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ABSTRACT

Determining the make and model of an image’s source camera
is an important forensic problem. While significant research has
been conducted towards developing new camera model identifica-
tion algorithms, little research has focused on controlling the com-
putational cost of these algorithms. This becomes an important issue
if forensic algorithms are to be used in “big data” scenarios. In this
paper, we propose a new approach for controlling the computational
cost associated with the algorithm proposed by Swaminathan et al.
that identifies an image’s source camera using least squares estimates
of its demosaicing filter. Through a set of experiments, we show that
our algorithm is able to achieve a higher classification accuracy at
a fixed computational cost than the existing method. Similarly, our
algorithm is able to reach a target classification accuracy at a lower
computational cost.

Index Terms— Information Forensics, Camera Model Identifi-
cation, Demosaicing, Computational Efficiency

1. INTRODUCTION

Technological advances over the past several decades, such as the
widespread availability of high-speed Internet service, has made it
easy to share digital images throughout the world. However, since
digital images are used in several settings such as news reporting,
criminal proceedings, and military intelligence, determining or ver-
ifying their origin is an important task. While this information can
be contained in an image’s metadata, metadata is often missing from
an image and can easily be falsified.

In response to this problem, information forensics researchers
have developed a variety of techniques to determine the manufac-
turer and model of the camera that captured an image [1]. These
techniques operate by extracting a set of forensic traces from an im-
age that were left by it’s source camera, then providing these traces
as features to a machine learning algorithm trained to determine the
model of the image’s source camera. Forensic techniques have been
developed to make use of a variety of traces left by an image’s source
camera such as information contained in JPEG headers [2], sensor
noise statistics [3], and color processing traces left by an image’s
demosaicing algorithm [4, 5, 6, 7], as well as other statistical fea-
tures [8, 9]. Other forensic techniques have been developed to deter-

Email: { Xinwei Zhao, xz355@drexel.edu}

Email: { Matthew C. Stamm, mcstamm@drexel.coe,edu}

Research was sponsored by the U.S. Army Research Office and the De-
fense Forensics and Biometrics Agency and was accomplished under Coop-
erative Agreement Number W911NF-15-2-0013. The views and conclusions
contained in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or implied, of
the Army Research Office, DFBA, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

978-1-4673-9961-6/16/$31.00 ©2016 IEEE

mine if an image was created using a scanner [10, 11], computer gen-
erated [12, 10, 13], or acquired using compressive sensing [14, 15].

While significant research effort has been devoted to discover-
ing new traces for performing camera model identification, little re-
search has focused on the controlling the computational cost of these
algorithms. By contrast, the number of digital images, and possible
source cameras, has increased dramatically. Since virtually all of the
aforementioned forensic techniques rely upon machine learning al-
gorithms to perform source identification, the computational cost of
training these algorithms grows dramatically as the number of possi-
ble camera sources increases. In order for camera model identifica-
tion algorithms to process the large volume of images and possible
source camera models associated with today’s “big data” environ-
ment, it is necessary to control the computational costs associated
with training and testing these forensic algorithms.

In this paper, we focus on reducing the computational cost as-
sociated with the camera model identification algorithm proposed
by Swaminathan et al. [5]. This algorithm operates by modeling a
camera’s demosaicing algorithm as linear interpolation, obtaining a
set of least squares estimates of the demosaicing filter, then using
the estimated filter coefficients as features for a support vector ma-
chine (SVM) trained to distinguish between different source camera
models. Since the computational cost of using all pixels in an im-
age to estimate the demosaicing filter quickly becomes impractical,
Swaminthan et al. proposed performing estimation using only pixels
in a small window of the image. While this approach helps to some
degree, the algorithm’s overall performance varies significantly de-
pending on which window is chosen, and results in a highly subop-
timal trade-off between the computational cost and overall accuracy.

In this paper, we propose a new approach for controlling the
computational cost associated with Swaminathan et al’s camera
model identification algorithm. In our approach, we identify a set of
n pixels throughout the entire image that results in a better estimate
(as measured by the Frobenius norm of the estimation error covari-
ance matrix) of the demosaicing filter. By obtaining demosaicing
filter estimates in this manner, we are able to greatly improve the
trade-off between the classification accuracy and computational cost
of Swaminathan et al.’s algorithm. Specificially, at a fixed compu-
tational cost, our algorithm results in a significantly higher camera
model identification accuracy. Similarly, our algorithm significantly
reduces the computational cost needed to achieve a particular mini-
mum camera model identification accuracy.

2. BACKGROUND

A digital camera operates by measuring the intensity of light re-
flected from a real world scene onto an electronic sensor. As shown
in Fig. 1, light enters a digital camera by first passing through its lens.
Since most sensors are capable of capturing only one color compo-
nent at one pixel location, the light next passes through an optical fil-
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Fig. 1. Image processing pipeline in digital cameras

ter known as a color filter array (CFA), before hitting the sensor. The
CFA consists of a repeating fixed pattern and allows only one color
band of light (red, green, or blue) to fall incident on the sensor at a
particular pixel location. The sensor then measures the light inten-
sity of the color component corresponding to the CFA pattern at each
pixel location, and yields an image constructed with three partially
sampled color layers. Next, the unobserved color component values
are demosaiced using nearby directly captured pixel values. After
demosaicing, images may undergo further internal post-processing
such as white balancing and compression before the final output im-
age is produced.

2.1. Camera Model Identification

Since the performance of the demosaicing algorithm is critical for
the quality of the final image, most camera manufactures employ
proprietary demosacing algorithms. As a result, several forensic al-
gorithms have been developed to determine the make and model of
an image source camera using features pertaining to the demosaicing
algorithm used to produce the image [16, 17].

One of the commonly used methods was proposed by Swami-
nathan et al. [16]. Since the ground truth demosaicing filters are
adaptive to common gradient orientation and color bands, they ap-
proximate demosaicing filters for each color band and gradient ori-
entaion to be linear.

First, they guess a CFA pattern, and reverse the demosacing pro-
cess to obtain an image which is formed by retaining only directly
captured color channel values. Next, they group pixel locations of
the resulting image into horizontal, vertical, or smooth regions by
comparing the absolute difference between horizontal and vertical
gradient magnitudes of each pixel to a well-selected threshold. Next,
for a particular color channel of the image, they model the unob-
served pixel values as a linear combination of directly captured pixel
values in its local neighborhood. As a result, they obtain 9 overde-
termined systems of linear equations pertaining to each particular
pairing of color channel and a gradient region. To form each overde-
termined system of linear equations, let n be the number of demo-
saiced pixels collected from a particular color and gradient region.
Let m be the number of directly captured pixels in a local neighbor-
hood centered at one demosaiced pixel. The overdetermined system
of equations can be expressed as,

y = X0, )]
where ¥ = [y1,...,yn] ' is a n x 1 vector with each scalar entry
representing a demosaiced pixel value, and X = [x1,...,X,]" is a
n X m matrix with each vector entry x; = [x; 1, ..., Ti,m] represent-
ing the directly captured pixels in a local neighborhood surrounding
Yi, 1 € [1, TL}

The demosaicing filter estimates 6 are obtained by solving (1)
using least squares estimation. Using this approach, they estimate
the demosaicing filter coefficients for each of the 9 sets of linear
equations, and use the demosaicing filter estimates as features for a
multiclass support vector machine trained to identify the model of
the image’s source camera.
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3. TRADE-OFF BETWEEN COMPUTATIONAL COST AND
ESTIMATION ACCURACY

The computational complexity of obtaining each least squares esti-
mate of the m x 1 demosaicing filter @ using an n X 1 observation
vector y and data matrix X of size n x m is O(nm?) [18]. As are-
sult, the computational cost of is directly proportional to the number
of pixels used to perform estimation. For large images, the compu-
tational cost of using all pixels in an image to obtain these estimates
quickly becomes impractical. To address this problem, Swaminathan
et al. proposed using only pixels in a small window of the full im-
age to obtain the set of demosaicing filter estimates. The window is
heuristically chosen by dividing the image into a set of overlapping
windows, then selecting the one with the highest total variation (i.e.
the window with the largest sum of the magnitude of pixel gradients).

This problem brings to light a fundamental trade-off between
classification accuracy and computational cost experienced by their
algorithm. It is well known that the least squares estimator is a con-
sistent estimator. As a result, increasing the number of pixels used to
perform estimation tends to increase the accuracy of the demosaic-
ing filter estimate. Since the demosaicing filter estimates are used
as classification features by the SVM, better filter estimates tend to
result in a higher camera model identification accuracy. Using more
pixels to perform estimation, however, increases the size of the ob-
servation vector y and the data matrix X, therefore increasing the
computational cost.

While the window based approach allows this trade-off to be bal-
anced by adjusting the window size, it has several important short-
comings. First, the performance of the classification algorithm is
highly dependent upon the image window chosen for demosaicing
filter estimation. While the total variation heuristic can produce good
results, we have experimentally found its performance to be highly
variable. Second, the set of pixels that yield the best estimate of 6
may be spread throughout the entire image. The requirement that
all pixels used for estimation fall within a particular window likely
results in a suboptimal estimate. Third, the window-based approach
does not allow for direct control over the computational cost of each
filter estimate. This is because the pixels in each gradient region are
chosen by comparing the magnitude of their horizontal and vertical
gradients to a fixed threshold. For a given window size, the number
of pixels in each gradient region can vary significantly from image
to image depending on its content. As a result, the size of the data
matrix, and thus computational cost, can vary significantly. This is
discussed in further detail in Section 5.

4. PROPOSED APPROACH

We propose an alternative approach for obtaining the least squares
estimate of the demosaicing filter that is designed to improve the
trade-off between computational cost and estimation accuracy, and
to address the other issues described above. Instead of performing
estimation using a small window of the image, we propose using
a subset of n pixels throughout the entire image that will yield a
significantly better estimate of the demosaicing filter.

The accuracy of 0, and thus the overall camera model identifica-
tion accuracy, varies significantly based on which subset of IV pixels
are used as observations during estimation. We propose an algorithm
to quickly identify a set of pixels that will achieve a much better es-
timate of the demosaicing filter at a fixed computational cost. To ac-
complish this, we formulate a stochastic model of an image’s pixel
values, then use this model to derive a lower bound on the Frobenius
norm of the estimator’s error covariance matrix. We then identify



the set of pixels that minimizes this lower bound, and use this to de-
termine the set of pixels used during demosaicing filter estimation.

We begin by establishing a model relating each demosaiced
pixel value to its local neighborhood of directly observed pixel val-
ues. Without loss of generality, we assume that we are examining
only one color layer of an image so that each pixel has a one dimeni-
sional value associated with it. Let X be the set of directly observed
pixel values and ) be the set of interpolated pixel values. For every
y; € Y, we can write

yi =%, 0+e, @

where x; = [zi,1,. .., %:m] is the w x w neighborhood of directly
observed pixels surrounding y; and €; is modeling noise. We model
x;,; as independent and identically distributed (i.i.d.) random vari-
ables distributed A(0, 0?), and ¢; as independent Gaussian noise
distributed A/(0, o2). While in reality the pixel values in x; are not
zero mean, they can easily be made to be zero mean by simply sub-
tracting the mean pixel value from both x; and y;. Furthermore, we
assume that o7 may not equal 0'J2- for two different interpolated pixels
Yi and Yj.

For an arbitrary set of n pixels in ), we can group the equa-
tions relating the values of these pixels to their local neighborhoods
together to form the overdetermined set of equations

y = X0 + ¢, 3)

wherey = [y1, ...7yn]T,XA: [x1, X2, ...,
The least squares estimate 6 of the demosaicing filter € can then be
obtained using the pseudoinverse of the data matrix X

0=(X"X)"'X"y. 4)

To improve the trade-off between computational cost and esti-
mation accuracy, we would like to form the observation vector y and
its associated data matrix X by using the set of n pixels that yield
the “best” estimate 8 of the demosaicing filter. We define this esti-
mate as the one which minimizes ||X4]|, where 3 is the covariance
matrix of the estimation error and || - || denotes the Frobenius norm.
The least squares estimator’s error covariance matrix conditioned on
the data matrix is given by the well known formula

Tox =E[(0-60)(0-0)" | X]=02(XTX)"". (5
The error covariance matrix can then be found by taking the expected
value of (5)
2 Ty —1
35 = E[Xg x| = 0. E[(X X)), (6)
Deriving an explicit formula for E[(X T X) '] is very difficult due
to the presence of the matrix inverse. Despite this, we are able to
derive the following lower bound on the Frobenius norm of the co-
variance matrix )
mo
125l > =
i=19i
Our derivation of this lower bound is provided in the Appendix to
this paper.

Using (7), we can see that this lower bound is inversely propor-
tional to the sum of the variances of each pixel neighborhood. As a
result, we can minimize this lower bound by forming the observation
vector and its accompanying data matrix by choosing the y;’s whose
local neighborhood of pixel values have the n largest variances o2.

)

xn] and € = [e1, .., €n] .
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While this approach results in a lower demosaicing filter esti-
mation error and a higher camera model identification accuracy, es-
timating the variance of the directly observed pixels in the neigh-
borhood of each demosaiced pixel adds a nontrivial computational
cost. We note, however, that the variance of pixel values in the local
neighborhood of pixels located on strong edges tends to be signif-
icantly higher than for other pixels. One reason for this is that the
pixel values on either side of the edge tend to correspond to different
colors. To avoid the cost of computing these local variances, we pro-
pose the heuristic of forming the observation vector from the set of
demosaiced pixels with the largest edge strength as measured by the
magnitude of their gradient. Furthermore, since different demosaic-
ing filters estimates must be computed for each gradient region, this
approach has the added benefit of making it easy to separate pixels
into different regions according to their edge direction.

We can summarize our approach as follows. For each color
channel:

1. Compute the magnitude and angular direction of the gradient

of each pixel demosaiced pixel.

Divide the set of pixels into different gradient regions accord-
ing to their angular orientation.

Obtain a least squares estimate of the demosaicing filter for
each gradient region using the set of n pixels throughout the
entire image with the largest gradient magnitudes.

The resulting demosaicing filter estimates can then be used as
classification

5. EXPERIMENTAL RESULTS

We performed a set of experiments to evaluate the performance of
our proposed method for obtaining demosaicing filter estimates, and
to demonstrate its benefits over the window-based approach. In order
to conduct these experiments, we first built an experimental database
of images captured using 13 different camera models. These models
consisted of 9 cell phone cameras, 2 point-and-shoot cameras, and 2
digital SLRs. We manually captured 100 images using each camera
to create an experimental database of 1300 images in total.

In our first experiment, we examined the ability of Swaminathan
et al.’s window-based method to directly control the computational
cost of estimating the demosaicing filter coefficients. As we noted in
Section 3, the computational cost of obtaining the least squares esti-
mate of the demosaicing filter is directly proportional to the length n
of the data matrix (i.e. the number of pixels used during estimation).
As a result, we use the length of the data matrix as a proxy for the
computational cost. We began by identifying the 512 x 512 pixel
window in each of the 1300 images with the highest total variation.
Next, we chose a variety of different thresholds for dividing the win-
dow into different gradient regions, and recorded the size of the data
matrix for each image at each threshold. Table 1 shows the mean
length of each data matrix along with its standard deviation when
the gradient threshold is chosen to be 0.5. As we can see from this
table, the length of the data matrix, and hence computational cost,
varies significantly from image to image. By contrast, our proposed
approach allows the size of the data matrix to be directly specified.

In our second experiment, we characterized the trade-off of be-
tween the computational cost and camera identification accuracy of
our proposed approach, and compared it to that of Swaminathan et
al.’s window based method. We began by experimentally character-
izing this trade-off for the window based method. Using Swami-
nathan et al.’s window-based method, we estimated the demosaicing
filter coefficients for the 7 gradient thresholds shown in Table 2. We



Color, Gradient Direction R,H G,H B.H R,V G,V B,V
Mean 697 475 712 499 340 507
Standard Deviation 2358 1620 | 2410 1597 1105 1660

Table 1. Mean and standard deviation of the length of the data matrix
using Swaminathan et al.’s window-based method using a gradient
threshold of 0.5. R, G ,B represent the red, green, and blue channels
respectively. H, V represent horizontal and vertical gradient regions
respectively.

Threshold | 0.5 |
Mean

03 | 01 005 | 001 | 0005 | 0.001
[7538 | 2515 | 14738 | 29682 | 69796 | 75843 | 79270

Table 2. Mean of the total length of data matrix for each image using
Swaminathan et al.’s method for 7 thresholds.

recorded the mean length of the data matrix (computed across all
gradient regions) and used this to represent the computational cost.
Next, we trained a support vector machine to perform camera model
identification using these demosaicing filter estimates, and measured
the classification accuracy using 5-fold cross validation. The classi-
fication accuracies achieved using the window-based approach for
each data matrix length are shown in blue in Fig. 2.

Next, we repeated this experiment using our proposed method.
To provide a fair comparison in terms of the computational cost, we
used our method to estimate the demosaicing filter cofficients us-
ing each of the mean lengths of data matrix obtained in Table 2.
We then trained a support vector machine to perform camera model
identification using these demosaicing filter estimates, and measured
the camera classification accuracy using 5-fold cross validation. The
classification accuracy obtained using our method for each data ma-
trix size is shown as the magenta line in Fig. 2.

As we can see from Fig. 2, our proposed method results in a
significantly greater classification accuracy at a fixed computational
cost. For example, for a data matrix length of n = 2515 per gradient
region, our method achieves a classification accuracy of 71.3% ac-
curacy. By contrast, Swaminathan et al.’s method achieves a classi-
fication accuracy 47.3%. This 24.0% gain in classification accuracy
is marked using the green double arrow.

Similarly, Fig. 2 also shows that a given classification accuracy
can be achieved by our algorithm at a much lower computational
cost. For example, our proposed method needs a data matrix length
of approximately n = 15000 to acheive a classification accuracy of
80%. By contrast, the window-based method requires a data matrix
length of approximately n = 30000 equations to achieve the same
classification accuracy. The decrease in computational cost acheived
using our proposed method is marked using the red double arrow.

6. CONCLUSION

In this paper, we proposed a new method to improve the trade-off be-
tween computational complexity and accuracy for demosaicing filter
coefficient estimation. Compared to Swainathan et al.’s method, our
proposed method is able to achieve higher estimation demosaicing
filter estimation accuracy, and thus higher camera model identifica-
tion accuracy. Experimentally we demonstrated that at fixed compu-
tational cost, our proposed method is able to achieve a higher camera
identification accuracy. Similarly, our algorithm is able to achieve a
desired identification accuracy at a lower computational cost.
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Fig. 2. Data matrix length vs. classification accuracy for our pro-
posed method and Swaminathan et al.’s window-based.

7. APPENDIX

In this appendix, we provide our derivation of the lower bound on the
Frobenius norm of the covariance matrix given in (7) in Section 4.
We begin by noting that the matrix X X is positive semidefinite
since it can be expressed as the following sum of positive semidefi-
nite matrices

XTX = ixix?.

i=1

®)

Because the inverse of a positive semidefinite matrix is a convex
function, we can use Jensen’s inequality to write the following lower
bound on the expectation in the right hand side of (6)

E[(X'X)™'] > EX'X)" ©)

Next, we let (X X); denote the element at the k*" row and
I*" column of X T X. This element can be expressed as

(X X)) = szkle (10)
i—1

Using this equation along with the fact the x; ;’s are zero mean 1.i.d.
random variables, the entries of E[(X T X)~!] are given by
0

(s

As a result, the diagonal elements of (E[X ™ X])™" are all equal to
(3", o)~ " while the off-diagonal elements are all zero. Since the
Frobenius norm of a matrix is equal to its trace (i.e. the sum of its

diagonal elements), we can write the expression

ifk # 1,
ifk =1

(B[X"X])x an

n 2
i=1%i

I(EXTX]) | = EL

i=1 03

(12)

Finally, combining (6), (9), and (12), we can arrive at the fol-
lowing expression for the lower bound on the Frobenius norm of the
error covariance matrix

2

mo
156l > <73
i=194
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