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ABSTRACT

Over the past decade, a number of information forensic techniques have been developed to identify digital image
manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-
forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to
falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to
the relative contraction or expansion between an image’s color channels that occurs due to a lens’s inability to
focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image’s
chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper
operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations
from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate
that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.
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1. INTRODUCTION

In order to determine the authenticity, processing history, and source of digital images, researchers have developed
a variety of information forensic techniques.1 Recent research has shown, however, that an intelligent forger can
create anti-forensic countermeasures capable of fooling several forensic algorithms. These anti-forensic attacks
operate by removing or falsifying the traces that forensic techniques use as evidence of image processing or
forgery.

Anti-forensic attacks have been proposed to falsify an image’s compression history,2,3 and hide evidence of
common editing operations such as resampling,4 median filtering,5 contrast enhancement,6 and “copy-move”
forgeries.7 General approaches have been developed to fool histogram-based forensic algorithms,6,8 along with
methods of falsifying camera-specific traces such as sensor noise9 and both color-filter array patterns and demo-
saicking artifacts.10 Additionally, anti-forensic attacks have been developed to hide evidence of frame deletion
in digital videos.11

One important forensic trace that has not yet been anti-forensically attacked is an image’s lateral chromatic
aberration. Lateral chromatic aberration is specific form of color distortion that occurs because a camera’s lens is
unable to achieve the same focal point for all wavelengths of light. This results in a slight misalignment between
an image’s color channels corresponding to a relative contraction or expansion about the image’s optical center.
In previous work, Johnson and Farid showed that copying an object from an image then pasting it elsewhere
within the same image or a different image will introduce localized inconsistencies in an image’s chromatic
aberration.12 Using this information, they developed a technique to detect “copy-and-move” forgeries by first
fitting an image’s global lateral chromatic aberration pattern to a model, then searching for image subregions
where the localized lateral chromatic aberration significantly deviates from the global model.

In this paper, we present a technique to disguise copy-and-paste forgeries by falsifying the lateral chromatic
aberration within the inauthentic region of an image. Our anti-forensic attack works by using a model to
determine the expected lateral chromatic aberration of pixels in the image region where a copied object is to be
pasted. Next, the image that the object is copied from is modified so that its lateral chromatic aberration within
the object region matches the expected lateral chromatic aberration of the region of the image to where it will
be pasted. This is done by first establishing a reference color channel, then mapping the pixel locations of the
two remaining color channels to new spatial locations that will match the desired lateral chromatic aberration.
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Figure 1. Lateral chromatic aberration through a lens.

Finally, the modified image is resampled along the pixel grid, and the object is copied and pasted into the target
image. We experimentally validate the performance of our anti-forensic attack by creating a set of anti-forensically
modified copy-and-paste forgeries, then examining each image for lateral chromatic aberration inconsistencies
indicative of a falsified image. Our results demonstrate that our proposed anti-forensic attack can successfully
disguise inconsistencies in an image’s lateral chromatic aberration caused by copy-and-paste forgeries.

2. BACKGROUND

In this section, we provide a brief overview of lateral chromatic aberration, how it is estimated, and how it is
used in information forensic to detect copy-and-paste image forgeries.

When a digital camera captures an image, light is focused onto the camera’s imaging sensor using a pho-
tographic lens. Ideally, the lens accomplishes this by refracting all rays of light originating from a single point
in the scene onto a common focal point on the sensor. In reality, however, the refractive index of the lens is
dependent on the wavelength of the light that passes through it. This will cause a specific type of color distortion
known as lateral chromatic aberration. Lateral chromatic aberration occurs when different wavelengths of light
originating from the same source point are focused onto slightly different points on the camera’s sensor, as is
shown in Fig. 1.

Since the amount of refraction is also dependent upon a light ray’s angle of incidence with the lens, the
distance between the focal points of two different wavelengths tends to increase with the radial distance from
the optical axis. Because of this, lateral chromatic aberration can be viewed as a slight misalignment between
an image’s color channels corresponding to a relative contraction or expansion about the image’s optical center.
This visually manifests itself as color fringing around edges and corners within an image.

2.1 Forgery Detection Using Lateral Chromatic Aberration

The misalignment between two color channels due to lateral chromatic aberration can be characterized by a
mapping relating the spatial location (xr, yr) of a point in a reference color channel to its location (xc, yc) in a
comparison color channel. This mapping can be modeled as a parametric function f with parameter set θ, i.e.
(xc, yc) = f

(
(xr, yr), θ

)
. By adopting this approach, the global lateral chromatic aberration pattern between

two color channels can be determined entirely by estimating the values of the parameter set θ.

Johnson and Farid showed that significant localized deviations of the lateral chromatic aberration pattern
from a global model can be used to expose copy-and-paste forgeries.12 Copy-and-paste forgeries are created by
copying an object from a source image, then pasting it into a destination image. When this is done, the lateral
chromatic aberration pattern within the pasted region will correspond to the lateral chromatic aberration at
the location it was copied from in the source image. This is unlikely to match the lateral chromatic aberration
pattern at its pasted location in the destination image as predicted by a global model. An example of this is
shown in Fig. 2.

To detect copy-and-paste forgeries, Johnson and Farid proposed examining an image using the following
forensic algorithm. First, a global estimate of the image’s lateral chromatic aberration mapping between two
color channels is estimated using the model(

xc

yc

)
= f

((
xr

yr

)
, α, x0, y0

)
=

(
α(xr − x0) + x0

α(yr − y0) + y0

)
, (1)
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Figure 2. Diagram of a copy-and-paste forgery. (a) Destination image with lateral chromatic aberration displacement vec-
tors highlighted in the paste region. (b) Source image with lateral chromatic aberration displacement vectors highlighted
in the copy region. (c) Naively created copy-and-paste forgery with lateral chromatic aberration displacement vectors
highlighted in the paste region. Note that the displacement vectors in the paste region of the naively falsified image are
inconsistent with those in the unaltered destination image.

where the parameters x0 and y0 correspond to the spatial location of the image’s optical center in the reference
color channel, and α is a scaling parameter that characterizes the degree of expansion or contraction. The
estimated parameter set θ = (α, x0, y0) is used to calculate the lateral chromatic aberration displacement vector
field, defined as the difference between (xc, yc) and (xr, yr). Next, the image is divided into blocks, and a local
estimate of the lateral chromatic aberration and its corresponding displacement vector field is computed for each
block. A block is classified as inauthentic if the angular error between the global and local lateral chromatic
aberration displacement vectors exceeds a detection threshold.

2.2 Lateral Chromatic Aberration Estimation

Fitting the lateral chromatic aberration to the model in (1) is a critical step in Johnson and Farid’s forgery
detection algorithm. To accomplish this, Johnson and Farid observe that given the true values of the parameter
set θ = (α, x0, y0), the lateral chromatic aberration distortion in the comparison channel can be compensated
for by applying the inverse mapping f−1(· , θ) of (1). As a result, they estimate the model parameters by finding
the values θ∗ that maximize the similarity, as measured by the mutual information I(· ; ·), between a corrected
version of the comparison color channel C and the reference color channel R, i.e.

θ∗ = arg max
θ
I
(
f−1(C, θ);R

)
. (2)

Because the mutual information between the corrected comparison channel and the reference channel is nonconvex
in the parameter space, the optimal parameter values θ∗ are found through a brute-force search.

While Johnson and Farid’s approach yields strong results in terms of model fit for global estimates of the
lateral chromatic aberration, it is very computationally expensive. For example, Gloe et al. reported that when
conducting experiments with their run-time optimized implementation of this approach, it took approximately 38
minutes to calculate the model parameters for one pair of color channels in a 6 megapixel image.13 Furthermore,
this process must be performed on both pairs of color channels (i.e. (green-to-red) and (green-to-blueblue) ),
and repeated again for each image block that is examined for evidence of copy-and-past forgery.

To address this problem, a more computationally efficient method of estimating the model parameters was
proposed by Gloe et al.13 This method operates by locally estimating lateral chromatic aberration displacement
vectors at several locations throughout the image, then fitting a global model to the local estimates.

Locations suitable for performing these local estimates are chosen by using the Harris corner detection
algorithm to identify corner points throughout the reference channel.14 Next, a search is performed in the
comparison channel for the W ×W pixel block Bc that maximizes the similarity with an equivalently sized block
Br in the reference channel centered at each corner point. To enable a search over fractional pixel displacements,
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Figure 3. Diagram of an anti-forensically disguised copy-and-paste forgery. (a) Destination image with lateral chromatic
aberration displacement vectors highlighted in the paste region. (b) “Virtual” image whose lateral chromatic aberration
displacement vectors in the copy region have been modified to match those in the paste region of the destination image.
(c) Anti-forensically disguised copy-and-paste forgery with lateral chromatic aberration displacement vectors highlighted
in the paste region. Note that the displacement vectors in the paste region of the naively falsified image are consistent
with those in the unaltered destination image.

the window is upsampled by a factor of u using bicubic interpolation. The search is limited to a maximum shift
of ∆, and the local displacement vector is chosen to correspond to the shift that yields the maximum similarity
between the blocks, i.e.

d̂(x, y) = arg max
(m,n)∈{−∆,...,∆}

s(Br(x, y),Bc(x+m, y + n)) (3)

where the similarity s(·) between the two blocks is measured using the correlation coefficient. Finally, the model
parameters are found by using an iterative Gauss-Newton method to perform a least squares fit of the locally
measured displacement vectors to the global model.

This approach to lateral chromatic aberration estimation yields significant gains in terms of run time without
suffering in terms of accuracy. As a result, we use this approach when estimating the lateral chromatic aberration
displacement vectors and model parameters in our experiments.

3. ANTI-FORENSIC ATTACK

In order for a copy-and-paste forgery to successfully avoid detection, local estimates of the lateral chromatic
aberration obtained in the image region corresponding to the pasted object must not significantly deviate from
the lateral chromatic aberration predicted by a global model. In this section, we propose an anti-forensic attack
that to accomplish this by falsifying the lateral chromatic aberration within the pasted object.

When performing our anti-forensic attack, we refer to the image containing the object to be copied as the
“source image”, and the image into which the object will be pasted as the “destination image.” Additionally,
we construct an intermediate image referred to as the “virtual image.” The virtual image is created so that it
contains visual information from the source image, while having a chromatic aberration pattern that is consistent
with the destination image. We then create our anti-forensically disguised forgery by copying information from
the virtual and pasting into destination image. Figure 3 provides a diagram of the process.

We adopt the notation convention that coordinates in the source, destination, and virtual images are denoted
by the subscripts S, D, and V respectively. For a particular image, coordinates in the reference and comparison
color channels are indicated by the superscripts r and c. Furthermore, the coordinates of optical center of an
image’s comparison channel are indicated by the superscript 0.

We begin our attack by first identifying the location of each pixel in the reference channel of the source image
that corresponds to the object to be copied, along with the corresponding location that it will be pasted in the
reference channel of the destination image. After this, we choose a comparison channel, and estimate the lateral
chromatic aberration model parameters for both the source and destination images using Gloe et al.’s method
described in Sec. 2.2.



Next, we begin to construct the virtual image by choosing its reference channel to be equal to the reference
channel of the source image. When we create our forgery, we will copy a pixel from location (xrV , y

r
V ) in the

virtual image and paste it into location (xrD, y
r
D) in the destination image. At the location (xrD, y

r
D), the global

model of the destination image’s lateral chromatic aberration can be used to calculate the displacement between
the reference and comparison channels. This quantity, known as the displacement vector dD, is given by the
equation

dD(xrD, y
r
D) =

(
xrD
yrD

)
−
(
αD(xrD − x0

D) + x0
D

αD(yrD − y0
D) + y0

D

)
=

(
(1− αD)(xrD − x0

D)
(1− αD)(yrD − y0

D)

)
. (4)

Similarly, for a particular choice of model parameters αV , x0
V , and y0

V for the virtual image, the displacement
vector at location (xrV , y

r
V ) in the virtual image is given by

dV (xrV , y
r
V ) =

(
xrV
yrV

)
−
(
αV (xrV − x0

V ) + x0
V

αV (yrV − y0
V ) + y0

V

)
=

(
(1− αV )(xrV − x0

V )
(1− αV )(yrV − y0

V )

)
. (5)

To ensure that the lateral chromatic aberration inside the pasted object matches the destination image’s
global model, the displacement vectors of the virtual image and the destination image must be equal at locations
corresponding to the same point in the object, i.e. dV (xrV , y

r
V ) = dD(xrD, y

r
D). For this to occur, we note that

by inspection of (4) and (5) the following is true:

αV = αD, and

(
xrV
yrV

)
−
(
x0
V

y0
V

)
=

(
xrD
yrD

)
−
(
x0
D

y0
D

)
. (6)

Since the reference channel of the virtual image is copied from the reference channel of the source image,
we know that (xrV , y

r
V ) = (xrS , y

r
S). By substituting this into (6), we can derive the following equation for the

location of virtual image’s optical center(
x0
V

y0
V

)
=

(
xrS
yrS

)
−
(
xrD
yrD

)
+

(
x0
D

y0
D

)
. (7)

Since the points (xrS , y
r
S), (xrD, y

r
D), and (x0

Dy
0
D) are known, this equation completely specifies the location of the

virtual image’s optical center. We note that this location may lie outside of the borders of the virtual image.

Using the virtual image’s model parameters, we can express a location in its comparison channel in terms of
a location in its reference channel using the equation(

xcV
ycV

)
=

(
αV (xrV − x0

V ) + x0
V

αV (yrV − y0
V ) + y0

V

)
(8)

Since (xrV , y
r
V ) = (xrS , y

r
S), we can use the inverse of the source image’s lateral chromatic aberration model to

express a location in the virtual image’s reference channel in terms of a location in the source image’s comparison
channel as (

xrV
yrV

)
=

(
xrS
yrS

)
=

( 1
αS

(xcS − x0
S) + x0

S
1
αS

(ycS − y0
S) + y0

S

)
(9)

Equations (6), (8), and (9) can be combined to express a location in the virtual image’s comparison channel
in terms of the corresponding location in the source image’s comparison channel(

xcV
ycV

)
=

 αD

(
1
αS

(
xcS − x0

S

)
+ x0

S − x0
V

)
+ x0

V

αD

(
1
αS

(
ycS − y0

S

)
+ y0

S − y0
V

)
+ y0

V

 (10)

where the optical center of the virtual image is given by (7). This equation is used to map each pixel in the
source image’s comparison channel to its corresponding location in the virtual image. The values of the virtual
image’s comparison channel are then determined at each pixel location through bicubic interpolation.

This process is repeated again using the remaining comparison channel. Finally, we create our anti-forensically
disguised forgery by copying the desired object from the virtual image and pasting it into the destination image.

Our entire anti-forensic algorithm can be summarized briefly as follows:



1. Identify the location where an object will be copied from in the source image and location where it will be
pasted in the destination image.

2. Estimate the lateral chromatic aberration model parameters for the source and destination images using
Gloe et al.’s method.

3. Set the reference channel of the virtual image equal to the reference channel of the source image.

4. For each pixel in the source image’s comparison channel, find its corresponding location in the virtual
image’s comparison channel using (10).

5. Perform interpolation to determine the values of the virtual image’s comparison channel at pixel locations.

6. Repeat this process for the remaining comparison channel.

7. Copy the object from the virtual image and paste it into the desired location in the destination image.

4. SIMULATION AND RESULTS

In order to verify our anti-forensic attack’s ability to disguise copy-and-paste forgeries, we conducted an experi-
mental evaluation of its performance.

We began by creating a database of 102 unaltered source images of size 2304 × 3072 pixels captured by a
Sony CyberShot DSC-W80 camera, and a database of 102 unaltered destination images of size 1536×2048 pixels
captured by a Sony CyberShot DSC-V1 camera. The images in both databases were captured and stored as
JPEGs using the default settings of each camera. We used these images to create a set of 102 anti-forensically
disguised copy-and-paste forgeries. This was done by selecting a 300 × 400 pixel block from each image in the
source image database, then copy-and-pasting it into an image in the destination image database using our
anti-forensic attack. We repeated this process without the use of our anti-forensic attack to create an additional
set of 102 “naively” constructed copy-and-paste forgeries.

In practice, a forger may copy from any location in the source image and paste into any location in the
destination image. These locations have a significant impact on the performance of Johnson and Farid’s forgery
detection technique. A forgery will be difficult or impossible to detect if the displacement vectors in the copy
and paste regions have similar angular orientations. This is likely to happen if these regions occur at similar
locations with respect to the optical centers of the source and destination images.

When constructing the forgeries used in our experiment, the block copied from each source image was located
halfway from the image’s top and 100 pixels from its right edge. It was pasted halfway from the top and 100
pixels from the left edge of its corresponding destination image. These locations were chosen to provide the most
favorable conditions for Johnson and Farid’s detection algorithm by maximizing the expected angle between the
displacement vectors in the copy and paste regions. Since this corresponds to the least favorable experimental
setup for a forger, our results can be interpreted as a minimax evaluation of our anti-forensic attack, thus
providing a lower bound on its performance.

Next, using the green channel as the reference channel, we measured the green-to-red and green-to-blue lateral
chromatic aberration of each image in the set of anti-forensically disguised forgeries, naively constructed forgeries,
and unaltered source images. This was done using Gloe et al.’s method to obtain a series of locally estimated
displacement vectors and global model parameters for each image. Locally estimated displacement vectors were
obtained using search blocks of size W = 64 pixels with an upsampling factor of u = 5 and a maximum search
displacement of ∆ = 3 pixels.

Fig. 4 shows a typical example of the locally estimated and globally modeled displacement vector fields from
a naively constructed forgery and an anti-forensically disguised forgery. The falsified image region is marked with
a dashed line, and locally measured displacement vectors in this region are shown in green. We can easily see that
in the falsified region of the naively constructed forgery, there are large angular errors between locally estimated
displacement vectors and the global model. By contrast, in the falsified region of our anti-forensically modified
image, the locally estimated displacement vectors closely match the globally estimated model. These results



(a) Naively Constructed Forgery (b) Anti-Forensically Disguised Forgery

Figure 4. Green-to-red lateral chromatic aberration displacement field of (a) a naively constructed forgery and (b) an
anti-forensically disguised forgery. Displacement vectors determined using the global model are shown in blue. Locally
measured estimated displacement vectors are shown in green within the falsified region and red elsewhere. For display
purposes, vectors have been scaled by a factor of 200.

indicate that our anti-forensic attack can successfully prevent localized inconsistencies in the lateral chromatic
aberration of cut-and-paste forgeries.

We used Johnson and Farid’s technique to search each image in the set of anti-forensically disguised forgeries,
naively constructed forgeries, and unaltered destination images for evidence of falsification by computing the
angular error between the locally estimated displacement vectors and the global model. The errors were then
aggregated and used to empirically estimate the distribution of angular errors within the paste region of each set
of images. These distributions are shown in Fig 5. By examining this figure, we can clearly see a high occurrence
rate of large angular errors in the paste region of the naively constructed forgeries. For forgeries constructed
using our anti-forensic attack, large angular errors occur far less frequently. Furthermore, the distribution of
angular errors in the set of anti-forensically disguised forgeries closely matches the distribution of angular errors
in the set of unaltered images. This indicates that our anti-forensic attack can successfully fool Johnson and
Farid’s forgery detection technique.

To further verify this result, we statistically characterized the performance of Johnson and Farid’s detector
under our anti-forensic attack. This was done by classifying an image as a forgery if the angular error within
the paste region exceeded a detection threshold. The detection threshold was varied over a range of values,
and the results were recorded. The probabilities of detection PD and false alarm PFA were determined for each
threshold by respectively calculating the percentage of forgeries that were correctly classified, and the percentage
of unaltered destination images that were incorrectly classified. These results were used to generate the receiver
operating characteristic (ROC) curves shown in Fig. 6.

In these ROC curves, the blue line represents the performance of a decision rule that randomly classifies
an image as a forgery with probability PFA, i.e. making a random guess. As we can see from Fig. 6, our
anti-forensic attack is able to reduce the performance of Johnson and Farid’s forgery detection technique to a
similar or equivalent level for both the green-to-red and green-to-blue lateral chromatic aberration. Additionally,
we used this data to compute the anti-forensic susceptibility of Johnson and Farid’s detection technique to our
anti-forensic attack. The anti-forensic susceptibility Sα is a measure of the decrease in effectiveness of a forensic
detector caused by an anti-forensic attack.15 A susceptibility of Sα = 1 indicates that the attack was able to
render the forensic technique completely ineffective, while a susceptibility of Sα = 0 indicates that the attack
had no effect. Our results, which are shown in Fig. 7, show that Johnson and Farid’s forensic technique was
completely susceptible to our attack for green-to-blue lateral chromatic aberration, and susceptible with a rate
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(a) Green-to-Red Angular Error Distribution
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(b) Green-to-Blue Angular Error Distribution

Figure 5. Empirical estimates of the angular error distribution within the paste region of anti-forensically disguised
forgeries, naively constructed forgeries, and unaltered destination images for (a) green-to-red and (b) blue-to-red lateral
chromatic aberration measurements.
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Figure 6. Receiver operating characteristic curves for Johnson and Farid’s copy-and-paste forgery detector when tested
against naively constructed forgeries and anti-forensically disguised forgeries.

of at least 0.8 for green-to-red lateral chromatic aberration. The results in Figs. 6 and 7 clearly show the success
of our anti-forensic attack.

5. CONCLUSIONS

In this paper, we have proposed an anti-forensic method to disguise lateral chromatic aberration inconsistencies
in copy-and-paste image forgeries. Our anti-forensic attack works by first estimating the lateral chromatic
aberration in the copy region of a source image and the paste region of a destination image. The color layers of
the source image are then manipulated so that the falsified lateral chromatic aberration in the copy region matches
the expected lateral chromatic aberration in the paste region of the destination image. Finally, the modified
image is resampled along the pixel grid, and the object is copied and pasted into the target image. We evaluated
the effectiveness of our anti-forensic attack by creating a series of anti-forensically falsified image forgeries and
comparing their lateral chromatic aberration patterns to those from authentic images. Our experimental results
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Figure 7. Plot of the anti-forensic susceptibility of Johnson and Farid’s detector to our anti-forensic attack.

demonstrate that our proposed anti-forensic attack can successfully fool the state-of-the-art forensic technique
to detect copy-and-move forgeries using lateral chromatic aberration.
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[4] Kirchner, M. and Böhme, R., “Hiding traces of resampling in digital images,” IEEE Trans. on Information
Forensics and Security 3(4), 582–592 (2008).

[5] Wu, Z.-H., Stamm, M. C., and Liu, K. J. R., “Anti-forensics of median filtering,” in [Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. ], 3043–3047 (2013).

[6] Barni, M., Fontani, M., and Tondi, B., “A universal technique to hide traces of histogram-based image
manipulations,” in [Proceedings of the ACM Workshop on Multimedia and Security ], 97–104, ACM, New
York, NY, USA (2012).

[7] Costanzo, A., Amerini, I., Caldelli, R., and Barni, M., “Forensic analysis of SIFT keypoint removal and
injection,” IEEE Trans. on Information Forensics and Security 9(9), 1450–1464 (2014).

[8] Comesana-Alfaro, P. and Perez-Gonzalez, F., “Optimal counterforensics for histogram-based forensics,” in
[Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. ], 3048–3052 (2013).

[9] Gloe, T., Kirchner, M., Winkler, A., and Böhme, R., “Can we trust digital image forensics?,” in [Proc. Int.
Conference on Multimedia ], 78–86, ACM, New York, NY, USA (2007).
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