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ABSTRACT
Estimating manipulation parameter values is an important problem

in image forensics. While several algorithms have been proposed

to accomplish this, their application is exclusively limited to one

type of image manipulation. �ese existing techniques are o�en

designed using classical approaches from estimation theory by con-

structing parametric models of image data. �is is problematic

since this process of developing a theoretical model then deriving a

parameter estimator must be repeated each time a new image ma-

nipulation is derived. In this paper, we propose a new data-driven

generic approach to performing manipulation parameter estima-

tion. Our proposed approach can be adapted to operate on several

di�erent manipulations without requiring a forensic investigator

to make substantial changes to the proposed method. To accom-

plish this, we reformulate estimation as a classi�cation problem

by partitioning the parameter space into disjoint subsets such that

each parameter subset is assigned a distinct class. Subsequently,

we design a constrained CNN-based classi�er that is able to extract

classi�cation features directly from data as well as estimating the

manipulation parameter value in a subject image. �rough a set of

experiments, we demonstrated the e�ectiveness of our approach

using four di�erent types of manipulations.

KEYWORDS
Image forensics; manipulation parameter estimation; convolutional

neural networks; quantization

1 INTRODUCTION
Digital images play an important role in a wide variety of se�ings.

�ey are used in news reporting, as evidence in criminal investi-

gations and legal proceedings, and as signal intelligence in gov-

ernmental and military scenarios. Unfortunately, widely available

photo editing so�ware makes it possible for information a�ackers

to create image forgeries capable of fooling the human eye. In order

to regain trust in digital images, researchers have developed a wide

variety of techniques to detect image editing and trace an image’s

processing history [36].
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An important part of characterizing an image’s processing his-

tory involves determining speci�cally how each editing operation

was applied. Since several editing operations used to manipulate

an image are parameterized, this involves estimating these manipu-

lation parameters. For example, a user must choose a scaling factor

when resizing an image, a quality factor when compressing an

image, or blur kernel parameters (e.g. kernel size, blur variance)

when smoothing an image.

Estimating manipulation parameter values may also be impor-

tant when performing several other forensics and security related

tasks. In some cases, it is useful or necessary to determine manipu-

lation parameter values when detecting the use of multiple editing

operations and tracing processing chains [10, 32]. Manipulation

parameter estimates can be used to undo the e�ects of editing or

provide an investigator with information about an image before it

was edited. �ey can also be used to improve camera identi�cation

algorithms [16] or used as camera model identi�cation features [21].

Additionally, manipulation parameter estimates can be used to in-

crease the performance of some steganographic algorithms [26]

and watermark detectors [11, 30].

Existing manipulation parameter estimation algorithms are of-

ten designed using classical approaches from estimation theory.

�is is typically done by �rst constructing a theoretical model to

describe a manipulated image or some image statistic (e.g. pixel

value or DCT coe�cient histograms) that is parameterized by the

manipulation parameter that is to be estimated. Next, an estima-

tor for the manipulation parameter is theoretically derived from

the statistical model. Algorithms have been developed to estimate

the scaling factor used when resizing an image [27, 28], the con-

trast enhancement mapping applied to an image [13, 33, 34], the

quality factor or quantization matrix used when compressing an

image [6, 12, 26, 37], the size of the �lter window used whenmedian

�ltering an image [20], and blurring kernel parameters [1, 7, 9].

While classical approaches from estimation theory have led to

the development of several successful manipulation parameter es-

timation algorithms, developing estimation algorithms for new

manipulations or improving upon existing algorithms can be quite

challenging. It is frequently di�cult to develop accurate parametric

models of image data that can be used for manipulation parameter

estimation. Once a model is constructed, deriving a manipulation

parameter estimator from this model may also be both di�cult and

time consuming. Furthermore, this process of developing a theoret-

ical model then deriving a parameter estimator must be repeated

each time a new image manipulation is developed.

Session: Deep Learning for Media Forensics IH&MMSec’17, June 20-22, 2017, Philadelphia, PA, USA

147



In light of these challenges, it is clear that forensic researchers

can bene�t from the development of a generic approach to perform-

ing manipulation parameter estimation. By generic, we mean an

approach that can be easily adapted to perform parameter estima-

tion for di�erent manipulations without requiring an investigator

to make anything other than minor changes to the estimation al-

gorithm. Instead of relying on theoretical analysis of parametric

models, this approach should be data-driven. In other words, this

approach should be able to learn estimators directly from a set of

labeled data.

Recent work in multimedia forensics suggests that this goal may

be accomplished by using convolutional neural networks (CNNs).

CNNs have already been developed to learn image manipulation

detectors directly from data. For example, we showed in our previ-

ous work that by incorporating a “constrained convolutional layer”

into the beginning of a CNN architecture, we could train this �xed

architecture to detect several di�erent image manipulations [2, 3].

Similarly, Chen et al. showed that a CNN can be trained to perform

median �ltering detection using an image’s median �lter resid-

ual [8].

In this paper, we propose a new, generic data-driven approach

to performing manipulation parameter estimation. Our approach

does not require researchers to develop a parametric model of a

particular manipulation trace in order to construct an estimator.

Instead, manipulation parameter estimation features are learned

directly from training data using a constrained convolutional neu-

ral network. Furthermore, our CNN can be re-trained to perform

parameter estimation for di�erent manipulations without requiring

changes to the CNN’s architecture except for the output classes.

Our approach operates by �rst approximately reformulating ma-

nipulation parameter estimation as a classi�cation problem. �is is

done by dividing the manipulation parameter set into di�erent sub-

sets, then assigning a class to each subset. A�er this, our specially

designed CNN is used to learn traces le� by a desired manipulation

that has been applied using parameter values in each parameter

subset. We experimentally evaluated our proposed CNN-based

estimation approach using four di�erent parameterized manipu-

lations. �e results of our experiments show that our proposed

approach can correctly identify the manipulation parameter subset

and provide an approximate parameter estimate for each of these

four manipulations with estimation accuracies typically in the 95%

to 99% range.

�e remainder of this paper is organized as follows. In Section 2,

we provide an overview of our proposed generic parameter estima-

tion approach, including details on class formation and high-level

classi�er design. Our parameter estimation CNN architecture is

described in detail in Section 3. In Section 4, we experimentally

evaluate the performance of our proposed approach when perform-

ing parameter estimation for four di�erent manipulations: resizing,

JPEG compression, median �ltering, and Gaussian blurring. Sec-

tion 5 concludes this paper.

2 PROPOSED ESTIMATION APPROACH
To develop our CNN-based approach to performing manipulation

parameter estimation, we begin by assuming that an image under

investigation I is a manipulated version of some original image I ′

such that

I =m(I ′,θ ) (1)

wherem(·) is a known image editing operation that is parameter-

ized by parameter θ . We assume that the set of possible parameter

valuesΘ is totally ordered and is known to the forensic investigator.

In this paper, we assume that θ is one dimensional (e.g. a scaling

factor or JPEG compression quality factor), however it is simple to

extend our approach to the case of multidimensional θ ’s.
While the editing operationm is known to an investigator, we

do not assume that the investigator knows the speci�c traces le�

bym. We do assume, however, thatm leaves behind traces that are

learnable by some classi�er д. Prior research has shown that traces

le� by several manipulations can be learned using CNNs construced

using a constrained convolutional layer [3] or by an ensemble clas-

si�er provided with rich model features [14, 29]. Furthermore, we

assume that the speci�c nature of these traces changes depending

on the choice of the manipulation parameter θ . Additionally, we
assume that an investigator has access to a large corpus of images

and can modify them withm using di�erent values of θ in order to

create training data for our parameter estimator.

2.1 Formulating parameter estimation as a
classi�cation problem

In order to leverage the power of CNNs that are able to learn manip-

ulation traces, we �rst approximately reformulate our parameter

estimation problem as a classi�cation problem. To do this, we par-

tition the parameter set Θ into K disjoint subsets ϕk such that

ϕk = {θ : tk ≤ θ < tk+1}, (2)

for k = 1, . . . ,K − 1 and

ϕK = {θ : tK ≤ θ ≤ tK+1}, (3)

where t1 is the smallest element in Θ, tK+1 is the largest element

in Θ, and the tk ’s form upper and lower boundaries for each of the

parameter subsets. Taken together, the set Φ of all subsets ϕk form

a minimal cover for Θ, i.e.,

K⋃
k=1

ϕk = Θ. (4)

When constructing our CNN-based classi�er д, each parameter

subset is assigned a distinct class label ck such that

д(I ) = ck ⇒ θ ∈ ϕk . (5)

Figure 1 shows an overview of how parameter subsets and their

corresponding classes are formed by partitioning the parameter

space. If we wish to include the possibility that the image is unal-

tered (i.e. no parameter value can be estimated becausem hasn’t

been used to modify I ), then an additional class c0 can be added to

the classi�er to represent this possiblity.

To produce parameter estimates, we construct an additional

functionh(·) that maps each class to an estimated parameter value
ˆθ .

�e function h can be constructed in multiple ways depending on

the nature of the paramter subsets ϕk .
For some estimation problems where Θ is �nite and countable,

each parameter subset can be chosen to contain only one element.

Examples of this include estimating the window size of a median

�lter or the quality factor used when performing JPEG compression.
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Figure 1: Overview of how classes are formed by partition-
ing the parameter set.

Since each parameter subset contains only one element, the param-

eter estimate is chosen to be the lone element of the parameter

subset that corresponds to the class chosen by the classi�er, i.e.

ˆθ = θk given ϕk = {θk }. (6)

In other estimation scenarios, each parameter subset may be

chosen to contain multiple elements or may be uncountable. Esti-

mating the scaling factor used when resizing an image is a typical

example of this, since the set of possible scaling factors itself is

uncountable. In these cases, a parameter estimate produced by the

equation

ˆθ =
tk + tk+1

2

. (7)

�is is equivalent to choosing the parameter estimate as the centroid

of the parameter subset that corresponds to the class chosen by the

classi�er.

Both rules (6) and (7) can be taken together to produce the pa-

rameter estimation function

ˆθ = h(ck ) =



θk if ϕk = {θk },

tk+tk+1
2

if |ϕk | , 1.
(8)

We note that our approach can be roughly interpreted as choos-

ing between several quantized values of the manipulation parame-

ter θ . While quantization will naturally introduce some error into

the �nal estimate produced, it allows us to de�ne a �nite number

of classes for our classi�er to choose between. �e estimation error

introduced by this quantization can be controlled by decreasing the

distance between the class boudaries tk at the expense of increasing

the number of classes.

2.2 Classi�er design
For the estimation approach outlined in Section 2.1 to be truly

generic, we need to construct a classi�er д(·) that is able to di-

rectly learn from data some parameter speci�c traces le� by a

manipulationm. �is requires the use of some generic low-level

feature extractors that can expose traces of many di�erent manip-

ulations. While CNNs are able to learn feature extractors from

training data, CNNs in their standard form tend to learn features

that represent an image’s content. As a result, they must be modi-

�ed in order to become suitable for forensic applications. To create

our CNN for performing manipulation parameter estimation, we

leverage signi�cant prior research that shows that traces le� by

many di�erent manipulations can be learned from sets of prediction

residuals [8, 19, 22, 24, 29].

Prediction residual features are formed by using some function

f (·) to predict the value of a pixel based on that pixel’s neighbors

within a local window. �e true pixel value is then subtracted from

the predicted value to obtain the prediction residual r such that

r = f (I ) − I (9)

Frequently, a diverse set of L di�erent prediction functions are

used to obtain many di�erent residual features. Many existing

generic feature sets used in forensics take this form, including

rich model features [14, 29], SPAM features [24, 25], and median

�lter residual features [8, 19]. �ese prediction residual features

suppress an image’s contents but still allow traces in the form of

content-independent pixel value relationships to be learned by a

classi�er.

To provide our CNN-based classi�er д with low-level predic-

tion residual features, we make our CNN’s �rst layer a constrained
convolutional layer [3]. �is layer is formed by using L di�erent

convolutional �lters w` that are adaptively learned, but are con-

strained to be prediction error �lters. �ese �lters are initially

seeded with random values, then their �lter weights are iteratively

learned through a stochastic gradient descent update during the

backpropagation step of training. Since this update may move each

�lter outside of the set of prediction error �lters, the following

constraints




w` (0, 0) = −1,∑
m,n,0w` (m,n) = 1,

(10)

are enforced upon each �lter immediately a�er the backpropagation

step to project the updated �lter back into the set of prediction error

�lters.

It can easily be shown that the L feature maps produced by a

constrained convolutional layer are residuals of the form (9). A

simple way to see this is to de�ne a new �lter w̃` as

w̃` (m,n) =



w (m,n) if (m,n) , (0, 0),

0 if (m,n) = (0, 0).
(11)

As a result, the feature map produced by convolving an image with

the �lterw` is

r` = w ∗ I = w̃` ∗ I − I . (12)

By de�ning f (I ) = w̃` ∗ I , we can see these residuals are of the

same form as in (9).

By using a constrained convolutional layer, our CNN can be

trained to learn appropriate residual features for estimating param-

eter values associated with di�erent manipulations instead of rely-

ing on �xed residual features. Associations between these features

are learned by higher layers of our CNN, whose full architecture is

described below in Section 3.

�e �nal layer of our CNN consists of K neurons with a so�max

activation function. Each neuron corresponds to a unique class

(and its associated parameter set) de�ned in Section 2.1. A class c
is chosen by our CNN according to the rule

c = argmax

k
λk , (13)

where λk is the activation level of the neuron corresponding to the

kth class. Since we use a so�max activation function, the activation

levels in the last layer can be loosely interpreted as a probability

distribution over the set of classes. As a result, (13) can be loosely

interpreted as choosing the most probable class.
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Figure 2: CNN proposed architecture; BN:Batch-Normalization Layer; TanH: Hyperbolic Tangent Layer

Parameter estimation steps. Our proposed method is summarized

below.

Input: Image I manipulated bym(·) and parameter set Θ.

Output: Estimated parameter
ˆθ .

Step 1 Partition the parameter space Θ into a set of disjoint

subsets ϕk de�ned in Eqs. (2) and (3) to form a cover for Θ.
Step 2 De�ne a CNN-based classi�er д in Eq. (5) such that

each parameter subset is assigned a distinct class ck .

Step 3 De�ne the estimate
ˆθ as denoted in Eq. (8).

Step 4 Train a constrained CNN to classify input images into

the set of classes ck ’s.
Step 5 Estimate c = argmax

k
λk where λk is the activation

level of the neuron corresponding to the kth class in CNN.

Step 6 Assign
ˆθ = h(c ).

3 NETWORK ARCHITECTURE
In this section, we give an overview of the constrained CNN ar-

chitecture used in our generic parameter estimation approach. We

note that our CNN architecture di�ers signi�cantly from the ar-

chitecture proposed in [3]. Fig. 2 depicts the overall architecture

of our CNN. One can observe that we use four conceptual blocks

to build a CNN’s architecture capable of distinguishing between

di�erent manipulation parameters.

Our proposed CNN has di�erent conceptual blocks designed to:

(1) jointly suppress an image’s content and learn low-level pixel-

value dependency features while training the network, (2) learn

higher-level classi�cation features through deeper convolutional

layers and (3) learn associations across feature maps using 1×1

convolutional �lters. �ese 1×1 �lters are used to learn linear

combination between features located at the same spatial location

but belong to di�erent feature maps [4]. �e input to the CNN is

a grayscale image (or a green color layer of an image) patch sized

256×256 pixels. In what follows, we give more details about each

block.

3.1 Pixel-value dependency feature extraction
As mentioned in Section 2.2, CNNs in their existing form tend to

learn features related to an image’s content. If CNNs of this form

are used to identify parameters of an image manipulation, this will

lead to a classi�er that identi�es scene content associated with the

training data. To address this problem, in our architecture we make

use of a constrained convolutional layer [3] (“Constrained Conv”)

which is able to jointly suppress an image’s content and learn pixel-

value dependency traces induced by one particular manipulation’s

parameter. �is layer consists of �ve constrained convolutional

prediction-error �lters of size 5×5 adaptively learned while training

the CNN and operates with a stride of size 1. �e output of this

“Constrained Conv” layer will take the form of prediction-error

feature maps of size 252×252×5. �ese residual features are vul-

nerable to be destroyed by nonlinear operations such as, activation

function and pooling layer. �erefore, they are directly passed to a

regular convolutional layer.

3.2 Hierarchical feature extraction
In our second conceptual block, we use a set of three regular convo-

lutional layers to learn new associations and higher-level prediction-

error features. From Fig. 2, one can notice that all convolutional

layers in the network operate with a stride of 1 except “Conv2 layer

which uses a stride of 2. We also can notice that all the three con-

volutional layers are followed by a batch normalization (BN) layer.

Speci�cally, this type of layer minimizes the internal covariate shi�,

which is the change in the input distribution to a learning system
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by applying a zero-mean and unit-variance transformation of the

data while training the CNN model.

�e output of the BN layer a�er every regular convolutional layer

is followed by a nonlinear mapping called an activation function.

�is type of function is applied to each value in the feature maps of

every convolutional layer. In our CNN, we use hyperbolic tangent

(TanH) activation functions. Furthermore, to reduce the dimension

of the activated large feature map volumes we use a max-pooling

layer with a sliding window of size 3×3 and stride of 2. Fig. 2

depicts the size of �lters in each convolutional layer as well as the

dimension of their corresponding output feature maps.

3.3 Cross feature maps learning
To enhance the learning ability of our CNN, we use a cross feature

maps learning block in our proposed architecture. From Fig. 2, we

can notice that this block contains 128 1×1 convolutional �lters

in layer “Conv5” followed by a BN layer. �ese �lters are used to

learn a new association between the highest-level residual feature

maps in the network. Additionally, this convolutional layer is the

last layer before the classi�cation block. �erefore, in order to keep

the most representative features, we use an average-pooling layer

that operates with a sliding window of size 3×3 and stride of 2. �e

output of this conceptual block is a feature maps volume of size

7×7×128 which takes the form of a fully-connected layer that is

directly passed to a regular neural network.

3.4 Classi�cation
To perform classi�cation, we use a conceptual block that consists

of three fully-connected layers. �e �rst two layers contain 200

neurons followed by a TanH activation function. �ese two layers

are used to learn deeper classi�cation features in CNN. Finally, the

number of neurons in the last fully-connected layer, also called

classi�cation layer, corresponds to the number of classes de�ned

in Section 2.1. �e classi�cation layer is followed by a so�max

activation function which maps the deepest features of the network

learned by this layer to probability values. Input images to our CNN

will be assigned to the class associated with the highest activation

value using an argmax operator.

4 EXPERIMENTS
4.1 General experimental setup
We evaluated the performance of our proposed generic approach to

perform manipulation parameter estimation through a set of exper-

iments. In total, we considered four di�erent tampering operations:

JPEG compression, resampling, median �ltering and gaussian blur-

ring. �e goal of these experiments is to show that using our generic

data-driven approach we can forensically estimate the parameter

of di�erent types of manipulations. �is is done without requiring

a forensic investigator to make substantial changes to our generic

approach. To extract classi�cation features directly from data, we

used our proposed constrained CNN architecture depicted in Fig. 2.

To create our training and testing databases, we downloaded

images from the publicly available Dresden Image Database [15].

We then created di�erent experimental databases where each cor-

responds to one particular manipulation with di�erent parameter

values applied to images. Since in general, a CNN’s performance is

dependent of the size and quality of the training set [5, 31], we cre-

ated a large dataset for every experiment. �e smallest dataset used

in any of these experiments consisted of 438, 112 grayscale images

of size 256×256. To do this, for every experimental database, the

training and testing data were collected from two separate sets of

images where the green layer of the nine central 256×256 patches

of every image was retained. �ese patches are then processed

using the four underlying types of manipulations with di�erent

parameters.

When training each CNN, we set the batch size equal to 64

and the parameters of the stochastic gradient descent as follows:

momentum = 0.95, decay = 0.0005, and a learning rate ϵ = 10
−3

that decreases every 3 epochs, which is the number of times that

every sample in the training data was trained, by a factor γ = 0.5.

We trained the CNN in each experiment for 36 epochs. Note that

training and testing are disjoint and CNNs were tested on separate

testing datasets. Additionally, while training CNNs, their testing

accuracies on a separate testing database were recorded every 1, 000

iterations to produce tables in this section. In all tables, unaltered

images are denoted by the uppercase le�er U .

We implemented all of our CNNs using the Ca�e deep learning

framework [18]. We ran our experiments using one Nvidia GeForce

GTX 1080 GPU with 8GB RAM.�e datasets used in this work were

all converted to the lmdb format. In what follows, we present the

results of all our experiments.

4.2 Resampling: Scaling factor estimation
Resampling editing operation is o�en involved in creating compos-

ite image forgeries, where the size or angle of one source image

needs to be adjusted. In this set of experiments, we evaluated

the ability of our CNN-based approach to estimating the scaling

factor in resampled images. We rescaled these images using a bi-

linear interpolation. We consider two practical scenarios where

an investigator can estimate either a scaling factor from a given

known candidate parameter set or an arbitrary scaling factor in

more realistic scenario.

4.2.1 Scaling factor estimation given known candidate set. In this

experiment, we assume that the investigator knows that the forger

used one of scaling factor values in a �xed set. Here, this set is

Θ = {50%, 60%, 70%, · · · , 150%}. Note that 100% means no scaling

applied to an image. Our estimate θ is the scaling factor denoted

by s . In this simpli�ed scenario, we cast the problem of estimating

the scaling factor in resampled images as a classi�cation problem.

�us, we assign each scaling factor to a unique class ck . We used

our CNN to distinguish between these di�erent scaling factors. �e

output layer of CNN in Fig. 2 consists of 11 neurons.

Next, we created a training database that consisted of 1, 465, 200

grayscale patches of size 256×256 . To accomplish this, we ran-

domly selected 14, 800 image from the Dresden database. �ese

images were divided into 256×256 grayscale blocks as described

in Section 4.1. We then used the above de�ned scaling factors s to
generate the corresponding resampled images of each grayscale

patch. Subsequently, we selected 505 images not used for the train-

ing to build our testing database that consisted of 49, 995 grayscale

patches of size 256×256 in the same manner described above.
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Table 1: Confusion matrix showing the parameter identi�cation accuracy of our constrained CNN for resampling manipula-
tion with di�erent scaling factors s; True (rows) versus Predicted (columns).

Acc=98.40% s=50% s=60% s=70% s=80% s=90% s=100% s=110% s=120% s=130% s=140% s=150%
s=50% 95.89% 3.34% 0.68% 0.07% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00%

s=60% 4.91% 92.19% 2.68% 0.13% 0.02% 0.00% 0.02% 0.02% 0.00% 0.00% 0.02%

s=70% 0.53% 2.40% 96.68% 0.26% 0.02% 0.00% 0.00% 0.00% 0.00% 0.09% 0.02%

s=80% 0.04% 0.15% 0.33% 99.36% 0.00% 0.00% 0.00% 0.02% 0.02% 0.07% 0.00%

s=90% 0.00% 0.00% 0.15% 0.02% 99.71% 0.00% 0.00% 0.04% 0.02% 0.04% 0.00%

s=100% 0.02% 0.00% 0.00% 0.02% 0.00% 99.87% 0.00% 0.00% 0.00% 0.09% 0.00%

s=110% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 99.74% 0.02% 0.02% 0.15% 0.02%

s=120% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 99.56% 0.04% 0.31% 0.07%

s=130% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.71% 0.24% 0.04%

s=140% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100% 0.00%

s=150% 0.02% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.33% 99.65%

Table 2: Confusion matrix showing the parameter identi�cation accuracy of our constrained CNN for resampling manipula-
tion with di�erent scaling factor intervals; True (rows) versus Predicted (columns).

Acc=95.45% I45−55% I55−65% I65−75% I75−85% I85−95% I95−105% I105−115% I115−125% I125−135% I135−145% I145−155%
I45−55% 93.89% 5.33% 0.38% 0.20% 0.02% 0.09% 0.02% 0.00% 0.02% 0.00% 0.04%

I55−65% 3.80% 86.27% 7.82% 1.98% 0.04% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00%

I65−75% 0.29% 4.82% 85.98% 8.24% 0.40% 0.04% 0.00% 0.09% 0.09% 0.02% 0.02%

I75−85% 0.02% 0.24% 3.40% 93.98% 1.87% 0.04% 0.02% 0.16% 0.27% 0.00% 0.00%

I85−95% 0.00% 0.00% 0.04% 1.18% 97.67% 0.04% 0.87% 0.09% 0.04% 0.07% 0.00%

I95−105% 0.07% 0.00% 0.07% 0.18% 0.22% 99.38% 0.02% 0.00% 0.07% 0.00% 0.00%

I105−115% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 99.11% 0.27% 0.47% 0.07% 0.00%

I115−125% 0.00% 0.00% 0.00% 0.07% 0.02% 0.07% 0.09% 98.69% 1.00% 0.07% 0.00%

I125−135% 0.00% 0.00% 0.00% 0.02% 0.00% 0.02% 0.00% 0.04% 99.56% 0.31% 0.04%

I135−145% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.47% 97.24% 1.29%

I145−155% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.33% 1.44% 98.20%

We then used our trained CNN to estimate the scaling factor

associated with each image in our testing database. We present our

experimental results in Table 1 where the diagonal entires of the

confusion matrix correspond to the estimation accuracy of each

scaling factor using our CNN-based approach. Experiments show

that our proposed approach can achieve 98.40% estimation accuracy

which is equivalent to the identi�cation rate of our CNN. Typically

it can achieve higher than 99% on most scaling factors. Noticeably,

our approach can detect 140% upscaled images with 100% accuracy.

However, from Table 1 one can observe that the estimation accuracy

decreases with low scaling factors. Speci�cally, when s ≤ 70% our

approach can achieve 96.68% with 70% downscaled images and at

least 92.19% with 60% downscaled images.

Extracting resampling traces in downscaled images is very chal-

lenging problem since most of pixel value relationships are de-

stroyed a�er an image is being downscaled. Speci�cally, our ap-

proach can estimate the scaling factor in 50% downscaled images

with 95.89% accuracy. �is result demonstrates that CNN can still

extract good low-level pixel-value dependency features even in

very challenging scenarios.

4.2.2 Estimation given arbitrary scaling factor. In our previous

experiment, we showed that our CNN can distinguish between

traces induced by di�erent scaling factors in resampled images. In

more realistic scenarios, the forger could use an arbitrary scaling fac-

tor. In this experiment, we assume that the investigator knows only

an upper and lower bound on the scaling factor, i.e.,Θ = [45%, 155%]

is the parameter set and Φ = {[45%, 55%), · · · , [145%, 155%]} is the
set of all parameter subsets ϕk . Our estimate θ is the scaling factor

denoted by s . Additionally, we assume that any θ ∈ ϕk will be

mapped to the centroid of ϕk using the operator h(·) de�ned in

Section 2.1, i.e., if s ∈ [tk , tk+1) then ˆθ = tk+1+tk
2

. Each scaling in-

terval will correspond to a class ck . We use our CNN to distinguish

between these scaling factor intervals. �e output layer of CNN in

Fig. 2 consists of 11 neurons.

We then built a training data that consisted of 732, 600 grayscale

256×256 patches. To do this, we randomly selected 7, 400 images

from the Dresden database. Subsequently, we divided these images

into 256×256 patches to generate grayscale images in the same

manner described above. In order to generate the corresponding

resampled images for each grayscale patch, we used the ‘randint’

command from the ‘numpy’ module in Python, which returns in-

tegers from the discrete uniform distribution, to compute scaling

factor values that lie in the [45%, 155%] interval. We then selected
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Table 3: Confusion matrix showing the parameter identi�cation accuracy of our constrained CNN for JPEG compression
manipulation with di�erent quality factors (QF); True (rows) versus Predicted (columns).

Acc=98.90% U QF=50 QF=60 QF=70 QF=80 QF=90
U 98.50% 0.08% 0.19% 0.11% 0.36% 0.75%

QF=50 0.01% 99.86% 0.13% 0.00% 0.00% 0.00%

QF=60 0.01% 0.29% 99.58% 0.07% 0.05% 0.00%

QF=70 0.04% 0.23% 0.12% 99.17% 0.34% 0.11%

QF=80 0.05% 0.12% 0.54% 0.19% 98.87% 0.23%

QF=90 0.57% 0.12% 0.41% 0.60% 0.89% 97.41%

505 images not used for the training to similarly build our testing

database which consisted of 49, 995 grayscale 256×256 patches.

We used our trained CNN to estimate the scaling factor interval

of each testing patch in our testing dataset. In Table 2, we present

the confusion matrix of our CNN used to estimate the di�erent

scaling factor intervals. Our experimental results show that our

proposed approach can achieve 95.45% estimation accuracy. Typ-

ically it can achieve higher than 93% accuracy on most scaling

factor intervals. From Table 2, one can notice that CNN can detect

upscaled images using s ∈ [125%, 135%) with 99.56% accuracy. Simi-

larly to the previous experiment, the performance of CNN decreases

with downscaled images when the scaling factor lies in intervals

with small boundaries. Speci�cally, when s < 95% our approach

can achieve 97.67% estimation accuracy with s ∈ [85%, 95%) and at

least 85.98% accuracy with s ∈ [65%, 75%).
Similarly to the previous experiment, these results demonstrate

again that even in challenging scenarios where images are down-

scaled with very small parameter values CNN can still extract good

classi�cation features to distinguish between the di�erent used

intervals. Noticeably, one can observe from Table 2 that CNN can

determine resampled images using s ∈ [45%, 55%) with 93.89% ac-

curacy. Note that given that the chosen intervals are separate by

just 1%, estimating an arbitrary scaling factor that lies in di�erent

intervals is more challenging than when the scaling factor estimate

belongs to a �xed set of known candidates.

4.3 JPEG Compression: �ality factor
estimation

JPEG is one of the most widely used image compression formats

today. In this part of our experiments, we would like to estimate the

quality factor of JPEG compressed images. To do this, we consider

two practical scenarios where an investigator can estimate either a

quality factor from a given known candidate parameter set or an

arbitrary quality factor in more realistic scenario.

4.3.1 �ality factor estimation given known candidate set. In
this experiment, we assume that the investigator knows that the

forger used one of quality factor values in a �xed set. Here, this

set is Θ = {50, 60, 70, 80, 90}. Our estimate θ is the quality factor

denoted by QF . In this simpli�ed scenario, we approximate the

quality factor estimation problem in JPEG compressed images by

a classi�cation problem. �us, we assign each quality factor to a

unique class ck and the unaltered images class is denoted by c0.
�e number of classes ck ’s is equal to six which corresponds to the

number of neurons in the output layer of CNN.

We built a training database that consisted of 777, 600 grayscale

patches of size 256×256. First, we randomly selected 14, 400 im-

ages from the Dresden database. Next, we divided these images

into 256×256 grayscale patches in the same manner described in

Section 4.1. Each patch corresponds to a new image that has its cor-

responding tampered images created by the �ve di�erent choices

of JPEG quality factor.

To evaluate the performance of our proposed approach, we simi-

larly created a testing database that consisted of 50, 112 grayscale

patches. �is is done by dividing 928 images not used for the train-

ing into 256×256 grayscale patches in the same manner described

above. �en we applied to these grayscale patches the same editing

operations.

We used our trained CNN to estimate the quality factor of each

JPEG compressed patch in our testing dataset. In Table 3, we present

the confusion matrix of our CNN-based approach used to estimate

the di�erent quality factors. �e overall estimation accuracy on

the testing database is 98.90%. One can observe that CNN can

estimate the quality factor of JPEG compressed images with an

accuracy typically higher than 98%. �is demonstrates the ability

of the constrained convolutional layer to adaptively extract low-

level pixel-value dependency features directly from data. �is also

demonstrates that every quality factor induces detectable unique

traces.

From Table 3, we can notice that the estimation accuracy of CNN

decreases when the quality factor is high. More speci�cally, with

QF = 90 images are 0.89% misclassi�ed as JPEG compressed images

with QF = 80 and 0.57% are misclassi�ed as unaltered images.

Similarly, with QF = 80 subject images are 0.54% misclassi�ed as

JPEG compressed images with QF = 60 and the unaltered images

are 0.75% misclassi�ed as JPEG compressed images with QF = 90.

4.3.2 Estimation given arbitrary quality factor. In the previous

experiment, we experimentally demonstrated that CNN can distin-

guish between traces le� by di�erent JPEG quality factors. Similarly

to the resampling experiments, we would like to estimate the JPEG

quality factor in more realistic scenarios where the forger could

use an arbitrary quality factor. we assume that the investigator

knows only an upper and lower bound on the quality factor, i.e.,Θ =
[45, 100%] is the parameter set andΦ = {[45, 55), · · · , [85, 95), [95, 100]}
is the set of all parameter subsets ϕk . Our estimate θ is the quality

factor denoted by QF . Additionally, we assume that any θ ∈ ϕk
will be mapped to the centroid of ϕk using the operator h(·) de�ned

in Section 2.1, i.e., if QF ∈ [tk , tk+1) then ˆθ = tk+1+tk
2

. We de�ne

the centroid of the inclusive interval [95, 100] as 97. Each quality
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Table 4: Confusion matrix showing the parameter identi�cation accuracy of our constrained CNN for JPEG compression
manipulation with di�erent quality factors (QF) intervals; True (rows) versus Predicted (columns).

Acc=95.27% QF=45-54 QF=55-64 QF=65-74 QF=75-84 QF=85-94 QF=95-100
QF=45-54 96.76% 3.23% 0.00% 0.00% 0.00% 0.01%

QF=55-64 2.39% 95.20% 2.32% 0.01% 0.00% 0.07%

QF=65-74 0.22% 2.20% 94.49% 3.03% 0.01% 0.05%

QF=75-84 0.19% 0.45% 2.83% 94.46% 1.93% 0.14%

QF=85-94 0.11% 0.49% 1.23% 2.54% 94.01% 1.62%

QF=95-100 0.07% 0.38% 0.53% 0.63% 1.68% 96.71%

Table 5: Confusionmatrix showing the parameter identi�cation accuracy of our constrained CNN for median �ltering manip-
ulation with di�erent kernel sizes Ksize ; True (rows) versus Predicted (columns).

Acc=99.55% U Ksize = 3×3 Ksize = 5×5 Ksize = 7×7 Ksize = 9×9 Ksize = 11×11 Ksize = 13×13 Ksize = 15×15
U 99.97% 0.00% 0.00% 0.02% 0.02% 0.00% 0.00% 0.00%

Ksize = 3×3 0.02% 99.92% 0.03% 0.02% 0.02% 0.00% 0.00% 0.00%

Ksize = 5×5 0.02% 0.02% 99.86% 0.10% 0.02% 0.00% 0.00% 0.00%

Ksize = 7×7 0.02% 0.00% 0.08% 99.60% 0.27% 0.03% 0.00% 0.00%

Ksize = 9×9 0.00% 0.00% 0.00% 0.03% 99.68% 0.29% 0.00% 0.00%

Ksize = 11×11 0.00% 0.00% 0.00% 0.00% 0.26% 99.36% 0.38% 0.00%

Ksize = 13×13 0.00% 0.00% 0.00% 0.00% 0.03% 0.50% 98.82% 0.66%

Ksize = 15×15 0.00% 0.00% 0.00% 0.00% 0.02% 0.02% 0.70% 99.26%

factor interval will correspond to a class ck . We use our CNN to

distinguish between these quality factor intervals. �e output layer

of CNN in Fig. 2 consists of six neurons.

To train our CNN, we built a training database that consisted

of 388, 800 grayscale patches of size 256×256. To do this, we ran-

domly selected 7, 200 images from the Dresden database that we

divided into 256×256 grayscale patches as described in Section 4.1.

To generate for each grayscale patch its corresponding compressed

images with quality factors that lie in the de�ned [45, 100] interval,

similarly to the resampling experiments we used the ‘randint’ com-

mand from the ‘numpy’ module in Python to compute such quality

factor values. Subsequently, we selected 928 images not used for

the training to similarly build our testing database that consisted

of 50, 112 grayscale patches of size 256×256.

We used our trained CNN to estimate the quality factor interval

of each JPEG compressed patch in our testing dataset. In Table 4,

we present the confusion matrix of our CNN used to estimate the

di�erent quality factor intervals. �e overall estimation accuracy

on the testing database is 95.92%. One can observe that CNN can

estimate the quality factor interval of JPEG compressed images with

an accuracy typically higher than 94%. �is demonstrates again the

ability of the constrained convolutional layer to adaptively extract

low-level pixel-value dependency features directly from data to

distinguish between quality factor intervals.

From Table 4, we can notice that the estimation accuracy is

high either with low or high interval boundaries. Speci�cally, our

approach can noticeably achieve 96.76% estimation accuracy when

subject images are compressed with QF ∈ [45, 54] and 96.71%

accuracy with QF ∈ [95, 100]. �is is mainly because these two

intervals are either only followed by an upper interval or only

preceded by a lower interval. Estimating an arbitrary quality factor

that lies in di�erent intervals is more challenging than when the

quality factor estimate belongs to a �xed set of known candidates

given that these intervals are chosen to be separate by QF = 1.

�us, when 55 ≤ QF < 95 intervals are misclassi�ed as either a

subsequent or preceding intervals (see Table 4).

4.4 Median Filtering: Kernel size estimation
Median �ltering is a commonly used image smoothing technique,

which is particularly e�ective for removing impulsive noise. It

can also be used to hide artifacts of JPEG compression [35] and

resampling [23]. �is type of �lter operates by using a sliding

window, also called kernel, that keeps the median pixel value within

the window dimension. When a forger applies a median �ltering

operation to an image, typically they choose an odd kernel size.

�erefore, we assume that the investigator knows that the forger

used one of kernel size values in a �xed set. Here, this set is Θ =
{3×3, 5×5, · · · , 15×15}. Our estimate θ is the kernel size denoted

by ksize . In this simpli�ed scenario, we approximate the �ltering

kernel size estimation problem in �ltered images by a classi�cation

problem. �us, we assign each choice of kernel size to a unique class

ck and the unaltered images class is denoted by c0. �e number of

classes ck ’s is equal to eight which corresponds to the number of

neurons in the output layer of CNN.

We collected 15, 495 images for the training and testing datasets.

We then randomly selected 14, 800 images from our experimental

database for the training. Subsequently, we divided these images

into 256×256 grayscale patches by retaining the green layer of the

nine central blocks. As described above, each block will correspond

to a new image that has its corresponding tampered images created
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Table 6: Confusion matrix showing the parameter identi�cation accuracy of our constrained CNN for gaussian blurring ma-
nipulation with di�erent kernel sizes Ksize and σ = 0.3 × ((Ksize − 1) × 0.5 − 1) + 0.8; True (rows) versus Predicted (columns).

Acc=99.38% U Ksize = 3×3 Ksize = 7×7 Ksize = 11×11 Ksize = 15×15
U 99.98% 0.00% 0.00% 0.00% 0.02%

Ksize = 3×3 0.00% 99.96% 0.02% 0.00% 0.02%

Ksize = 7×7 0.00% 0.02% 99.38% 0.59% 0.02%

Ksize = 11×11 0.00% 0.00% 0.07% 98.61% 1.32%

Ksize = 15×15 0.00% 0.00% 0.00% 1.00% 99.00%

by median �ltering manipulation using seven di�erent kernel sizes.

In total, our training database consisted of 1, 065, 600 patches.

We built our testing database in the same manner by dividing

the 695 images not used for the training into 256×256 grayscale

pixel patches. �en we edited these images to generate their tam-

pered homologues. In total, our testing database consisted of 50, 040

patches. Our constrained CNN is then trained to determine unal-

tered images as well as the kernel size used to median �lter testing

images.

We used our trained CNN to estimate the median �ltering kernel

size of each �ltered patch in our testing dataset. In Table 5, we

present the confusion matrix of our CNN used to estimate the

di�erent kernel sizes. Our proposed approach can achieve 99.50%

accuracy. From Table 5, we can notice that CNN can determine the

kernel size with an estimation accuracy typically higher than 99%.

Noticeably, it can achieve 99.97% with unaltered images and at least

98.82% with 13×13 median �ltered images. Additionally, one can

observe that most of the o�-diagonal entries of the confusion matrix

are equal to zero. �us, we experimentally demonstrated that the

constrained convolutional layer can adaptively extract traces le�

by a particular kernel size of a median �ltering operation.

4.5 Gaussian Blurring
Gaussian �ltering is o�en used for image smoothing, in order to

remove noise or to reduce details. Similarly to median �ltering, this

type of �lter operates by using a sliding window that convolves

with all the regions of an image and has the following expression

G (x ,y) = α exp

(
−
x2 + y2

2σ 2

)
, (14)

where x and y are the kernel weight spatial locations whereG (0, 0)
is the origin/central kernel weight, α is a scaling factor chosen such

that

∑
x,y G (x ,y) = 1, and σ 2 is the variance blur value. In this

work, we experimentally investigate a set of two scenarios. First,

we use CNN to estimate the �ltering kernel size with size dependent

blur variance. Subsequently, we �xed the kernel size and use our

approach to identify the blur variance.

4.5.1 Kernel size estimation with size dependent blur variance.
One of the most common ways to perform median blurring on

images is to choose the kernel size with size dependent blur vari-

ance. �at is, the blur variance is formally de�ned in program-

ming libraries (e.g., OpenCV [17]) in terms of the kernel size as

σ 2 =
(
0.3 × ((Ksize − 1) × 0.5 − 1) + 0.8

)
2

. We assume that the

investigator knows that the forger used one of kernel size values

in a �xed set. Here, this set is Θ = {3×3, 7×7, 11×11, 15×15}. Our

estimate θ is the kernel size denoted by ksize . In this simpli�ed

scenario, we approximate the smoothing kernel size estimation

problem in �ltered images by a classi�cation problem. �us, we

assign each choice of kernel size to a unique class ck and the unal-

tered images class is denoted by c0. �e number of classes ck ’s is
equal to �ve which corresponds to the number of neurons in the

output layer of CNN.

We collected 15, 920 images to perform the training and testing.

To train CNN, we randomly selected 14, 800 images for training and

the rest 1, 120 images were used for testing. Similarly to all previous

experiments, images in the training and testing sets were divided

into 256×256 blocks and the green layer of the central nine patches

was retained. Each patch corresponds to a new image then we used

the four di�erent �ltering kernel sizes to create their manipulated

homologues. In total, we collect 666, 000 patches for training and

50, 400 for testing.

We used our trained CNN to estimate the smoothing kernel size

of each �ltered patch in our testing dataset. �e confusion matrix

of CNN to detect gaussian blur kernel size is presented in Table 6.

Our proposed approach can identify the �ltering kernel size with

99.38% accuracy. In particular it can identify unaltered images

with 99.98% accuracy and it can achieve at least 98.64% detection

rate with 11×11 �ltered images. Furthermore, one can notice from

Table 6 that the detection rate of the �ltering kernel size decreases

when the standard deviation blur σ > 2 which is equivalent of

choosing a �ltering kernel size bigger than 7×7. More speci�cally,

the 11×11 �ltered images are 1.32% misclassi�ed as 15×15 �ltered

images. Similarly, the 15×15 �ltered images are 1% misclassi�ed as

11×11 �ltered images. In what follows, we compare these results

to the scenario when gaussian blurring is parameterized in terms

of its variance σ 2 with a �xed �ltering kernel size.

4.5.2 Variance Estimation with fixed kernel size. In this part, we

use our approach to estimate the gaussian blur variance when the

�ltering kernel size is �xed to 5× 5. To accomplish this, we assume

that the investigator knows that the forger used one of blur standard

deviation values in a �xed set. Here, this set is Θ = {1, 2, 3, 4, 5}.
Our estimate θ is the blur variance denoted by σ 2. In this simpli�ed

scenario, we approximate the blur variance estimation problem

in smoothed images by a classi�cation problem. �us, we assign

each choice of blur standard deviation σ a unique class ck and the

unaltered images class is denoted by c0. �e number of classes ck ’s
is equal to six which corresponds to the number of neurons in the

output layer of CNN.

We collected 15, 734 images from our Dresden experimental data-

base. To train the CNN, we then randomly selected 14, 800 images
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Table 7: Confusion matrix showing the parameter identi�cation accuracy of our constrained CNN for gaussian blurring ma-
nipulation with �xed kernel size (i.e., Ksize = 5×5) and di�erent σ ; True (rows) versus Predicted (columns).

Acc=96.94% U σ = 1 σ = 2 σ = 3 σ = 4 σ = 5
U 99.94% 0.04% 0.00% 0.00% 0.00% 0.02%

σ = 1 0.01% 99.90% 0.08% 0.00% 0.00% 0.00%

σ = 2 0.00% 0.01% 99.92% 0.06% 0.01% 0.00%

σ = 3 0.00% 0.04% 0.12% 97.87% 1.70% 0.27%

σ = 4 0.01% 0.01% 0.02% 1.45% 90.68% 7.82%

σ = 5 0.02% 0.01% 0.01% 0.08% 6.54% 93.33%

for the training that we divided into 256×256 patches as described

above. �en we generated their corresponding edited patches using

the �ve possible parameter values. In total our training database

consisted of 799, 200 patches. To evaluated our method in deter-

mining the gaussian blur variance σ 2, similarly we divided the 934

images not used for the training into 256×256 blocks then we gen-

erated their corresponding edited patches using the same editing

operations. In total, we collected 50, 400 patches for the testing

database.

We used our trained CNN to estimate the blur variance of each

�ltered patch in our testing dataset. In Table 7, we present the

confusion matrix of our method. Our experimental results show

that our proposed approach can determine the blur variance with

96.94%. From Table 7, we can notice from the confusion matrix of

CNN that these results match the results presented in Table 6. In

fact, when the standard deviation blur σ ≤ 2, CNN can identify the

parameter values with an accuracy higher than 99%. Noticeably,

it can achieve 99.94% at identifying unaltered images and at least

99.90% accuracy with gaussian blurred images using a standard

deviation blur σ = 1.

One can observe that similarly to the previous experiment, when

σ > 2 the estimation accuracy signi�cantly decreases and it can

achieve at most 97.87% accuracy with gaussian blurred images us-

ing a standard deviation blur σ = 3. Note that in the size dependent

blur variance experiment, the highest value of σ is equal to 2.6. Fi-

nally, these experiments demonstrate that CNN is able to adaptively

extract good low-level representative features associated with every

choice of the variance value.

4.6 Experimental results summary
In this section, we experimentally investigated the ability of our

CNN-based generic approach to forensically estimate the manip-

ulation parameters. Our experimental results showed that CNNs

associated with the constrained convolutional layer are good can-

didates to extract low-level classi�cation features and to estimate a

particular manipulation parameter. We used the proposed CNN to

capture pixel-value dependency traces induced by each di�erent

manipulation parameter in all our experiments. In a simpli�ed

scenario where a forensic investigator knows a priori a �xed set of

parameter candidates, our CNN was able to perform manipulation

parameter estimation with an accuracy typically higher than 98%

with all underlying image editing operations.

Speci�cally, when the parameter value θ belongs to a �xed set of

known candidates, CNN can accurately estimate resampling scaling

factor, JPEG quality factor, median �ltering kernel size and gaussian

blurring kernel size respectively with 98.40%, 98.90%, 99.55% and

99.38% accuracy. �is demonstrates also that our method is generic

and could be used with multiple types of image manipulation. It is

worth mentioning that when images are downscaled, scaling factor

estimation is di�cult [22]. Our proposed approach, however, is still

able to determine the scaling factor in downscaled images with at

least 92% accuracy.

When the parameter value θ is an arbitrary value in a bounded

but countable set, our CNNs performance decreases. �is is mainly

because we consider a very challenging problem where parameter

intervals are chosen to be separate by one unit distance, e.g. scaling

factor interval [65%, 75%) followed by [75%, 85%) interval. Specif-
ically, our generic approach can estimate the resampling scaling

factor interval as well as the JPEG quality factor interval with an

accuracy respectively equal to 95.45% and 95.27%. �ese results

demonstrate the ability of CNN to distinguish between di�erent

parameter value intervals even when the distance between these

intervals is very small.

�ough we have demonstrated through our experiments that

our proposed method can accurately perform manipulation pa-

rameter estimation, our goal is not necessarily to outperform ex-

isting parameter estimation techniques. It is instead to propose

a new data-driven manipulation parameter estimation approach

that can provide accurate manipulation parameter estimates for

several di�erent manipulations without requiring an investigator

to analytically derive a new estimator for each manipulation.

5 CONCLUSION
In this paper, we have proposed a data-driven generic approach to

performing forensic manipulation parameter estimation. Instead of

relying on theoretical analysis of parametric models, our proposed

method is able to learn estimators directly from a set of labeled

data. Speci�cally, we cast the problem of manipulation parameter

estimation as a classi�cation problem. To accomplish this, we �rst

partitioned the manipulation parameter space into an ordered set

of disjoint subsets, then we assigned a class to each subset. Subse-

quently, we designed a CNN-based classi�er which makes use of

a constrained convolutional layer to learn traces le� by a desired

manipulation that has been applied using parameter values in each

parameter subset. �e ultimate goal of this work is to show that

our generic parameter estimator can be used with multiple types

of image manipulation without requiring a forensic investigator to

make substantial changes to the proposed method. We evaluated
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the e�ectiveness of our generic estimator through a set of exper-

iments using four di�erent types of parameterized manipulation.

�e results of these experiments showed that our generic method

can provide an estimate for these manipulations with estimation

accuracies typically in the 95% to 99% range.
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