalman Filter. These serve as the
a priori estimates for time windows (t + 1) through (t + K)
and determine the compressive sampling rates within each of
the windows. Once everyK time widows, cross-validation
measurements are collected from the signal and used to
generatea posterioriestimate of the sparsity, ˜st, via maximum-
likelihood estimation. This estimate forms the basis for the
next set of predictions.

Fig. 7 shows the execution timeline for each block in our
system. The cross-validation and the Kalman filter block are
executed once everyK time windows whereas the compressive
sampling block is executed every time window.

B. The Compressive Sampling Block

This block performs compressive sampling within each time
window, adjusting the sampling rate for thetth window as per
ŝt, the assumed sparsity of the data in this window. Following
the notation used in Section IV, we denote the data within
time window t as anN × 1 vectordt and its representation
in basis B as xt such thatdt = Bxt. The sample size is
set to Mt(ŝt) which is a function of the assumed sparsity.
The Mt(ŝt) × 1 measurement vectoryt(ŝt) is then obtained
via incoherent sampling asyt(ŝt) = G(ŝt)dt = G(ŝt)Bxt,
whereG(ŝt) is an Mt(ŝt) × N matrix whose construction was
previously discussed in Section V. The original datadt is then
reconstructed aŝdt, also as described in Section V.
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Fig. 8. The relative error achieved by various sample sizes, given different
sparsity levels within the AnonPages signal. Best viewed in color.

Given that signal sparsity can be estimated at each time
window, we can use this information to adjust the sample
size such that the desired reconstruction quality is achieved.
To achieve this objective, a quantitative relationship between
sparsity and sample size needs to be established—empirically,
in our case. Consider the AnonPages signal whose sparsity
varies over time (see Fig. 5). Here, sparsity is defined as the
percentage of coefficients that capture 99.5% of the original
data. For data belonging to each sparsity level, we try different
sample sizes, reconstruct the data and evaluate the result
using the relative error metric. Fig. 8 shows the relative error
achieved using various sample sizes, given different sparsity
levels within the AnonPages signal. As expected, portions of
the signal which are less sparse require a larger sample size
to achieve the same relative error. The figure also implies a
linear relationship between sparsity and sample size: for data
of length N with sparsity s, a sample size ofM(s) = 5s
guarantees a reconstruction error below 5% with confidence
exceeding 93%. Therefore, if ˆst is the sparsity for time window
t, the corresponding sample sizeMt(ŝt) is chosen as 5ˆst.

C. The Cross-Validation Block

Recall from Fig. 6 that the actual sparsity of the underlying
data being sampled must be measured periodically, as best as
possible, so that ana posteriori estimate can be obtained to
update the Kalman filter. The cross validation block, executed
once everyK windows, serves this purpose by performing the
following operations:

(1) Measurementszt = H tdt are collected from the signal
using a cross-validation matrixH of size R× N where
R is the number of measurements. The entries ofH
are random numbers independently selected from the
Bernoulli distribution with zero mean and variance of
1/R. We will explain the choice ofR later in this section.

(2) Matrix H is then applied on the reconstructed datad̂t

returned by the compressive sampling block, resulting
in ẑt = Hd̂t. Note thatd̂ is reconstructed using samples
obtained under the sparsity assumption of ˆst.

(3) The cross-validation error under the current sparsity
assumption ˆst is then calculated as the error norm

ecv
t =‖ zt − ẑt ‖ .
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(4) Using maximum-likelihood estimation, thea posteriori
estimate for the sparsity is chosen as the value ˜st that
maximizes the posterior probabilityP(ecv = ecv

t |s =
i, ŝ= ŝt):

s̃t = arg max
i=0,1,...,N

P(ecv = ecv
t |s= i, ŝ= ŝt).

P(ecv|s = i, ŝ = ŝt) is the probability density function
of the cross-validation error on the condition that ˆs is
assumed as the sparsity when sampling the data whereas
the measured cross-validation data has sparsitys.

The statistical models pertaining toP(ecv|s= i, ŝ= ŝt) are built
empirically using a training data set. We use a sliding window
of size N with a step size ofL to go through this data set,
grouping the time windows based on their actual sparsity. Once
these windows have been collected, the following process is
repeated for each window. First the actual sparsitysof the data
within the window is calculated. Then we assume different
values for thea priori estimateŝ (from i = 0 throughN) and
perform the previously discussed steps (1), (2), and (3) on the
data. The empirical distribution ofecv when ŝ is assumed, but
when the actual sparsity iss is then calculated to approximate
P(ecv|s = i, ŝ = ŝt). It is important to note that though the
empirical distributions are calculated using a particular set of
training data, the effect of the actual and assumed sparsity
values on the cross-validation error derived from the training
data is representative and is not limited to the data within this
set.2 Therefore, there is no need to updateP(ecv|s= i, ŝ= ŝ−t ).

In the foregoing discussion, we argued that a small number
of cross-validation measurements can be used to obtain a good
approximation of the sparsity of the much larger data stream.
In the following we prove this assertion.

The relative error between the original and the reconstructed
signals is determined by the exact sparsity and the value
assumed during the signal recovery process. First we show
that the relative error obtained using the cross-validation
measurements is a good approximation of the optimal relative
error between the original and reconstructed signals. Given the
representation of the signal in thet-th time window,xt, and an
arbitrary ŝ as the assumed sparsity, we can define the optimal
ŝ-sparse approximation error aseopt

t (ŝ) = min‖x‖0≤ŝ ‖ xt − x ‖,
where the search space includes all vectors with sparsity
≤ ŝ. Let s be the exact sparsity that captures 1− ǫ of the
signal. If ŝ= s, then the optimal ˆs-sparse approximation error
eopt

t (ŝ) = ǫ ‖ xt ‖, which is the upper bound on the absolute
error. If ŝ < s, theneopt

t (ŝ) > ǫ ‖ xt ‖ since the signal will be
under-sampled, losing information in the process; similarly if
ŝ> s, theneopt

t (ŝ) < ǫ ‖ xt ‖ due to over sampling of the signal.
The value ofeopt

t (ŝ) is indicative of the difference between
the actual and assumed sparsities, and therefore we should

2The cross-validation error only depends on the actual and the assumed
sparsity values of the signal and not on the individual data values comprising
the signal. The training dataset includes data corresponding to different
sparsity levels and thus can be used to derive a general model for such
dependency that is representative of all variations of data (which may vary
from those in the training set). In other words, we sweep through the entire
range of sparsity values to build our model using the training dataset. So, this
model is representative of the sparsity values that one might see in the signals
captured at run time.

be able to estimates by observingeopt
t (ŝ). Unfortunately, the

eopt
t (ŝ) values are unobservable due to the lack of ground truth

for xt, since we do not sample at full rate when CS-MON
is operating. However, we can show that the cross-validation
error can be used to obtain a tight upper and lower bounds
on eopt

t (ŝ), thereby replacingeopt
t (ŝ) during sparsity estimation.

The cross-validation errorecv
t is observable since bothzt and

ẑt are known, and its relationship witheopt
t (ŝt),

1
h(1+ ǫ)

ecv
t (ŝt) ≤ eopt

t (ŝt) ≤
1

1− ǫ ecv
t (ŝt) (9)

holds with high probability. Hereh is a constant andǫ is the
upper bound on the relative error. A direct consequence of (9)
is that the observedecv

t (ŝt) can be used in place ofeopt
t (ŝt) for

the sparsity estimation.
We now provide the proof thateopt

t (ŝt) can be bounded by
the cross-validation error as stated in (9) using the Johnson-
Lindenstrauss lemma [28]. First we define an approximation
error that quantifies the reconstruction quality achieved by the
compressive sampling block as

eapp
t (ŝt) = ‖ dt − d̂t ‖ = ‖ xt − x̂t ‖,

wherex̂t is the representation of̂dt in basisB. We can provide
upper and lower bounds foreapp

t (ŝt) in terms ofeopt
t (ŝt) with

high probability for some constanth [18]:

eopt
t (ŝt) ≤ eapp

t (ŝt) ≤ heopt
t (ŝt) (10)

The constant depends on the sampling matrixG(ŝt) used
during compressive sampling. Since the ground truthdt is
unknown, the exact value foreapp

t (ŝt) is unknown as well.
The Johnson-Lindenstrauss lemma states thateapp

t (ŝt) can be
bounded by the observable cross-validation error. LetW be
an R× N matrix whose entries are realizations of a random
variable r with zero mean and variance 1/R. If r follows
Bernoulli or Gaussian distribution, then, for a predetermined
N × 1 vectord,

1− ǫ ≤ ‖Wd ‖
‖ d ‖ ≤ 1+ ǫ

holds true with probability exceeding 1− δ, whereδ ∈ (0, 1).
According to the lemma, if the row dimensionR in the
cross-validation matrix is chosen such that it satisfiesR ≥
hǫ−2 log(1/2δ) whereh and ǫ are constants (in our caseǫ is
the upper bound for the relative error), then

1− ǫ ≤ ‖ zt − ẑt ‖
‖ dt − d̂t ‖

≤ 1+ ǫ

also holds true with probability exceeding 1− δ. We choose
the constants asǫ ∈ (0, 1

2) for the accuracy level andh = 8
to satisfy the equality forR. Algebraic manipulation of the
previous equation gives us

1
1+ ǫ

ecv
t (ŝt) ≤ eapp

t (ŝt) ≤
1

1− ǫ ecv
t (ŝt). (11)

Equation (9) follows directly from (10) and (11), proving that
ecv

t (ŝt) can indeed be used to estimate the actual sparsity with
high confidence.
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D. The Kalman Filter block

We treat thea posteriori estimates of the signal sparsity
s̃1, s̃2, . . . , s̃t obtained from the cross validation block as time-
series data and use an appropriate forecasting model to es-
timate the sparsity value ˆst+1 for the next time window and
beyond using these past observations. We use the Holt-Winter
model which uses a moving average filter to capture the mean
of the observed data and a slope component to capture the
trend. A state-space form of this model is developed within
the framework of a Kalman Filter. The prediction step of the
filter uses the state estimate from the previous time step to
produce an estimate of the state at the current time step. In
the update step, the current prediction is combined with current
observation ˜st to further refine the state estimate. Knowledge
of the Kalman state is used to predict the future values. We
refer the interested reader to Harvey for more details on how
the Kalman Filter can be used for time-series forecasting [29].

Use of the predictive filter further reduces the overall sam-
pling cost—by reducing the number of cross-validation mea-
surements in this case. If the cross-validation block is executed
once everyK time windows, the filter forecasts the sparsity
values for the nextK−1 time windows, ˆst+1, . . . , ŝt+K−1, which
form the inputs to the compressive sampling block. Note that
since the filter’s state is only updated once everyK−1 windows
by the cross-validation measurements, the filter “coasts” in the
interim, that is, the gains are set to zero.

E. Summary of the Adaptive-Rate Model Operation

Let the initial condition be thatdt, the data to be sam-
pled during time windowt, has some unknown sparsity.
To compressively sample this data, we assume its sparsity
to be some initial value ˆst and use anM(ŝt) × N matrix
G(ŝt) to collect Mt(ŝt) samples, resulting in measurements
yt(ŝt) = G(ŝt)dt = G(ŝt)Bxt. Recall thatM(ŝt) = 5ŝt. The data
in this time window is then reconstructed asd̂t as described
in Section V by the compressive sampling block.

Once everyK time windows cross-validation measurements
are collected using anR×N matrixH with R≥ 8ǫ−2 log(1/2δ),
resulting in measurementszt = Hdt = HBx t. The cross-
validation error is calculated asecv

t (ŝt) = ‖ zt − Hd̂t ‖ which
is then supplied to the maximum-likelihood model to obtain
the a posteriori estimate of the sparsity of the current time
window, s̃t. Once its state is updated using ˜st, the Kalman
filter forecasts the sparsity over the nextK − 1 time windows.
The above process repeats itself.

Note that the sampling matrixG(ŝt) used by the compressive
sampling block is obtained by randomly selectingM(ŝt) rows
from an N × N random Gaussian matrix, built prior to the
sampling process (Section V discusses the construction of this
Gaussian matrix.) The sampling matrixH for collecting the
side information is fixed as long as the parametersǫ and δ
remain unchanged.

VII. Performance Evaluation

We evaluate the performance of the C-MON and CS-MON
strategies in terms of their efficacy in: (1) reducing the sam-
ple size while guaranteeing a specified signal reconstruction
quality; and (2) using the recovered signals to detect threshold
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Fig. 9. Overlay of the actual sparsity of the AnonPages signalwith a
posteriori values s̃ obtained by the cross validation block. Here sparsity is
defined as the number of coefficients needed to capture 99% of the original
signal. The plots show the ˜s values obtained using the following initial guesses
for the sparsity levels: 4%, 17%, and 30%.

violations and trends that could be indicative of performance
bottlenecks or degradation in the system. The CPU and storage
overhead incurred by these methods is also quantified. The
results reported here use data collected from our testbed,
described earlier in Section III.

Reconstruction quality can be quantified via the relative-
error metric that expresses the normalized error between the
original and recovered signals. In many situations, however, it
is not essential to recover the original signal exactly, especially
if the operator is mainly interested in detecting performance
problems with the system. It is more important that the signals
reconstructed via the C-MON and CS-MON methods preserve
properties in the original signal that can help detect these
problems. We consider two such scenarios:

• The datacenter operator wishes to detect performance-
related bottlenecks or anomalies that manifest themselves
as the magnitude of the signal exceeding some nominal
threshold value.

• The operator wishes to detect the gradual performance
deterioration associated with software aging by analyzing
the signals for the existence of trends.

A. Signal Reconstruction Quality using CS-MON

We use the signals obtained from our testbed to evaluate
the performance of the CS-MON strategy in terms of overall
signal reconstruction quality, focusing on the performance of
the key blocks comprising the workflow shown in Fig. 6.

Estimating a posteriori signal sparsity: We show that, given
an arbitrary initial assumption for the signal sparsity, the cross
validation block can quickly update its estimation about the
actual sparsity. In our result, the average estimation error is
within 20% of the actual sparsity value, showing the cross
validation block can closely track the actual sparsity by
collecting cross-validation measurements periodically.

Assuming ŝt to be thea priori estimate of data sparsity
within a time window t, the compressive sampling block
collectsMt samples and reconstructs the data. Cross-validation
measurements are also collected within this window and
maximum-likelihood estimation is performed on the resulting
cross-validation error to obtain thea posteriori sparsity s̃t.
Since this estimate is influenced by the initial assumption of
a sparsity value, we study the quality of ˜st obtained under
different assumptions for ˆst, including arbitrary guesses.
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Fig. 10. Predictions for sparsity values provided by the Kalman filter for the AnonPages signal when the filter’s state is updated: (a) during each time
window, that isK = 1, and (b) once every four windows,K = 4. The relative error between the actual and reconstructed signals when the filter state is updated
each window and once every four windows is shown in (c) and (d), respectively.

Fig. 9 shows an overlay of the actual signal sparsity (the
green plot) with thea posteriorivaluess̃t obtained by the cross
validation block for various initial sparsity guesses. Values
along the y-axis correspond to the number of coefficients
needed to capture 99% of the AnonPages signal—our defi-
nition of sparsity here. The length of each time window is
set to N = 64. Let us focus on the plot in red, illustrating
the case in which during the start of each time window, the
compressive sampling block reconstructs the underlying signal
assuming a sparsity of 4%, that is ˆst = 0.04N. In this case,
the a priori value ŝt used for compressive sampling severely
underestimates the actual sparsity during time windows 380
through 425. However, by the end of each of these time
windows, the cross validation block is able to correct this
estimate and obtain a reasonably close approximation of the
actual sparsity. Also, thea posteriori values obtained under
differenta priori sparsity assumptions lie fairly close to each
other, and they are not overly sensitive to thea priori value
ŝt. However, we do observe that guesses closer to the actual
value lead to more accurate estimates. The average estimation
error is within 20% of the actual sparsity value regardless of
the initial guess.

Predicting sparsity for future time windows: Recall from the
CS-MON workflow that once the signal sparsity is estimated
by the cross-validation block, a Kalman filter is used to predict
the sparsity for the next few time windows to further reduce the
sampling overhead involved in obtaining the cross-validation
measurements. Our result shows that the prediction error of the
Kalman filter block falls within 20% of the actual sparsity.

Figs. 10(a) and 10(b) show the Kalman predictions in
relation to the actual sparsity for the AnonPages signal. As
before, the window size is set toN = 64 and the sparsity is
defined as the number of coefficients needed to capture 99%
of the data. Fig. 10(a) shows the case in which the cross
validation block is invoked every time window. Fig. 10(b)
shows the case in which the frequency is once every four
windows and the Kalman filter is required to predict the values
for the windows in between. Since a linear model is used in our
filter implementation, the prediction process underestimates
the actual sparsity in cases of sudden fluctuations in the
sparsity. However, our results show that the predictions track
the overall trend exhibited by the actual values, and the average
prediction error is within 20%.

Signal reconstruction quality: We now evaluate the recovery
quality achieved by the CS block using the sparsity predictions
provided by the Kalman filter for each time window. Our result

TABLE III
The average sample size used by CS-MONto reconstruct the AnonPages and

CommitteAS signals for different sparsity levels.

Error tolerance AnonPages CommittedAS
K = 1 K = 4 K = 1 K = 4

5% 32.94% 32.80% 28.44% 29.13%
10% 27.44% 27.28% 17.19% 17.05%
15% 24.69% 23.94% 11.50% 10.76%

shows that although our sparsity prediction is not exact, it
nevertheless provides a performance guarantee for monitoring
systems in terms of reconstruction quality.

Note that in the ideal case, the relative error achieved as
a result of using the actual sparsity is around 1%, which is
to be expected since the sparsity accounts for 99% of the
data. The relative error between the actual and reconstructed
signals is shown in Figs. 10(c) and 10(d) when using the actual
sparsity and the sparsity predictions provided by the filter,
respectively. When sparsity is underestimated, the recovered
signal incurs a higher relative error, whereas the error is low if
more than the necessary number of samples are collected due
to an overestimation of the sparsity. We observe that, although
we underestimate the sparsity after a sudden increase in the
actual value, the resulting reconstruction penalty is small: the
relative error as a result of using predicted sparsity is rarely
higher than 1.7%.

Reduction in sample size: Finally, we demonstrate that the
sample size needed to reconstruct the signal while achieving
the desired quality is substantially reduced using the adaptive-
rate model. Our result shows that the adaptive-rate model
achieves the same reconstruction quality while reducing the
sample size by 70% when compared with fixed-rate compres-
sive sampling.

In general, the error tolerance criteria for recovery quality
is application-specific, which in turn defines the sparsity level.
Table III lists the average sample size used by the adaptive-
rate model per time window to reconstruct the AnonPages and
CommittedAS signals under different sparsity criteria. We also
show the two cases where the Kalman filter’s state is updated
during each time window, i.e.,K = 1, and updated once every
four windows, i.e.,K = 4. The sample sizes are reported as a
percentage of the total number of data pointsN within a time
window with N = 64. The listed sample sizes include the
number of samples obtained for both compressive sampling
and for cross validation.

Table III shows that the adaptive-rate strategy guarantees
a reconstruction quality with 5% relative error using sub-
stantially small sample sizes for the signals considered in
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Fig. 11. The original CommittedAS and AnonPages signals, and the same signals recovered by C-MON using 5% of the coefficients in the basis found by
the best basis algorithm. The signal recovered by CS-MON with 15% error tolerance is also shown for comparison purposes.

this paper; for example, about 33% for AnonPages, and 28%
for CommittedAS. The sample size needed for a 15% error
tolerance is even lower: around 25% for AnonPages and 12%
for CommittedAS. Without accounting for time-varying signal
sparsity, an upper bound on the sample size, determined by the
least sparse portion(s) of the signal, must be used over all time
windows to guarantee reconstruction quality. For example,
referring back to Fig. 5, the upper bound on the sparsity level
of the AnonPages signal is around 30%. So, if one always uses
this bound for sampling purposes, a sample size corresponding
to 30% signal sparsity, i.e., a sample size of 100% is required
at all times. This is quite wasteful in terms of sample collection
since in many portions of the signal, the sparsity is lower than
5% implying that the sampling rate can be adjusted to be much
lower—around 20%—during these portions.

The collection of side information does not add much
to the sampling cost. We find that the number of cross-
validation measurements needed by CS-MON is quite small;
for example, to achieve a relative error of 5% the number
of additional measurements due to the cross-validation block
accounts for only 0.01% of the overall sample size. The
number of cross validation measurements is even smaller when
a larger reconstruction error can be tolerated.

Table III also shows that to achieve a low error tolerance,
more samples are needed. We also observe a difference in sam-
ple size whenK, the frequency at which the cross validation
block is invoked, is set to one versus four time windows. This
difference is primarily caused by prediction results that either
under or overestimate the signal sparsity. For example, when
K = 4, the Kalman filter provides sparsity predictions without
any input from the cross validation block for three time
windows leading to prediction errors—mostly underestimating
the sudden increase in the sparsity. Consequently, the under-
sampling during those time windows results in a smaller
sample size.

Moreover, recall that to detect performance-related issues
with the system, it is not necessary to recover the original
signal exactly but to just preserve properties in it that can
help detect these problems. We show later in this section that

TABLE IV
Relative error between the original AnonPages and CommittedAS signals,

and the corresponding reconstructions, achieved by C-MON.

Signal Basis % of samples (M/N × 100)
2% 5% 10%

AnonPages

Haar 70.56% 0.34% 0.16%
db2 79.27% 43.09% 0.26%
db4 84.54% 67.50% 56.42%
BB 70.56% 0.34% 0.16%

CommittedAS

Haar 70.35% 0.80% 0.37%
db2 78.68% 42.11% 0.62%
db4 84.19% 67.33% 56.58%
BB 70.35% 0.80% 0.37%

signals with lower reconstruction quality, specifically those
reconstructed to achieve a 15% error tolerance, can be used
to detect performance issues with high confidence.

B. Comparing the CS-MON and C-MON Strategies

We now compare the adaptive sampling strategy to an al-
ternative method also aimed at compressing the data collected
at the server—the C-MON strategy discussed in Section IV.
We find that for varying values ofN, C-MON compresses the
signal much better than CS-MON, resulting in a lower data
transfer overhead to the monitoring station. Table IV sum-
marizes the relative error achieved by C-MON as a function
of sample size. Here the original data set comprisesN = 64
samples and the signal is reconstructed usingM coefficients
from the wavelet decomposition. The results show that the
Best Basis (BB) algorithm successfully identifies the basis
under which the signal can be most concisely represented—
which happens to be the Haar wavelet for the AnonPages and
CommittedAS signals—thereby achieving good reconstruction
quality while using very few coefficients. Fig. 11(a) plots
the CommittedAS signal recovered by C-MON using 5% of
the coefficients. The CS-MON reconstruction with 15% error
tolerance is also shown for comparison purposes. Fig. 11(b)
shows the same set of results for the AnonPages signal. One
may conclude from the results summarized in Tables III and IV
that C-MON exploits the compressibility of the underlying
signals better than CS-MON.

We quantify the computation and storage costs imposed
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Fig. 12. The CPU overhead incurred by the sampling and encoding processes
associated with the C-MON and CS-MON strategies on the local machine.
The signal reconstruction overhead incurred by the monitoring station is not
included here. Both strategies were implemented in MATLAB and executed
on an AMD Athlon II 3.0 GHz processor.

TABLE V
Storage costs incurred by C-MON and CS-MONunder different sparsity

levels when sampling the AnonPages signal.

Error tolerance Storage overhead (in KB)
C-MON CS-MON

5% 1.50 0.16
10% 1.50 0.13
15% 1.50 0.12

on the local server by the two strategies to achieve their
respective compression levels. Fig. 12 quantifies the CPU
overhead incurred on a per-window basis by the sampling and
encoding processes associated with C-MON and CS-MON on
the local machine for various values ofN. C-MON incurs a
higher CPU overhead since the encoding process requires a
wavelet transformation on theN values followed by a sorting
routine to extract the largestM coefficients. In the CS-MON
implementation, the process of incoherent sampling is simply
the multiplication of anM × N matrix with anN × 1 vector,
as shown in Fig. 4. So, CS-MON incurs considerably less
CPU overhead, running about an order of magnitude faster
than C-MON. Moreover, since this overhead is incurred on a
per-signal basis, CS-MON can be quite CPU-efficient when
monitoring large numbers of signals on a single server.

C-MON also incurs an increased storage cost over CS-
MON, needing a buffer size ofO(N) to accommodateN data
items whereas a buffer size of M ≤ N is required for CS-
MON. Table V shows the storage overhead when using C-
MON and CS-MON on the AnonPages signal for a window
size of N = 64. The overhead due to C-MON includes the
buffers needed to store the measurements obtained using the
length-N time window and to store the sorted coefficients after
the wavelet transformation in the Daubechies basis. However,
if the data is transformed in the Haar basis, this can be im-
plemented entirely in place—on the measurement-buffer itself.
So, the storage required in this specific case is around 0.5KB.
On the other hand, the CS-MON implementation shown in
Fig. 4 requires a buffer to simply store the compressed data
that is generated as the measurements stream in.

0 5 10 15 20 25 30 35 40
0

20

40

60

R
el

at
iv

e 
er

ro
r

C−MON

 

 
N = 64
N = 128
N = 256

0 5 10 15 20 25 30 35 40
0

20

40

60

Sample size (as a percentage)

R
el

at
iv

e 
er

ro
r

CS−MON

 

 
N = 64
N = 128
N = 256

Fig. 13. The relative error achieved by C-MON and CS-MON when using
smaller measurement windows.

TABLE VI
The packetization delay incurred in seconds for various lengths of the

measurement window and sampling rate.

Window length,N Sampling rate
0.5 Hz 5 Hz 100 Hz 1000 Hz

32 64 6.4 0.32 0.03
64 128 12.8 0.64 0.06
128 256 25.6 1.28 0.13

Another equally interesting aspect to consider is how the
size of the measurement window—set toN = 64 to obtain the
results reported in Tables III and IV—affects the monitoring
operation. We test C-MON and CS-MON on measurement
windows of various lengths and plot, in Fig. 13, the relative
error achieved by these two strategies as a function of sample
size for small measurement windows for the AnonPages
signal. The advantage of C-MON and CS-MON in exploiting
the compressibility of the signal shrinks with window size.

Recall thatN samples must first be collected at the server
at some sampling rate to generate a packet ofM data items
to transmit to the monitoring station, whereM ≪ N. The
size of this measurement window dictates how far behind
the monitor lags the actual execution of the system, a delay
we call thepacketization delay. Table VI shows this delay,
in seconds, as a function ofN and the sampling rate. For
example, ifN = 128 with a sampling rate of 0.5 Hz, the delay
is 256 seconds. That is, the monitor lags about 4 minutes
behind the system. So, as a practical matter, smaller values of
N are better suited for real-time monitoring of the system.
A key difference between the two strategies is that in the
case of CS-MON the compressed samples are ready to be
transmitted immediately upon receiving the last data point
in the measurement window, whereas the packetization delay
for C-MON includes the additional time required for wavelet
transformation and sorting to obtain theM largest coefficients.

The foregoing discussion exposes some interesting tradeoffs
between the C-MON and CS-MON strategies, particularly
those related to the choice of the measurement window sizeN.
In choosing the appropriateN, one must consider the tradeoff
between the CPU and storage overhead due to these strategies
and the resulting network traffic. If responsive operation is
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Fig. 14. The write activity signal collected from the testbed that measures
the number of disk sectors written.

desired thenN must be small. However, when monitoring the
system for faults that manifest themselves over many minutes
or hours, such as memory leaks, or with the intent of simply
logging the data for off-line analysis,N can be made larger to
better exploit the compressibility of the underlying signals.

C. Case Studies

We test the signals reconstructed via C-MON and CS-MON
to detect two special cases: abrupt changes in performance-
related data and gradual exhaustion of system resources.

Detection of Threshold Violations.As discussed earlier, there
are situations in which it is not essential to recover the
original signal exactly. If the datacenter operator is mainly
interested in detecting performance bottlenecks, hot spots,
or anomalies affecting the computing system that manifest
themselves as abrupt changes in the signals being monitored, it
is more important that the reconstructed signal preserve these
characteristics. We evaluate how well threshold violations
are detected by C-MON and CS-MON using as an example
the write activity signal shown in Fig. 14. This signal was
collected from our testbed during an experimental run and the
signal measures the number of sectors written to the hard disk.
Fundamentally, we are interested in how well the reconstructed
write activity signal preserves the abrupt changes and spikes
present in the original. More formally, ifd is the signal of
interest, we considerd(i), the ith data point within the signal,
a p% violation if it satisfiesd(i) ≥ Q(d, 100− p), where
Q(d, 100−p) is the (100−p)-th percentile of observations ind.
We use ahit-rate metric to characterize the number of abrupt
changes that can be detected using the reconstructed signal
by defining a hit as follows: at timet within the original and
recovered signals, a spike occurring in the recovered signal
matches a similar spike in the original signal.

Fig. 15 shows the hit rate achieved when detecting a 1.6%
violation in the write activity signal as a function of the
sample size used to recover this signal. The baseline method
used for comparison is random sampling and its hit rate is
linear with the sample size, as expected. The hit rate achieved
by CS-MON is significantly better than random sampling at
the same sampling rate: greater than 90% when using 25%
of the original samples, for example. We observe that the
spikes in the original writeactivity are underestimated if a
smaller sample size is used, leading to a lower hit rate. We
also observe that the sample size required to detect these
spikes is much lower than the sparsity of the writeactivity
signal, which is around 50% when the window length is 64.
This result shows that when it is not essential to recover the
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Fig. 15. Hit rate when detecting a 1.6% violation in the write activity
signal, achieved by C-MON, CS-MON, and random sampling. The length of
the measurement window isN = 64.

original signal exactly, using a sample size that is smaller
than the sparsity still enables us to preserve abrupt changes of
the signal. In summary, both C-MON and CS-MON achieve
a hit rate greater than 90%, with C-MON able to better
compress the signal, using about 4% of the original signal.
Note, however, that the previously discussed tradeoff between
C-MON and CS-MON, in terms of data transfer, CPU, and
storage overhead, applies in this scenario as well.

Detection of Trends.In the second case, we evaluate C-MON
and CS-MON for trend detection, which can help detect, for
example, whether a system resource is slowly being consumed
to exhaustion. We use a long-running Trade6 application
executing over a period of 48 hours and inject a small memory
leak of about 100 KB/minute at around the 24-hour mark.

To simplify the problem, we use time bins that each includes
1024 data points in 34 minutes. Sampling and reconstruction
are applied on each time bin separately. To estimate the global
trend, we use a 24-hour sliding window, which includes 40
time bins, and move the sliding window by one time bin at
each step. We use the linear modeld = a× t+b, whered is the
average of reconstructed data points within each time bin,t is
the beginning time of the sliding window,a is the slope, and
b is the intersection. For each sliding window, 40 (d, t) pairs
are applied to this model and the slope within each sliding
window is estimated along with the 95% confidence interval.

Fig. 16 shows the estimated global slope for CommittedAS,
for the first 24 hours followed by the second 24 hours,
indicating that both C-MON and CS-MON perform better than
random sampling: the width of the 95% confidence interval is
tighter than the one obtained using random sampling, indicat-
ing greater certainty in detecting the slope. We also observe an
increasing trend in the estimated slope. For CommittedAS, the
estimate is around 0 at the beginning indicating no increasing
trend associated with this feature. Then, the slope values
increase and the lower bound on their 95% confidence interval
becomes positive, indicating an increasing trend by the end of
the experiment.

VIII. Conclusions

The adaptive sampling strategy developed here exploits
any available time-varying sparsity information within the
underlying signal to reduce the number of samples collected
when compared to a fixed-rate scheme. The reconstructed
signal adequately preserves properties in the original signal
that are useful for performance management and anomaly de-
tection. The sensing scheme has low computation and storage
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Fig. 16. The slope estimated by C-MON, CS-MON and random sampling
over 40 time windows for CommittedAS.

complexity, making it suitable for use on the local server. It
is also universally applicable—simply measuring signals via
a random Gaussian sensing matrix—and does not have to be
tailored in any way to the type of signal being measured or
the type of anomaly being detected.

Finally, though the proposed sampling strategies substan-
tially reduce data transfer costs, the burden of reconstructing
the signal falls on the monitoring station. In recent work,
however, we have shown that the data samples acquired via
compressive sampling preserve, in an approximate form, prop-
erties such as mean and variance, as well as spectral properties
such as correlation between data points [30]. So, instead of
having to reconstruct the original signal, this result points to
the feasibility of performing anomaly detection directly on the
compressed samples themselves.

References

[1] L. Cherkasovaet al., “Automated anomaly detection and performance
modeling of enterprise applications,”ACM Trans. Comput. Syst., vol. 27,
no. 3, pp. 1–32, 2009.

[2] M. Kutare et al., “Monalytics: Online monitoring and analytics for
managing large scale data centers,”Proc. IEEE/ACM Conf. Autonomic
Comput. (ICAC), pp. 141–150, 2010.

[3] G. Lanfranchiet al., “Toward a new landscape of systems management
in an autonomic computing environment,”IBM Syst. J., vol. 42, no. 1,
pp. 119–128, 2003.

[4] M. Bhuyan, D. Bhattacharyya, and J. Kalita, “Network anomaly detec-
tion: Methods, systems and tools,”IEEE Communications Surveys and
Tutorials, vol. 16, no. 1, pp. 303–336, 2014.

[5] T.-F. Yen et al., “Beehive: Large-scale log analysis for detecting suspi-
cious activity in enterprise networks,” inProceedings of the 29th Annual
Computer Security Applications Conference. ACM, 2013, pp. 199–208.

[6] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Proc. Mag., vol. 25, no. 2, pp. 21–30, 2008.

[7] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[8] E. J. Candès and T. Tao, “Near optimal signal recovery from random
projections: Universal coding strategies?”IEEE Trans. Inform. Theory,
vol. 52, no. 12, pp. 5406–5425, 2006.

[9] D. Donoho, “Compressed sensing,”IEEE Trans. Inform. Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

[10] S. Foucart, “Hard thresholding pursuit: An algorithm for compressive
sensing,”SIAM J. Numer. Anal., vol. 49, no. 6, pp. 2543–2563, 2011.

[11] V. Castelli et al., “Proactive management of software aging,” inIBM J.
Res. Develop., vol. 45, no. 2, 2001, pp. 311–332.

[12] L. Li, K. Vaidyanathan, and K. Trivedi, “An approach for estimation of
software aging in a web server,” inProc. Symp. Empirical Softw. Eng.,
2002, pp. 91–100.

[13] A. Avritzer et al., “Performance assurance via software rejuvenation:
Monitoring, statistics and algorithms,” inProc. IEEE Conf. Dependable
Syst. Netw. (DSN), 2006, pp. 435–444.

[14] T. Huang, N. Kandasamy, and H. Sethu, “Evaluating compressive
sampling strategies for performance monitoring of data centers,” in
IEEE/IFIP Netw. Oper. Manag. Symp. (NOMS), 2012, pp. 655–658.

[15] ——, “Evaluating compressive sampling strategies for performance
monitoring of data centers,” inProc. IEEE/ACM Conf. Auton. Comput.
(ICAC), 2012, pp. 201–210.

[16] T. Tuma, S. Rooney, and P. Hurley, “On the applicability of compressive
sampling in fine grained processor performance monitoring,”Proc. IEEE
Int’l Conf. Eng. Complex Comput. Syst. (ECCS), pp. 210–219, 2009.

[17] S. Menget al., “Volley: Violation likelihood based state monitoring for
datacenters,” inIEEE Int’l Conf. Distrib. Comput. Syst. (ICDCS), 2013,
pp. 1–10.

[18] R. Ward, “Compressed sensing with cross validation,”IEEE Trans.
Inform. Theory, vol. 55, no. 12, pp. 5773–5782, 2009.

[19] P. Boufounos, M. Duarte, and R. Baraniuk, “Sparse signal reconstruc-
tion from noisy compressive measurements using cross validation,” in
IEEE/SP Workshop Statistical Sign. Proces. (SSP), 2007, pp. 299–303.

[20] V. Stankovic, L. Stankovic, and S. Cheng, “Compressive image sampling
with side information,” inIEEE Int’l Conf. Imag. Proces. (ICIP), 2009,
pp. 3037–3040.

[21] A. Watkinset al., “Adaptive compressive sensing for low power wireless
sensors,” inACM Great Lakes Symp. VLSI, 2014, pp. 99–104.

[22] Y. Tan, X. Wang, and K. Lin, “Adaptive image sequence reduction in
surveillance using region enhancement block compressive sensing,” in
Proc. IEEE World Congress Intell. Control Autom., 2014, pp. 3375–80.

[23] G. Warnell, D. Reddy, and R. Chellappa, “Adaptive rate compressive
sensing for background subtraction,” inProc. IEEE Int’l Conf. Acoust.,
Speech, Sign. Proces. (ICASSP), 2012, pp. 1477–1480.

[24] D. Mosberger and T. Jin, “httperf: A tool for measuring web server
performance,”Perf. Eval. Review, vol. 26, no. 3, pp. 31–37, 1998.

[25] J. S. Walker,A Primer on Wavelets and their Scientific Applications,
2nd ed. Chapman and Hall, 2008.

[26] S. Mallat, A wavelet tour of signal processing. Academic press, 1999.
[27] E. J. Candès and J. Romberg, “Sparsity and incoherence in compressive

sampling,” Inverse Prob., vol. 23, no. 3, pp. 969–985, 2007.
[28] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings

into a hilbert space,” inContemp. Math., vol. 26, no. 1, 1984, pp. 189–
206.

[29] A. C. Harvey, Forecasting, Structural Time Series Models and the
Kalman Filter. Cambridge University Press, 1990.

[30] T. Huang, N. Kandasamy, and H. Sethu, “Anomaly detection in computer
systems using compressed measurements,” inIEEE Symp. Software
Reliability Engineering (ISSRE), November 2015.

Tingshan Huang is a Senior Performance Engineer at Akamai Technologies,
Inc. She received her B.Sc. in Information Engineering from Shanghai Jiao
Tong University, Shanghai, China in 2009, and her Ph.D. in Electrical
Engineering from Drexel University in 2015. Her research interests include
adaptive sampling, data compression, and pattern modeling for performance
monitoring and anomaly detection in networked systems.

Nagarajan Kandasamy received his Ph.D. in Computer Science and En-
gineering from the University of Michigan in 2003. His current research
interests lie in the areas of performance management, parallel processing,
and embedded and real-time systems.

Harish Sethu obtained his B.Tech. in Electronics and Communication
Engineering from Indian Institute of Technology (IIT), Chennai, in 1988. He
received his Ph.D. in Electrical Engineering from Lehigh University with
a doctoral dissertation in computer engineering in 1992. Prior to joining
Drexel University, he was an Advisory Development Engineer/Scientist at
IBM Corporation. His current research and teaching interests lie in the areas
of network science, web performance, web security, computer networks and
data science.

Matthew C. Stamm received his Ph.D. from the University of Maryland in
2012. He teaches and conducts research on signal processing and information
security with a focus on multimedia forensics and anti forensics.


