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ABSTRACT
Research has shown that lateral chromatic aberrations (LCA), an

imaging �ngerprint, can be anti-forensically modi�ed to hide ev-

idence of cut-and-paste forgery. In this paper, we propose a new

technique for securing digital images against anti-forensic manipu-

lation of LCA. To do this, we exploit resizing di�erences between

color channels, which are induced by LCA anti-forensics, and de�ne

a feature vector to quantitatively capture these di�erences. Further-

more, we propose a detection method that exposes anti-forensically

manipulated image patches. �e technique algorithm is validated

through experimental procedure, showing dependence on forgery

patch size as well as anti-forensic scaling factor.

KEYWORDS
Image Forgery Detection; Anti-Forensics; Lateral Chromatic Aber-

ration; Image Splicing; Multimedia Forensics

1 INTRODUCTION
Tampered digital images have become increasingly prevalent in

today’s society. O�en, image forgers will manipulate the content

of an image to maliciously alter its meaning. Since many facets of

society rely upon authentic digital information, such as courts of law

and media outlets, it necessary to ensure that images are truthful

and haven’t undergone manipulation. Image authenticity is veri�ed

using forensic methods that operate by detecting imperceptible

traces, or �ngerprints, le� behind by the tampering process [16].

In response to multimedia forensics, techniques that hide or

obfuscate tampering �ngerprints have become common. �ese

methods, called anti-forensics, operate by masking the traces that

are inherently le� behind during a tampering process. �is fools

forensic techniques into perceiving that a tampered image is authen-

tic. For example, anti-forensic methods have been developed to hide

traces of, median �ltering [20], resampling [4, 8], JPEG compres-

sion [15], sensor noise [4], and lateral chromatic aberrations [11].

Anti-forensics, however, threaten societal con�dence in both

digital multimedia content and in forensic authentication algo-

rithms. �ey do this by preventing multimedia content from being

accurately authenticated. �erefore, it is crucial to also be able to

secure images against anti-forensic methods. One way to do this is
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to detect traces that are le� behind by the anti-forensic processes

themselves. Research has shown thatmany anti-forensic techniques

leave behind their own traces that can be detected, such as with

anti-forensic tampering of median �ltering [23], resampling [13],

JPEG compression [1, 10, 18], and sensor noise [5].

Research has shown that localized inconsistencies in lateral chro-

matic aberrations (LCA) can be used to detect cut-and-paste image

forgeries [6, 12, 21], where content from one image is inserted into

another image to change its meaning. LCA is an imaging trace

present in optical imaging systems. It is introduced by the inability

of lenses to focus all wavelengths from a single point source in

a scene to a single focal point on the sensor. �is manifests as

imperceptible color fringes about object edges in an image. LCA

pa�erning is also used to identify source camera model [19] and

source imaging lens [22].

Work in anti-forensics, however, has shown that the chromatic

aberrations in cut-and-paste forgeries can be anti-forensically al-

tered to hide traces of manipulation [11]. Mayer and Stamm pro-

posed an anti-forensic technique that independently scales and

shi�s the forged content’s color channels to induce speci�c spatial

relationships of focal points across color channels. �e induced

focal point relationships alters the forged LCA trace to be consistent

with an authentic image. As a result, evidence of cut-and-paste

manipulation are anti-forensically hidden.

In this paper, we propose a new forensic �ngerprint to expose

anti-forensic manipulations of lateral chromatic aberrations. Cur-

rently, there are no known forensic traces that can detect anti-

forensics of LCA. Our proposed �ngerprint exploits di�erences in

resizing between color channels, which are introduced during the

anti-forensic manipulation of LCA. To do this, we extract spectral

properties of resampling artifacts. �en, we examine amplitude

and phase angle di�erences across color channels at frequencies

related to JPEG blocking discontinuities in precompressed images.

We use these amplitude and phase angle di�erences to de�ne a

feature vector that captures the �ngerprint of anti-forensic tam-

pering of LCA. Furthermore, we propose a detection method to

expose image regions containing anti-forensically manipulated lat-

eral chromatic aberrations. To do this, we calculate our proposed

�ngerprint-feature vector in an image region, and then conduct a

statistical test to determine whether the �ngerprint is indicative of

an anti-forensically forged region.

2 BACKGROUND
When capturing an image, light from a scene is focused onto an

optical sensor using a lens. However, the refractive index of glass

is dependent on wavelength of light passing through it. �is causes

the di�erent wavelengths of a light ray, originating from the same

point source in a scene, to be focused onto laterally o�set locations
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Figure 1: Ray tracing diagram of lateral chromatic aberra-
tion. �e vector d shows the displacement of focal points
between color channels.

on the sensor. �is e�ect is called lateral chromatic aberration

(LCA), which manifests as color fringes around object edges in an

image. Fig. 1 shows a ray tracing diagram depicting LCA, which

shows the red and blue components of an incoming ray of light

being focused onto o�set sensor locations.

Johnson and Farid developed a model to characterize the e�ect of

LCA [6], which maps a focal point location r = [rx ,ry ]
T
in a refer-

ence channel to its corresponding focal point location c = [cx ,cy ]
T

in a comparison color channel. �is mapping by the function f (r,θ )
is parameterized by the tuple θ = [α ,ζ ]T. Johnson and Farid model

LCA as a �rst order scaling by an expansion coe�cient α , about
the image’s optical center ζ = [ζx ,ζy ]

T
, where

c = f (r,θ ) = α (r − ζ ) + ζ . (1)

�e comparison color channel is viewed as an expanded or con-

tracted version of the reference color channel, with the expansion

coe�cient α determining the expansion/contraction scaling factor.

Note that the optical center ζ need not be the image geometric

center. Speci�cation of which channels are used as reference and

comparison are typically le� out of notation to maintain generality,

but are made explicit in the text where necessary.

�e displacement vector between reference focal point r and its

corresponding focal point in the comparison channel c is useful
for characterizing LCA. Gloe et al. developed a method to esti-

mate localized LCA displacement vectors in a digital image, as

well as a method to estimate the LCA model tuple θ from these

local displacement estimates [3]. Research has shown that local-

ized inconsistencies of LCA displacement from the global model

of displacement can be used to expose cut-and-paste image forg-

eries [6, 12], since the LCA displacement in the forged content is

not consistent with the original image.

2.1 LCA Anti-Forensics
Work in [11] showed that the lateral chromatic aberration in a

forged image region can be modi�ed to hide traces of cut-and-paste

tampering. �is is accomplished by changing the LCA within the

forged region to be consistent with the rest of the image. To change

the LCA within the forged regions, the color channels of the forged

image region are scaled and shi�ed, which changes the spatial

relationships of focal points across color channels.

�e speci�c scaling and shi�ing to be applied to the forged

image region was determined so that its LCA displacements are

consistent with the rest of the image. To do this, a transformation

was introduced that relates the desired anti-forensicly modi�ed

focal point location in a comparison color channel c′ to its current

location c, such that

c′ = αD

(
1

αS

(
c − ζS

)
+ ζS − ζV

)
+ ζV . (2)

(a) LCA Displacement in a Naive
Forgery

(b) LCA Displacement in an
Anti-Forensic Forgery

Figure 2: LCA displacement vectors in naively forged (le�),
and anti-forensically forged (right) images. �e LCA dis-
placements in the forged region are highlighted in red. Vec-
tors are scaled by a factor of 200 for display purposes.

�e transformation �rst removes the inherent LCA parameterized

by the source expansion coe�cient αS and source optical center

ζS . �en, new focal point relationships are arti�cially induced by

a resampling operation, parameterized by the destination image

expansion coe�cient αD and virtual optical center ζV , a constant
determined by the relationship of the forged image region to the des-

tination optical center. �e anti-forensic transformation equation

can be rewri�en to show that

c′ =
αD
αS

c + K . (3)

where K is a constant related to the scaled di�erences between the

source and destination optical centers.

�at is, the transformation that relates the comparison channel

coordinates in source content c, to it’s anti-forensically modi�ed

version c′, is simply a geometric scaling and shi�. �e scaling

is determined by the ratio of the in the source image expansion

coe�cient αS , and destination image expansion coe�cient αD . We

call this ratio the anti-forensic scaling factor.

�is scaling and shi� is performed via interpolated resampling [11].

�e resulting anti-forensically modi�ed forged region has LCA that

matches its host image. �is can be seen in Fig. 2b, which shows

the LCA displacement vectors in an anti-forensically forged image

region that are consistent with the destination image. Compare this

with the LCA in the naively forged version, as shown in 2a, where

the LCA displacement vectors in the forged region are inconsistent

with the rest of the image.

3 THE LCA ANTI-FORENSICS FINGERPRINT
Anti-forensic tampering of lateral chromatic aberration poses a

threat to the security of multimedia information, and therefore it is

important to detect. However, no technique currently exists that is

able to detect LCA anti-forensics. In this section, we propose a new

�ngerprint that exposes LCA anti-forensics tampering operations.

Our proposed �ngerprint exploits di�erences in resizing between

color channels, which are introduced during the anti-forensic ma-

nipulation of lateral chromatic aberrations. In our model, we as-

sume that the source image content has been compressed at some

point prior to forgery and anti-forensic manipulation. Since im-

ages are commonly stored in JPEG format, it is likely that a forger

will alter an image that has been compressed. We exploit distinct
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Figure 3: FFTmagnitude of the resampling p-map, at ωy = 0,
in an image patchwhere the red color channel has been anti-
forensically modi�ed.

spectral peaks that are related to JPEG blocking discontinuities, by

examining amplitude and phase angle di�erences across color chan-

nels at these spectral peaks. �e amplitude and phase di�erences

are used as evidence of anti-forensic LCA manipulation.

Since anti-forensic LCA tampering is performed by a scaling

and resampling operation, it follows that resampling detection

techniques are useful for detecting anti-forensically forged images.

However, the scaling factor used in LCA anti-forensics is too small

to be detected by typical resampling detection methods, such as

those in [7, 14]. Typically, resizing is detected using a construct

called a p-map, which describes the probability that a pixel is a

linear combination of its neighbors. Resizing introduces period-

icity into the p-map, and the corresponding spectral peaks in the

p-map FFT are used to expose resizing operations [7, 14]. However,

at these small anti-forensic scaling factors, the resizing spectral

peak in the resampling p-map is indiscernible from the naturally

occuring low frequency content. �is is seen in Fig. 3, which shows

the p-map FFT of an anti-forensically tampered image region. In

this �gure, the anti-forensic resizing peak in the anti-forensically

modi�ed red channel is indiscernible from low-frequency content

and is undetectable by traditional peak detection methods.

�e e�ects of LCA anti-forensics, however, are apparent in the

spectral peaks related to JPEG blocking discontinuities. Spectral

peaks related to JPEG blocking occur in the p-map frequency do-

main because pixel values are not linearly predictable across JPEG

blocks, and thus have a relatively low p-map value. �ese low p-map

values occur every 8 pixels, and introduce distinct peaks in the p-

map spectrum at ω = π
4
, π
2
, and

3π
4

[9], which can be seen in Fig. 3.

When an image channel is anti-forensically modi�ed, the chan-

nel is slightly resized through an interpolation operation. �is

consequently introduces correlations, albeit slight, in pixel values

across the JPEG blocking grid. As a result, the p-map deviations that

are typically observed at JPEG blocking boundaries are decreased.

�us the spectral peaks related to JPEG blocking are reduced in anti-

forensically modi�ed color channels. �is e�ect is seen in Fig. 3,

which shows the p-map FFT in the x direction (ωy = 0) for three

color channels, with the red channel anti-forensically modi�ed. �e

JPEG spectral peaks in the anti-forensically modi�ed red channel

are small relative to the to unmodi�ed green and blue channels.

In practice, an image is anti-forensically modi�ed by keeping one

color channel unmodi�ed and applying the anti-forensic scaling and

shi�ing to the remaining two color channels [11]. �e unmodi�ed
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(d) αDαS = 1.00033,W = 256 × 256

0.76 0.77 0.78 0.79 0.8 0.81
Frequency, !x

0

1

2

3

4

5

jF
j2

#107

Green Ch.
Red Ch.

(e) αD
αS
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Figure 4: Magnitude of p-map FFT in red and green color
channels showing the a�ect of LCA anti-forensics. �e
JPEG blocking peak at (ωx ,ωy ) = ( π

4
,0) is shown. �e pre-

compressed image taken by a Canon SX500-IS has an anti-
forensically modi�ed red channel using the green channel
as the reference channel. Di�erent window sizesW and anti-
forensic scaling factors αD/αS are examined. �e windowed
p-maps are zero padded to 4096×4096 before taking their FFT.

color channel is called the reference channel and the modi�ed

color channels are called the comparison color channels. As a

result, an anti-forensically tampered image region will have JPEG-

blocking spectral peaks that are much smaller in the comparison

color channels relative to the reference color channel.

�e e�ect of LCA anti-forensics is detailed in Fig. 4, which shows

the spectral p-map FFT magnitude with di�erent anti-forensic scal-

ing factors and di�erent inspection window sizes. �e �gures show

the �rst JPEG spectral peak in the x direction at ωx =
π
4
, ωy = 0

in both the red comparison channel and in the green reference

channel. In authentic image regions, the spectral peak in the red

(comparison) and green (reference) channels are nearly identical.

�e spectral peak in the comparison channel is reduced when LCA

anti-forensics is applied with scaling factor 1.00033, and further re-

duced when the scaling factor is increased to 1.00066. Furthermore,
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the peak di�erences are much more discernible at larger window

sizes of 512 × 512 than 256 × 256.

�e spatial shi�ing of color channels during LCA anti-forensic

tampering also a�ects the phase of the JPEG blocking grid. �is

manifests as phase angle di�erences when comparing the phase

angle of the reference channel to the phase angle of the anti-

forensically modi�ed comparison channel. Fig. 5 shows phase

angles in an authentic image patch and in the same image patch

that has been anti-forensically modi�ed. In the anti-forensically

modi�ed patch, the phase angles of the red comparison channel

deviate from the phase angles of the green comparison channel. In

the authentic image patch, the phase angles are well matched.

4 PROPOSED FINGERPRINT FEATURE
VECTOR OF LCA ANTI-FORENSICS

To quantitatively capture the e�ects of LCA anti-forensics we de�ne

a feature vector as follows. We measure the ratio of JPEG spectral

peak magnitudes between the 1) red and green channels, 2) blue and

green channels, and 3) red and blue channels. In authentic image

regions, it is expected that these ratios are near unity whereas in

anti-forensically tampered regions these ratios deviate signi�cantly.

Since the choice of reference channel is unknown to an investigator,

ratios between all three possible color channel pairs are considered.

Additionally, the di�erence in phase angle at the JPEG spectral

peaks are measured for each of the three color channel pairings.

In authentic image regions, it is expected that these phase angle

di�erences are near zero whereas in anti-forensically modi�ed

image regions these phase angle di�erences deviate from zero.

At a given peak location de�ned by frequencies ωx and ωy six

�ngerprint values are measured: three magnitude ratios and three

phase angle di�erences. �ese six values are represented by the

vector x
(
ωx ,ωy

)
as follows,

x
(
ωx ,ωy

)
=



���FR
(
ωx ,ωy

) ��� /
���FG

(
ωx ,ωy

) ���
���FB

(
ωx ,ωy

) ��� /
���FG

(
ωx ,ωy

) ���
���FR

(
ωx ,ωy

) ��� /
���FB

(
ωx ,ωy

) ���
∠FR

(
ωx ,ωy

)
− ∠FG

(
ωx ,ωy

)
∠FB

(
ωx ,ωy

)
− ∠FG

(
ωx ,ωy

)
∠FR

(
ωx ,ωy

)
− ∠FB

(
ωx ,ωy

)



T

. (4)

Here,
���F

(
ωx ,ωy

) ��� is the p-map FFT magnitude at frequency

(ωx ,ωy ), and ∠F
(
ωx ,ωy

)
is the p-map FFT phase angle at fre-

quency (ωx ,ωy ). �e subscripts R , G and B denote the red, green,

and blue color channels respectively.

�e �ngerprint values are measured at six JPEG spectral peak

frequencies (ωx ,ωy ) =
(
π
4
,0

)
,

(
π
2
,0

)
,

(
3π
4
,0

)
,

(
0, π

4

)
,

(
0, π

2

)
, and(

0, 3π
4

)
. �is yields six vectors that are then concatenate to form

the full, proposed feature vector

X =
[
x

(
π
4
,0

)
x

(
π
2
,0

)
x

(
3π
4
,0

)
x

(
0, π

4

)
x

(
0, π

2

)
x

(
0, 3π

4

)]T
.

(5)

�e full LCA anti-forensics feature vector X contains 36 values,

comprised of 18 spectral peak magnitude ratios and 18 phase angle

di�erences.
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Figure 5: Phase angle of p-map FFT in red (comparison) and
green (reference) color channels showing the a�ect of LCA
anti-forensics on the JPEG blocking peak at ωx = π

4
,ωy = 0.

Examples of the �ngerprint X are shown in Fig. 6 for authen-

tic and anti-forensically modi�ed image patches. Fig. 6a shows

histograms of X1 =
���FR

(
π
4
,0

) ��� /
���FG

(
π
4
,0

) ���, the �rst �ngerprint
dimension. �e authentic values are distributed near unity whereas

values from anti-forensic patches are typically smaller, and are

easily discriminated. Fig. 6b shows a sca�er plot of dimensions

X1 =
���FR

(
π
4
,0

) ��� /
���FG

(
π
4
,0

) ��� and X19 =
���FR

(
0, π

4

) ��� /
���FG

(
0, π

4

) ���.
�e use of two (and more) dimensions increases discrimination.

5 PROPOSED DETECTION METHOD
To expose image regions that have undergone LCA anti-forensic

manipulation, we propose a new detection method using the �nger-

print described in Sec. 4. To do this, we de�ne a hypothesis testing

problem where under the null hypothesisH0 the image patch has

not undergone LCA anti-forensics, and under the alternative hy-

pothesis, H1, the LCA in the image patch has anti-forensically

modi�ed.

H0 : No LCA anti-forensics

H1 : LCA anti-forensics

To describe patches under the null hypothesis, we build a statistical

model of the LCA anti-forensic �ngerprint in unmodi�ed image

regions. Fig 6a shows a histogram of X1, the �rst dimension of

the �ngerprint feature vector, in authentic and anti-forensically

modi�ed image patches. We observe from this histogram that X1

is distributed approximately Gaussian in authentic patches, with

a mean near one. We model the entire �ngerprint vector as a 36

dimensional random variable that is distributed Gaussian, with a

mean vector µ, and covariance Σ. �e probability density function

p (X|H0) of X in authentic patches is as follows:

p (X|H0) =
1√

(2π )36 |Σ|
exp

(
− 1

2
(X − µ) Σ−1 (X − µ)

)
. (6)

�e authentic distribution parameters mean, µ, and covariance,

Σ, are estimated from image patches extracted from many JPEG

compressed images that are known to have not beenmodi�ed. Since

the patch size e�ects the �ngerprint values, as seen in Fig. 6, the

authentic distribution parameters must be estimated separately for

each patch/window size that is used.

�e �ngerprint feature vector under the alternative hypothesis

depends upon the anti-forensically scaling factor. �is is shown

in Fig. 4. Without knowing the anti-forensic scaling factor, which
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Figure 6: Histogram (top) and scatterplot (bottom) of �n-
gerprint features X in authentic (blue) and anti-forensically
modi�ed patches (red).

requires knowledge of the source image, it is impractical to model

the �ngerprint feature in anti-forensically manipulated patches. As

a result, we are le� only to compare with authentic model. In anti-

forensically forged image patches, the �ngerprint feature vector

deviates signi�cantly from µ. �is e�ect is seen in Fig. 6b, where

a sca�er plot of features X1 and X19 shows that the �ngerprint in

anti-forensically modi�ed patches deviates signi�cantly from the

�ngerprint in authentic patches.

To quantify the deviations of X from the authentic model of the

�ngerprint feature, we use the Mahalanobis distance [17], which is

as follows:

m =
(
(X − µ)T Σ−1 (X − µ)

) 1
2 . (7)

�e distancem describes deviations of the �ngerprint vector X
from the authentic distribution mean µ. Importantly, the Maha-

lanobis distance accounts for di�erences in the variances of each of

the �ngerprint dimensions. �at is, a deviation in a dimension with

a small variance is more indicative of manipulation than an equiva-

lent deviation in a dimension with a large variance. �e di�erences

in variances are normalized by the Σ−1 term in (7). Additionally,

the Mahalanobis distance accounts for any correlations that may

exist among the authentic �ngerprint dimensions.

�e distancem is small in authentic image patches, and large

in anti-forensically tampered image patches. We use this to de�ne

a decision rule δ (·) to determine if an image patch authentic or

anti-forensically modi�ed. �e decision rule employs a threshold

test, where distances m greater than or equal to the threshold τ
reject the null hypothesis in favor of the alternative hypothesis.

δ (m) =

{
H0, m < τ
H1, m ≥ τ

(8)

�e decision threshold τ can be varied to set the false alarm rate.
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Figure 7: ROC curves of the proposed detection method
on di�erent block sizes. Forgeries were made by copying
and pasting image blocks from database images, and anti-
forensically modifying their LCA to hide forgery traces.

6 EXPERIMENTAL RESULTS
We conducted a series of experiments in order to evaluate the

e�cacy of our proposed �ngerprint and proposed detection method

at exposing image patches that have been manipulated by LCA

anti-forensics. To do this, we started with a database of images

16961 unaltered, JPEG compressed images from the Dresden Image

Database [2]. We used all images from the “Natural images” set,

which were captured by 27 unique camera models and representing

a diverse set of LCA expansion coe�cients. We produced 20000 cut-

and-paste forged images and anti-forensically tampered the forged

regions to hide traces of LCA inconsistency. To make the cut-and-

paste forgeries, we randomly chose a source image to cut from, and

randomly chose a destination image to paste into. �e source (cut)

and destination (paste) locations were chosen at random, as well.

To make each forgery, a 512× 512 block was cut from the source

location in the source image, and pasted at the destination location

in the destination image. �e LCA model parameters for the desti-

nation and source images were estimated using Gloe et al.’s e�cient

method [3]. Finally, LCA anti-forensics was applied using Mayer

and Stamm’s method [11], using the green channel as the reference

channel and the red and blue channels as the comparison channel.

�e LCA anti-forensics �ngerprint was calculated in each of

the 512 × 512 forged image regions. Furthermore, to evaluate the

e�ect of inspection window size, the forged image regions were

segmented into 4 non-overlapping 256 × 256 patches, as well as

16 non-overlapping 128 × 128 patches and the anti-forensic �nger-

print was determined for each patch. To measure the anti-forensic

�ngerprint, we �rst determined the resampling p-map FFT for each

color plane in the image region, using the method described in [7].

Finally, the anti-forensics �ngerprint X was determined, its dis-

tancem to the authentic model was calculated according to 7, and

classi�cation decision δ (m) rendered according to (8).

To estimate the authentic model parameters, 100000 unmodi�ed

image patches of size 512 × 512, 256 × 256, and 128 × 128 were

chosen. �e LCA anti-forensics �ngerprint was measured in each

of the 300000 authentic patches (100000 patches for each of 3 win-

dow sizes). At each size, 10000 patches were randomly chosen to

estimate the authentic �ngerprint distribution parameters mean
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Figure 8: Probability of detection versus LCA anti-forensic
scaling at a 5% false alarm rate.

µ, and covariance Σ. �e remaining 90000 patches were used to

determine false alarm rates at varied decision thresholds.

Fig. 7 shows the receiver operator characteristic for our proposed

detection method. At a 10% false alarm rate, our method achieved

a 85% positive detection rate when using a 512 × 512 inspection

window, demonstrating that our proposed �ngerprint feature vector

and detection method are able to successfully expose image patches

as having been manipulated with LCA anti-forensics. At a smaller

window size of 256 × 256, our detection method achieved a 71%

positive detection rate, and a 52% positive detection rate with the

smallest 128 × 128 window. At a 5% false alarm rate, our method

achieved a 73%, 50%, and 31% positive detection rate at window

sizes of 512 × 512, 256 × 256, and 128 × 128 respectively.

Furthermore, we evaluated the e�ect of the scaling factor used in

the LCA anti-forensic tampering process on detection performance.

Fig. 8 shows the detection rates at a 5% false alarm rate as a function

of anti-forensic scaling factor. For each forgery, we determined the

anti-forensic scaling factor applied for each of the two comparison

color channels and determined its absolute distance from 1 (no

scaling). �e x-axis of Fig. 8 includes all forgeries with at least one

of the two anti-forensic scaling factors greater than the x axis value.

�is method gives a measure of “strength” of LCA anti-forensics.

For example, a scaling factor value of 0.0005 indicates that at least

one of the red or blue comparison channels were scaled by either

greater than 1.0005, or less than 0.9995.

At a scaling factor value of 0.0005, anti-forensically tampered

patches were correctly identi�ed at a rate of 95% with a window

size of 512 × 512, 79% with a window size of 256 × 256, and 53%

with a window size of 128 × 128. At a scaling factor value of 0.001,

anti-forensically tampered patches were correctly identi�ed at a

rate of 99% with a window size of 512×512, 91% with a window size

of 256 × 256, and 62% with a window size of 128 × 128. �is result

demonstrates that the strength of the LCA anti-forensic tampering

greatly e�ects its ability to be detected.

7 CONCLUSION
In this paper, we propose a new algorithm for securing digital im-

ages against anti-forensic manipulation of LCA. To do this, we ex-

ploit resizing di�erences between color channels, which are induced

by LCA anti-forensics, and de�ne a feature vector to quantitatively

capture these di�erences. Furthermore, we propose a detection

method that exposes anti-forensically manipulated image patches.

�e proposed algorithm is validated through experimental proce-

dure, showing dependence on patch size as well as anti-forensic

scaling factor.
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