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ABSTRACT

Because digital images can be modified with relative ease, con-
siderable effort has been spent developing image forensic algorithms
capable of tracing an image’s processing history. In contrast to this,
relatively little consideration has been given to anti-forensic oper-
ations designed to mislead forensic techniques. In this paper, we
propose an anti-forensic technique capable of removing artifacts in-
dicative of wavelet-based image compression from an image. Our
technique operates by adding anti-forensic dither to a previously
compressed image’s wavelet coefficients so that the anti-forensically
modified wavelet coefficient distribution matches a model of the co-
efficient distribution before compression. Simulation results show
that our algorithm is capable of fooling current forensic image com-
pression detection algorithms 100% of the time.

Index Terms— Anti-Forensics, Digital Forensics, Image Com-
pression

1. INTRODUCTION

Within the past decade, a significant amount of research has been
performed in the field of digital image forensics. Image forensics
seeks to provide information about an image without relying on ex-
ternal descriptors such as metadata tags or extrinsically implanted
information such as digital watermarks. Operations have been de-
veloped to perform diverse tasks such as detecting evidence of im-
age forgery [1], tracing an image’s compression history [2], and de-
termining an image’s origin [3]. These operations have proven to be
particularly important due to the existence of a wide variety of soft-
ware that allows users to modify both an image’s metadata as well
as the image itself. As a result, image forensics have been increas-
ingly used to analyze and verify the authenticity of images used by
governmental, legal, scientific, and news media organizations.

While much effort has been spent on the study of image foren-
sics, very little consideration has been given to anti-forensic counter-
measures designed to deceive image forensic operations. An image
manipulator with access to such countermeasures may use them to
disguise changes which he or she has made to an image or to fal-
sify an image’s origin or processing history. Though few studies
of anti-forensic image processing operations have been published, it
is quite possible that image forgers familiar with both image foren-
sics and signal processing in general have independently developed
anti-forensic operations that they have not made public. As a result,
several image forensic techniques may possess unknown vulnerabil-
ities, thus allowing certain image forgeries to remain undetected.

To prevent this scenario, it is imperative that the image foren-
sic community develop and study anti-forensic operations so that
forensic examiners may know when the results of forensic tests, par-
ticularly those that do not show evidence of image manipulation,
can be trusted. The study of image anti-forensics promises addi-
tional benefits as well. By examining anti-forensic image processing
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operations, researchers may develop techniques capable of detect-
ing when anti-forensic countermeasures have been employed. Addi-
tionally, anti-forensic operations may be developed to prevent image
forensic techniques from being used to reverse engineer proprietary
signal processing components within digital cameras.

Recently, we proposed an anti-forensic operation capable of
disguising an image’s JPEG compression history [4]. Other anti-
forensic operations that have been studied include those aimed at
disguising evidence of image resizing and rotation [5], artificially
synthesizing color filter array artifacts [6], and forging the unique
noise pattern introduced into an image by a digital camera’s charged
coupling device [5].

In this paper, we propose an anti-forensic operation built upon
the techniques developed in [4] that is capable of falsifying an im-
age’s wavelet compression history. We accomplish this by remov-
ing the artifacts which wavelet-based compression schemes intro-
duce into an image’s wavelet coefficient histograms. After our anti-
forensic operation is applied, an image can be passed off as never-
compressed, thereby allowing forensic investigators to be misled
about an image’s origin and processing history. We evaluate the ef-
fectiveness of our anti-forensic operation by testing it against the cur-
rent state-of-the-art forensic technique for tracing an image’s com-
pression history [2].

2. WAVELET-BASED COMPRESSION ARTIFACTS

At present, several wavelet-based image compression schemes ex-
ist such as JPEG2000, SPIHT, and the EZW algorithm. Though
each scheme performs compression in a different manner, all leave
behind similar forensically detectable traces. To understand what
these traces are and why they occur, we give a brief overview of how
most wavelet-based image compression is performed. We assume
that the image undergoing compression is a grayscale image with
integer pixel values in the set P = {0, ..., 255}.

Each algorithm begins by computing the two-dimensional dis-
crete wavelet transform an image, resulting in four subbands of
wavelet coefficients denoted by LL, LH, HL, and HH. This
process is repeated on the L L subband M times to achieve an M-
level wavelet decomposition. In JPEG2000, the image may be first
divided into a set of equally sized tiles, each of which separately
undergo this process rather than the image as a whole.

Tree-based schemes such as SPIHT and EZW proceed by sep-
arating each subband into a series of bit planes, then generating a
significance map for each bit plane [7]. This is done by construct-
ing trees of insignificant coefficients which are spatially correlated
across different levels of a particular subband. The significance maps
are then scanned into a single bitstream beginning with the signifi-
cance map of most significant bit plane then proceeding downward.
Lossy compression is achieved by terminating the bitstream when a
particular bit budget is exhausted or equivalently by reading the en-
tire transformed image into a single bitstream, then truncating it to a
fixed number of bits. By contrast, other schemes such as JPEG2000
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Fig. 1. Left: Histogram of wavelet coefficients from an uncompressed im-
age. Right: Histogram of wavelet coefficients from the same image after
SPIHT compression.

achieve compression by simply performing scalar quantization on
the coefficients of each of the wavelet subbands, then scanning them
into a single bitstream.

Decompression is performed by using the compressed bitstream
to construct an approximation of the wavelet transformed image. In
the case of tree-based schemes, all bit plane data lost due to the trun-
cation of the uncompressed bitstream is set to zero. For JPEG2000
and similar algorithms, dequantization is performed by multiply-
ing each quantized coefficient value by its corresponding quantiza-
tion step size. Finally, the two-dimensional inverse discrete wavelet
transform is performed on each level of the wavelet decomposition
and the resulting pixel values are projected back into [P to recover
the decompressed image.

During this process, SPIHT, EZW, and similar schemes intro-
duce compression artifacts into the set of wavelet coefficients by
truncating the encoded bitstream. Because the bitstream is com-
prised of the significance map of each bit plane and order such that
the most significant bit plane occurs first followed by bit planes of
progressively lower significance, the process of truncating the bit-
stream and replacing the lost bits with zeros will cause the recon-
structed wavelet coefficients to cluster around certain integer values.
This effect can be seen in Fig. 1 which shows the histogram of sec-
ond level H L wavelet coefficients taken from both an uncompressed
image and one which has been compressed using the SPIHT algo-
rithm. A similar effect is produced by the quantization and dequanti-
zation of wavelet coefficients which occurs in JPEG2000. It is these
quantization or bitstream truncation artifacts which are used to detect
previous applications of wavelet-based image compression [2].

3. COMPRESSION ARTIFACT REMOVAL

If we wish to create an anti-forensically modified image which ex-
hibits no signs of prior wavelet-based compression, it is clear that
we must remove all compression artifacts from the image’s wavelet
subband coefficient histograms. To do this, we propose an approach
similar to the one we introduced in [4]. Namely, we propose esti-
mating the distribution of each subband’s wavelet coefficients before
compression from the set of compressed coefficients, then adding
noise to the set of compressed wavelet coefficients so that the dis-
tribution of anti-forensically modified coefficients approximates that
of the coefficients before compression. The distribution of the addi-
tive noise, which we will refer to hereafter as anti-forensic dither, is
chosen to be conditionally dependent upon the coefficient value to
which it is being added. This is done to both ensure that the distri-
bution of anti-forensically modified wavelet coefficients matches the
estimated distribution of unmodified coefficients and to minimize the
image distortion introduced by the anti-forensic dither.

3.1. Wavelet Coefficient Distrtibution Model

For SPIHT, EZW, or similar compression schemes, the effect of trun-
cating the encoded bitstream can be modeled as quantization with

nonuniform quantization intervals. Let {...,q—-1,qo,q1,...} and
{...,b_1,b0,b1,...} denote the sets of quantized values and quan-
tization boundaries respectively, where go = 0, ¢» < gr+1, and
br < bry1. A wavelet coefficient Y in a compressed image can
be written in terms of its corresponding wavelet coefficient X in an
uncompressed image using the equation

Y =q ifbpy <X <bpyr. (D
By contrast, JPEG2000 employs scalar quantization and places the
resulting quantized values at the center of each quantization interval
rather than at the end with the smallest magnitude. If the quantized
values are properly modified, however, scalar quantization becomes
a simplification of the quantization rule described in (1). Accord-
ingly, all methods developed to remove compression artifacts from
SPIHT, EZW, or similarly compressed images can be simply adapted
to accommodate JPEG2000. Because of this, we will only consider
tree-based compression schemes for the remainder of this paper.
We model the distribution of an uncompressed image’s wavelet
coefficients within each subband using the Laplace distribution [8]

P(X =x) =3¢ M7l )

Using (1) and (2), the distribution of wavelet coefficients in a com-
pressed image can be written as

e Mk — e Ahe1y if k> 1,
PY=g)=1Q 1-21(M +e ) ifk=0, A3)
2(eMr+1 — ) ifk < —1.

3.2. Estimation of the Uncompressed Coefficient Distribution
In order to choose the appropriate anti-forensic dither distribution
for each subband, we must first estimate the distribution of wavelet
coefficients before compression using the coefficients obtained from
the compressed image. Since we employ a parameterized model of
this distribution, only the parameter A must be estimated. To accom-
plish this, we fit the nonzero entries of the histogram of compressed
wavelet coefficients within each subband to the function

hy, = ce Mol )

where hi denotes the histogram value at g, and use \ as our esti-
mate of A\. Theoretically, all wavelet coefficients should take values
in the set of quantization values, however, the process of projecting
the pixels in the decompressed image back into the set P slightly per-
turbs these values. This can be compensated for by simply rounding
each wavelet coefficient to the nearest value in the set of quantized
coefficients.

The histogram is fitted to the model by solving the following
weighted least squares minimization problem

minth(logh;C —logc+5\\qk\)2 )
k

A,e

where the model has been linearized by taking the logarithm of both
sides of (4) and the model errors are weighted by Ay, the number of
observations of each quantized value. By taking the derivative of the
function to be minimized with respect to A and to ¢, then setting each
derivative equal to zero, the resulting equations can be rearranged
into the following matrix equation

2, hue > laxl logc] _ [ 32, hwloghy
Silaelhe o, lak)*helog by | =A >k lar|helog hy | 2
(6)
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which can be solved to obtain a value for \.

In practice, this estimate may be biased due to a consequence of
tree-based compression which causes the histogram to deviate from
our model. Recall that the encoded bitstream consists of a signifi-
cance map of each bit plane arranged in descending order. Because
truncation is unlikely to occur on the boundary between the maps of
two different bit planes, several nonzero entries in map of the lowest
retained bit plane will be truncated, then set to zero during decom-
pression. As a result, fewer wavelet coefficients will take the values
q1 and g—; and more coefficients will take the value O than our model
predicts. This also affects the manner in which we add anti-forensic
dither to the wavelet coefficients, which we discuss in greater detail
in the subsequent section.

To compensate for this effect, we make use of the following it-
erative processes:

1. Use (6) to estimate A() and & given the current histogram
iterate h(V.

2. Update the histogram estimate using the equation:

» @ if k=0,
hY = hy+ L(ho— D) itk = +1, )
h otherwise.
(i) _x(i—1)

3. Terminate if 22 < 7, where 7 is a user defined
threshold. Otherwise, update the iteration number and return
to step 1.

The iteration is initialized by setting h\”) = hy, for all k and \(*) =
0. Upon termination, the current value of PAREN assigned to .

3.3. Anti-Forensic Dither

Once the parameter \ has been estimated for a particular subband,
the process of removing compression artifacts from that subband’s
wavelet coefficient histogram (through the addition of anti-forensic
dither) can begin. Before we add anti-forensic dither to the set of
compressed coefficients, however, we must again address the mis-
match between the modeled distribution and actual distribution of
compressed coefficients.

Since we cannot predict where in the bitstream truncation will
occur, we cannot appropriately adjust our model of the compressed
coefficient distribution to account for this behavior. Instead, we first
calculate N, the number of zero valued wavelet coefficients in ex-
cess of what our model predicts using the equation

Ne =ho — Ny(1 — 5(e + 7)), (8)

2

where N, is the total number of wavelet coefficients in the current
subband. After this is done, N, zero-valued coefficient are chosen
at random. Half of these coefficients are changed from O to ¢; while
the other half are changed from O to g—1, resulting in a coefficient
distribution that agrees with our model.

After this is performed, anti-forensic dither D is added to each
wavelet coefficient, resulting in a set of anti-forensically modified
coefficients Z where

Z =Y+ D. O]
As was mentioned before, the anti-forensic dither’s distribution is
conditionally dependent on the value of Y. When adding dither to
nonzero valued wavelet coefficients, the dither distribution is

P(D=d|lY =q,k#0) =

1 —sen(ap)Ad
g
0

if (b — qr) < d < (bkt1 — qr), (10)
otherwise,
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where oy = ;(e—sgn(%)i(bk—%) _ E_Sgn(‘Zk);\(bk+1_Qk)). For

coefficients whose value is zero, the distribution of the dither is

L —Ad|
«

P(D—dY—O)—{OD ifbo >d > b,

otherwise,

(1)

where ap = +(2 —

By choosing the anti-forensic dither distributions in this man-
ner, we are able to ensure that the distribution of anti-forensically
modified wavelet coefficients matches the modeled distribution of
coefficients before compression, provided that A = A. This can be
seen by using (3), (10), and (11) to determine the expression for the
probability distribution of Z:

6_5\})1 o EXbO)‘

P(Z=2)= S P(Z = Y = ) P(Y = q0)
k
_ Z O%kek(z—%)%(e/\blwrl
k<—1
+ e - LM e ) 1(bo < 2 < br)

@Q

£ e MWL — e ) (b < 2 < gpa)
k>1

— M) (b < 2 < gry1)

— A AlE
= j5e s

12)

where 1 (+) denotes the indicator function.

An additional benefit of this choice of dither distributions is that
it allows bounds to be placed on the difference between a wavelet co-
efficient’s value before and after it has undergone anti-forensic mod-
ification. Since the support of the anti-forensic dither’s distribution
is dependent upon the length of the interval between the compressed
wavelet coefficient’s value and the value either immediately large or
smaller than it, the following bounds can be placed

ifk#1,

if k= 0. a3

b1 — bi
\YfZ|§{ by — b,

Furthermore, since the wavelet coefficient’s value before compres-
sion must lie within the same interval that the anti-forensically mod-
ified coefficient does, the bounds expressed in (13) apply to the quan-
tity | X — Z] as well.

4. SIMULATIONS AND RESULTS

Fig. 2 shows the Lena image compressed using the SPIHT algo-
rithm at a bit rate of 3 bits per pixel both before and after we have
applied anti-forensic dither to its wavelet coefficients. By examin-
ing these two images, we can see that very little visual distortion is
introduced by our anti-forensic algorithm. Additionally, the PSNR
between the two images is 46.64dB. Fig. 3 shows the wavelet coef-
ficient histograms corresponding to the fourth level HH subband of
a four level wavelet decomposition of the Lena image before SPIHT
compression, after compression, and after anti-forensic dither has
been added to the compressed image. In this figure, we can clearly
observe that histogram of anti-forensically modified wavelet coef-
ficients is free from compression artifacts. This example demon-
strates that after anti-forensic dither is added to an image’s wavelet
coefficients, the image can be passed off as having never undergone
wavelet-based compression.

In addition to the example above, we performed a larger scale
test to verify our proposed algorithm’s ability to disguise previ-
ous applications of wavelet-based image compression. We built a



Fig. 2. Left: An image compressed using the SPIHT algorithm at a bit rate of 3 bits per pixel before the use of entropy coding. Right: The same image after

anti-forensic dither has been applied to its wavelet coefficients.
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Fig. 3. Histogram of wavelet coefficients from the fourth level HH subband of a four level wavelet decomposition of the image shown in Fig. 2 (left), the
same image after SPIHT compression (center), and the compressed image after anti-forensic dither has been applied (right).

database of test images by converting the 244 images within the Un-
compressed Colour Image Database [9] to grayscale, compressing
these images at a bit rate of 2 bits per pixel using the SPIHT algo-
rithm, then applying anti-forensic dither to each compressed image’s
wavelet coefficients to obtain a set of anti-forensically modified im-
ages. We then used the algorithm proposed in [2] to test for evidence
of SPIHT compression. This algorithm was trained using the sets
of never-compressed and SPIHT compressed grayscale images, re-
sulting in a classification rule able to correctly classify 99.6% of the
SPIHT compressed images within the training set without misclas-
sifying any of the never-compressed images. When this algorithm
was used to classify the set of anti-forensically modified images, it
classified every image in the testing set as never-compresed. This
corresponds to a 100% success rate for our proposed anti-forensic
algorithm.

5. CONCLUSIONS

In this paper, we have proposed an anti-forensic technique capable of
removing the forensically significant artifacts left by wavelet-based
image compression schemes. Our technique operates by adding
anti-forensic dither to the wavelet coefficients of a compressed im-
age so that the distribution of anti-forensically modified coefficients
matches a model of the coefficients before compression. Simulation
results show that this technique is able to fool forensic algorithms
designed to detect previous applications of wavelet-based compres-
sion 100% of the time.
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