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ABSTRACT
A number of forensic techniques have been developed to iden-

tify the use of digital multimedia editing operations. In response,
several anti-forensic operations have been designed to fool forensic
algorithms. One operation that has received considerable attention
is median filtering, since it can be used for image enhancement or
anti-forensic purposes. As a result, several median filtering detec-
tors have been developed. In this paper, we propose an anti-forensic
technique to disguise the use of median filtering. We do this by first
proposing a model for an unaltered image’s pixel difference distribu-
tion. We then modify a median filter image’s pixel difference distri-
bution using anti-forensic noise so that it no longer contains median
filtering fingerprints. Through a series of experiments, we are able
to show that our anti-forensic technique can fool existing median
filtering detectors under realistic conditions.

Index Terms— Anti-Forensics, Median Filter, Pixel Difference

1. INTRODUCTION

Due to the ease with which multimedia content can be manipulated,
measures to verify the authenticity of multimedia content are in
pressing need. Several forensic measures on multimedia contents
have been developed to identify different multimedia editing op-
erations. For example, some techniques are designed to identify
image resampling [1], double JPEG compression [2], contrast en-
hancement [3] and median filter operation [4], [5]. These forensic
techniques operate by detecting the forensic fingerprints left in the
multimedia content by editing operations.

An intelligent forger, however, can develop anti-forensic mea-
sures in order to fool the forensic detectors. These anti-forensic
measures aim at eliminating the fingerprints introduced by multime-
dia editing operations. Several anti-forensic techniques have been
developed for different operation detectors, such as removing the ar-
tifact of resizing and rotation in [6], forging the history of image
compression [7], [8], histogram manipulation [9], color filter array
pattern alteration [10], and video motion vector alteration for frame
deletion in video sequence in [11]. By studying anti-forensics, we
can identify the capabilities of an intelligent forger and develop mea-
sures to detect the use of anti-forensic techniques.

Median filtering is an image editing operation of particular
forensic significance. It is commonly used to perform several im-
age enhancement tasks such as noise suppression and smoothing.
Median filtering has the useful property of preserving edge content
due to its nonlinear nature. Recently, median filtering has been
shown to be destructive to several other image manipulation traces
due to its strong nonlinearity [6]. Due to this destructive nature
of median filter, the median filter has been integrated into several
anti-forensic techniques such as in [8]. Thus forensic measures on
median filtering is essential because once median filter is detected
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by the detector, the authenticity of the image is questionable due to
the possibility of other multimedia operation. Several median filter
detectors have been proposed in [4] and [5] for detecting median
filter operations.

An anti-forensic attack on median filtering detectors is of partic-
ular interest for image forgers. While median filtering is destructive
to other image manipulation fingerprints, it leaves behind its own
fingerprints. Consider the case that a forger applies a median filter at
the end of image processing to destroy the fingerprints of previous
image editing operations. The forger would then like to apply an
anti-forensic technique to remove the median filter fingerprints from
the image. If this can be done, the forger can produce a forged im-
age that is free from any image editing operation fingerprints. This
scenario shows that the destructive nature of median filtering makes
median filtering anti-forensics very appealing to forgers.

In this paper, we propose a novel anti-forensic technique to re-
move traces of median filtering. We first propose using a generalized
Gaussian distribution to model the pixel value difference distribution
of an unaltered and median filtered image. We develop an estima-
tion method to estimate a plausible pixel value difference distribu-
tion of an unaltered image given a median filtered one. Using the
plausible estimated pixel value difference distribution as a target, we
estimated the noise distribution to be added in the median filtered
image and shift the pixel value difference distribution to the plausi-
ble one. Several measures are applied in the noise addition algorithm
to balance the attack strength and the visual perception. Finally the
anti-forensic attack is tested against several median filter detectors
and the attack successfully falsifies the detector in typical detection
scenarios. While prior work removes traces of median filter by op-
timally sharpening an image [12], our proposed apporach achieves
better performance at low false alarm rates.

2. PROBLEM FORMULATION

We first give a brief introduction on the operation of median filter.
Let xi,j be the pixel value at location (i, j) of an unaltered image.
The corresponding pixel yi,j in a median filtered version image is
given by yi,j = meds(xi,j). Here meds denoted the median filtering
operation with a square filter window with size of s defined as

meds(xi,j) =

median{xl,m|0 ≤ ⌊|i− l|/2⌋ ≤ s, 0 ≤ ⌊|j −m|/2⌋ ≤ s}.
(1)

2.1. Median Filter Detectors

Several median filter detectors have been proposed in prior works
[4], [5]. Kirchner and Fridrich proposed a detector that operates
based on the statistics of pixel value differences of a median filtered
image and an unaltered image [4]. The detector first divides the im-
age into blocks, the pixel difference histogram in each of the block
is calculated. Next, the ratio ϱ of the number of pixel differences
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Fig. 1. System model for the anti-forensic technique.

whose value is zero to the number of pixel differences whose value
is one is calculated for each block. A weighting function is applied
to the ϱ value of each block to avoid statistical distortion in saturated
regions and a final measure ϱ̂ of the strength of median filtering fin-
gerprints is obtained.

Kirchner and Fridrich also proposed using the subtractive pixel
adjacency matrix (SPAM) detector which is originally developed in
steganalysis in [13] for the detection of median filter operation. They
first model the pixel value difference distributions in an image to
be an nth order Markov chain. The SPAM detector then uses the
Markov chain transition probabilities as features vectors which is
used in support vector machine.

In [5], Yuan proposed a median filter detector which collects
blockwise Median Forensic Features (MFF) which are statistics
based on the pixel values and its distribution in the block. Different
entries of MFF is then combined heuristically to produce a new
index f . A binary decision is then made according to the index f to
determine whether the image has undergone median filter or not.

2.2. Anti-Forensic Technique

Both the ϱ and SPAM detectors proposed by Kirchner and Fridrich
detect median filtering by capturing features of the distribution of an
images pixel value differences. Furthermore, several of the detec-
tion features proposed by Yuan implicitly capture information about
an images pixel difference distribution. As a result, an anti-forensic
attack on median filter detector should ensure that the pixel differ-
ence distribution of an anti-forensically modified image resembles
one that is from an unaltered image.

Since a forger does not know whether a median filtering detec-
tion technique will examine the horizontal or vertical pixel differ-
ences, they must insure that the distribution in both directions con-
tain no evidence of median filtering. Additionally, since pixel values
are correlated in both the horizontal and vertical directions, a forger
needs to ensure that modifications to the pixel differences in one di-
rection do not create visual distortions in the other direction. As a
result, we examine the pixel differences jointly in both directions.
We define the pixel value difference pair di,j as

di,j =

(
xi,j − xi,j+1

xi,j − xi+1,j

)
=

(
hi,j

vi,j

)
. (2)

Our goal is to fool median filtering detectors by modifying the
pixel differences in a median filtered image so that its pixel differ-
ence distribution appears to come from an unaltered image. We do
this by first parametrically modeling the pixel value difference dis-
tribution of an unaltered image and a median filtered image. We
modify the pixel difference distribution of a median filtered image
by adding specially designed noise its pixel differences. We design
the distribution of this two dimensional noise so that when it is added
to the pixel differences in a median filtered image, the pixel differ-
ence distribution of the anti-forensically modified image will match
an estimate of the images pixel difference distribution before median
filtering.
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Fig. 2. Comparison of generalized Gaussian and actual histogram of
pixel value difference in an unaltered image.

Let the random variables U and M be the pixel value difference
of an unaltered image and a median filtered image, respectively, and
N be a random variable representing the anti-forensic noise. Then
by exploiting the property that when two random variables are added
together, their distributions convolve with each other

fU (di,j) = fM (di,j) ∗ fN (di,j), (3)

where fM , fN and fU are the distributions of M , N and U respec-
tively. We can see from Eq.(3) that designing the anti-forensic noise
distribution is equivalent to the design of a system impulse response
fN (di,j) with predefined input fM (di,j) and output fU (di,j). The
system overview is illustrated in Fig. 1

We approach this task by the following steps. We first propose
using generalized Gaussian distribution to characterize the distribu-
tion of pixel value difference vector d. The parameters for the gener-
alized Gaussian distribution for both unaltered fU (di,j) and median
filtered fM (di,j) images are gathered using an image database, and
thus we find the relationship of the distribution parameters between
the median filtered image and an unaltered one. We use the relation-
ship to estimate a plausible unaltered image distribution f̂U (di,j)
given a median filtered one. By exploiting the relation in Eq. 3, we
can design the noise distribution fN (di,j) to add to the image. We
devise technique to add the noise realization into the image. Finally
our technique is tested against the known detectors to verify the anti-
forensic attack performance.

3. TARGET DISTRIBUTION ESTIMATION

3.1. Parametric Model of Pixel Value Difference Distribution

We propose to model the pixel value difference distribution using
a generalized Gaussian distribution. Fig.2 and Fig.3 shows that
the generalized Gaussian fits the pixel value difference distribu-
tion. Since we care about the joint distribution of the horizontal
and the vertical pixel differences, we further propose to model the
pixel value difference distribution using a two dimensional gener-
alized Gaussian distribution. The formula for a two-dimensional
generalized Gaussian distribution is given in Eq. (4) [14],

fd(d;α,Σ) =
detΣ−1/2

(Z(α)A(α))2
exp

(
−
∣∣∣∣∣∣∣∣Σ−1/2d

A(α)

∣∣∣∣∣∣∣∣α
α

)
, (4)
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Fig. 3. Comparison of generalized Gaussian and actual histogram of
pixel value difference in a median filtered image.

where Z(α) and A(α) are normalizing constants.
In Eq.(4), d is a 2 by 1 vector. Σ is the covariance matrix of

the random vector and α is a parameter which controls the shape
of the generalized Gaussian distribution. The distribution can have
different kurtosis by adjusting the parameter α.

3.2. Parametric Estimation of a Plausible Unaltered Image Pixel
Value Difference Distribution

We make an assumption that the pixel value difference distribution
is directionally invariant. In order the parameterize the distribution,
we need to estimate Σ and α. We obtain an estimate of the covari-
ance matrix Σ̂ and the maximum likelihood estimator for α̂ using
the method proposed in [14]. In order to increase the stability of the
estimation algorithm, we apply a Gaussian filter on the histogram of
the image before the estimation.

Next, we estimate the parameters ΣU and αU in the unaltered
images pixel difference distribution directly from the median filtered
images parameters ΣM and αM . We do this by estimating ΣU , αU ,
ΣM , and αM from each image in a training database, then we per-
form a linear regression on these parameters using a least squares fit.
For example

αU = a0 + a1Σ
M
1,1 + a2Σ

M
1,2 + a3Σ

M
2,1 + a4Σ

M
2,2 + a5α

M . (5)

Using these estimated parameters and our parametric model, we can
obtain an estimate of the unaltered images pixel difference distribu-
tion f̂U .

Now we have the parameters for fM and f̂U and we can design a
distribution fN using the relation Eq. (3). We perform the estimation
in the Fourier transform domain

FN (ω) = F̂U (ω)/FM (ω). (6)

where F (ω) = DFT{f(d)}. Then fN can be obtained by using
IDFT on FN (ω). fN would have small portion of negative parts
because this is not a system impulse response but a probability dis-
tribution which is strictly non-negative. We project it to the closest
set of probability distribution by truncating the negative parts and
normalizing the distribution.

4. NOISE ATTACK ALGORITHM

Since the anti-forensic methodology is to add noise to the pixel dif-
ferences di,j , the pixel values must be recovered from the pixel dif-

ferences. This means that when reconstructing the pixel values from
the pixel differences, we need to value of at least one reference pixel.
We refer to this pixel as the anchor point. Assuming that we choose
the pixel at the location (i, j) to be the anchor point, the correspond-
ing pixel value yi,j in the anti-forensically modified image is given
by yi,j = xi,j .

Once the anchor point is chosen, we then modify all the pixels
in the ith row using

yi,j+l = xi,j −
l−1∑
k=0

hi,j+k −
l−1∑
k=0

nh
i,j+k. (7)

where nh
i,j+k is the noise realization of the obtained from the one

dimensional noise distribution fN using the acceptance and rejection
method.

Next, we modify the rows below and above the ith row using

yi+k+1,j+l = yi+k,j+l − vi+k,j+l − nv
i+k,j+l. (8)

where the probability distribution of nv
i+k,j+l is given by the condi-

tional distribution fN (nv
i+k,j+l|nh

i+k,j+l = yi+k,j+l−yi+k,j+l+1).
This conditional distribution can be obtained from the joint distribu-
tion fN (di,j). We continue the process until all rows are modified
accordingly.

4.1. Distortion Limiting Measures

Though anti-forensically modifying an image in this manner will
remove median filtering fingerprints from an image, it will also in-
troduce distortion. If a large noise value is added to dMi,j , then the
reconstructed adjacent pixel value yi,j+1 may have a large deviation
from its original value xi,j+1. This deviation would further prop-
agate to the next adjacent pixel xi,j+2 because the reconstruction
depends on the value of xi,j+1. As a result, the further that we move
from our anchor point, the greater the possible distortion introduced
into the image. To mitigate the distorting effects of anti-forensics,
we add the following modifications to our algorithm:

We partition the image into blocks and select the anchor point
for reconstruction to be at the center of the block. Since the potential
amount of distortion increases the further we move from our anchor
point, we segment the image into blocks and independently anti-
forensically modify each block. This prevents each the modified
pixel values from drifting too far from their original values. By doing
this, the horizontal and vertical distance between any point in the
block and the anchor point is no greater than half of the block width.

Additionally, since the distortion incurred by a single large noise
value can propagate to a large area, we limit the range of values that
the anti-forensic noise can take to [−T, T ]. The block partition and
the anchor point selection can not prevent the possible large noise
realization value which cause large distortion, by selecting proper
T , we can reduce the distortion in a controlled fashion.

While these measures help decrease the visual distortion intro-
duced into an image by anti-forensics, they negatively impact the ef-
fectiveness of our anti-forensic technique. We have experimentally
observed that limiting the range of noise values [−T, T ] reduces the
effect of the anti-forensic noise. To compensate for this, we multiply
the covariance matrix of the target distribution by a correction factor
β < 1. This slightly increases the variance of the anti-forensic noise
and helps overcome the negative effects of limiting the range of the
noise values.
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Fig. 4. ROC curves for three detectors with T = 3 and β = 0.1

5. SIMULATION RESULT

We evaluated the performance of our anti-forensic technique using
the UCID [15] database which consists of 1338 color images which
had never been compressed. All the images were first converted to
gray scale image before any further processing. The gray scale im-
age was used directly as the unaltered image. For the median filtered
image database, the grayscale images were processed using a median
filter with support 3.

To measure the baseline performance of the ϱ, SPAM, and MFF
detectors, we used each forensic technique to test for median filter-
ing in both our databases of unaltered and median filtered images.
From these detection results, we found that all three detectors were
able to achieve perfect detection, i.e. each achieved a probability of
detection of PD = 100% with a corresponding probability of false
alarm of PFA = 0%.

Next, we produced our anti-forensically modified image database
by selecting different parameters for the anti-forensic attack algo-
rithm and produced corresponding sets of modified image databases.
The noise realization limit T was varied between 1, 2, 3, 5, and the
correction factor β was selected to be 0.1, 0.3, 0.5, 0.7, 0.9. Then
the performance of the anti-forensic technique was tested against
the three detectors. The PSNR between the median filtered images
and the anti-forensically modified images was also measured to
evaluate how much distortion was added during the anti-forensic
modification.

In typical forensic settings, there is a high cost associated with
false alarms. For example, in legal scenarios it is unlikely that a
forensic finding will be allowed into evidence if there is a significant
probability that a forgery detection corresponds to a false alarm. As
a result, a forensic investigator must typically operate with a false
alarm rate less than 20%. From a forgers point of view, it is critical
that any anti-forensic countermeasures they use significantly reduce
the performance of forensic techniques in this false alarm region.
Since a forensic investigator cannot typically perform detection out-
side of this critical region, the performance of forensic techniques at
higher false alarm rates is of less concern.

The ROC curves for the ϱ, SPAM, and MFF detectors are given
in Fig.4 with T = 3 and β = 0.1. The detection rate for the three
detectors after the anti-forensic modification is mostly less than 50%
in the critical false alarm rate region. Specifically, for PFA < 15%,
PD is typically under 50%. This shows that our anti-forensic tech-
nique is very effective in the critical false alarm region. Also, Al-
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though our anti-forensic technique alters the pixel value difference
distribution, our technique also works for the MFF detector that does
not rely directly on the pixel value difference distribution.

The PSNR between the median filtered image and the anti-
forensic modified image with different T and β is given in Fig.5.
With a given T , PSNR decreases with smaller β; while with a given
β, the PSNR decreases with larger T . The larger T and a smaller
β mean that the stronger the modification is. As we can see, most
of the parameter combination would result in PSNR in the high 30s.
Note that the PSNRs are provided as a reference to show that the im-
ages are of sufficient quality. In reality, a forensic investigator does
not have access to the original image and cant evaluate the quality
loss. All they can do is make a subjective judgment of whether
the image appears to be authentic or not. The tradeoff between the
anti-forensic technique parameters and the visual quality means we
can optimize between the visual quality and the attack strength to
ensure the attack while preserving image qualities.

6. CONCLUSION

In this paper, we proposed an anti-forensic technique to fool forensic
median filtering detectors that operates by adding anti-forensic noise
to an images pixel difference distribution. To accomplish this, we
proposed using a two dimensional generalized Gaussian distribution
to model an images pixel value difference distribution. We estimated
the distribution parameters for both unaltered images and median
filtered images, then used linear regression to estimate an unaltered
distribution parameters from a median filtered images parameters.
We design our anti-forensic noises distribution so that the pixel dif-
ference distribution of an anti-forensically modified image appears
to come from an unaltered image. In order to ensure the visual qual-
ity of the anti-forensic modification, we proposed several measures
for limiting the distortions introduced in the modification. Finally,
our anti-forensic technique was tested against several median filter
detectors. The results indicate that our anti-forensic technique can
fool existing median filtering detectors under realistic scenarios.
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