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Abstract—In copy-and-paste image forgeries, where image
content is copied from one image and pasted into another,
inconsistencies in an imaging feature called lateral chromatic
aberration (LCA) are intrinsically introduced. In this paper, we
propose a new methodology to detect forged image regions that
is based on detecting localized LCA inconsistencies. To do this,
we propose a statistical model that captures the inconsistency
between global and local estimates of LCA. We then use this
model to pose forgery detection as a hypothesis testing problem
and derive a detection statistic, which we show is optimal when
certain conditions are met. To test its detection efficacy, we
conduct a series of experiments that demonstrate our proposed
methodology significantly outperforms prior art and addresses
deficiencies of previous research. Additionally, we propose a
new and efficient LCA estimation algorithm. To accomplish this
we adapt a block matching algorithm, called diamond search,
which efficiently measures the LCA in a localized region. We
experimentally show that our proposed estimation algorithm
reduces estimation time by two orders of magnitude without
introducing additional estimation error.

Index Terms—Lateral Chromatic Aberration, Multimedia
Forensics, Forgery Detection, Efficient Block Matching

I. INTRODUCTION

IGITAL multimedia forensics has shown that statistical
features intrinsic to images can be used to identify altered
images [1]. An important type of alteration to detect is the
copy-paste image forgery, where image content is copied from
one image and pasted into another, or same, image. This
operation is often done to maliciously change the meaning
or context of an image by inserting or concealing objects in
it. Prior research has shown that copy-paste forgeries can be
detected by finding localized inconsistencies in intrinsic image
features such as traces of resampling [2], [3], JPEG compres-
sion [4]-[6], contrast enhancement [7], median filtering [8],
[9], and sensor noise [10]. Additionally, techniques that work
by finding duplicate image blocks [11], [12], and by matching
SIFT features [13], [14], have been developed to detect copy-
move image forgeries, where image content is pasted into the
same image that it was cut from. Work in [15] proposes a
statistical framework for the fusion of such forgery detection
features.
In this work, we propose a new forgery detection technique
that uses lateral chromatic aberration (LCA) as an intrinsic
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imaging feature to expose image regions that have been
falsified through copy-paste or copy-move type manipulations.
Lateral chromatic aberration is a phenomenon that occurs in
optical imaging systems. It arises due to a lens’s inability to
focus all wavelengths of a single light ray to a single location
on a sensor and, as a result, the focal locations of different
wavelengths are displaced laterally from each other in the
image [16]. These displacements are often imperceptible to
the human eye, but can be measured computationally. When
a copy-paste or copy-move image forgery is made, the LCA
inherent to the copied content is transferred into the falsified
region. This creates a detectable inconsistency within the LCA
patterning of the forged image. Forgeries are detected by
comparing local observations of LCA displacement vectors to
a global displacement model of displacement, then identifying
localized inconsistencies.

Johnson and Farid first introduced the idea that LCA
inconsistency can be used to detect image forgeries [17].
Research by Yerulshamy and Hel-Or has shown that purple
fringing aberrations, a sensor induced aberration whose char-
acterization also captures a subset of LCA effects, can also be
used to detect image forgeries [18]. Work in [19] shows that
LCA model parameters can be used to identify the image’s
source camera model. Additionally, research has shown that
an image’s lateral chromatic aberration can be anti-forensically
modified to avoid forgery detection [20], and that these anti-
forensic modifications can also be detected [21].

To detect image forgeries, Johnson and Farid proposed using
the absolute value of the angle between between local and
global LCA displacement vectors as a detection statistic [17].
However, their method suffers when the local and global
displacement vectors differ in magnitude only and not angle.
This occurs, for example, when image content is moved
radially inward or outward from the image optical center.
Additionally, their method is undefined when image content
is cut from near the image optical center, where the local
LCA displacements have no magnitude and thus no angle.

An additional drawback of the technique proposed by
Johnson and Farid is that their method of estimating LCA
is computationally demanding, resulting in long processing
times for forensic investigation of even single images. To
address this, Gloe et al. developed a technique to estimate
LCA in an image in a more runtime efficient manner [22].
They accomplish this by computing local estimates of LCA
displacement by performing a search over possible displace-
ments between blocks across color channels for the one that
maximizes similarity, then fitting a parameterized global model
to these local estimates. While their method achieves marked

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2799421, IEEE

Transactions on Information Forensics and Security

efficiency gains over that of Johnson and Farid [22], it still
incurs a high computation cost due to the high number of
similarity calculations incurred by the displacement search.

In this work we propose a new detection methodology
that more accurately detects forged image regions using lat-
eral chromatic aberration. In our methodology, we propose
a statistical model that describes the inconsistency between
local and global estimates of lateral chromatic aberration.
This statistical model captures two distributions; one for LCA
inconsistency in authentic image regions, which we model
as a random noise variable that is Gaussian, independent
and identically distributed with near-zero mean, and another
distribution that describes LCA in forged regions with similar
assumed properties and with a forgery related bias. Then, using
our proposed statistical model, we pose forgery detection as
a hypothesis testing problem and derive a detection statistic,
which is thresholded to make a detection decision. When our
assumptions hold true, this detector forms an optimal decision
region.

To test the efficacy of the detection algorithm, we conduct a
series of experiments on a publicly available image database.
We find that our algorithm significantly outperforms prior art
in general scenarios. We find that our proposed algorithm is
able to detect image forgery scenarios where angular-error
based methods fare no better than random chance, such as in a
radial-forgery scenario. Another experiment shows that there
are significant image areas where our method is able to mea-
sure inconsistency between local and global estimates of LCA,
but angular-error based methods cannot. We experimentally
characterize the effects of local LCA estimation resolution
and forgery size on forgery detection performance. We also
show that our LCA-based method outperforms other forgery
detection methods based on purple fringing aberrations.

Furthermore, we propose a new local LCA estimation
algorithm that reduces the number of similarity calculations
performed in the displacement search. This is done by adapting
for LCA an algorithm optimized for MPEG motion-vector es-
timation [23], called the diamond search. In our experimental
results section, we show that our proposed LCA estimation
algorithm achieves two orders of magnitude time-efficiency
gains over Gloe et al.’s method, without introducing additional
estimation error.

This paper extends our initial study in [24] on the use of a
statistical testing based framework for LCA forgery detection.
We extend our previous work by deriving a new form of
our forgery detection metric. This new derivation explicitly
accounts for inherent variation in the number of keypoints
in forged regions, and leads to non-trivial improvements in
detection performance as shown in the experimental results.
We conduct experiments on a larger, more comprehensive
and publicly available image database [25], demonstrating
efficacy of LCA based forgery detection on a substantially
larger dataset and on a diverse set of imaging scenarios.
We also characterize the affect of forgery size on detection
performance, as well as the affects of choice of algorithm
parameters such as estimation resolution. Additionally, we
propose a new algorithm that estimates LCA in digital images
in a computationally efficient manner. This proposed algorithm
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Fig. 1. Ray diagram of lateral chromatic aberration. Two rays of polychro-
matic light from a single point source are shown. The focal location of the
red channel is laterally offset from the focal location of the blue channel by
displacement vector d.

Fig. 2. Example of lateral chromatic aberration in an image. The red and
blue LCA “fringes” become visible in the right inset, which is scaled 50
times larger than the original. This unaltered, JPEG compressed image was
taken by a Canon Powershot ELPH 160 camera.

improves the run-time performance of LCA forgery detection
significantly, allowing an investigator or researcher to conduct
large scale investigations, such as the ones presented in this
paper, on a reasonable time scale.

The remainder of this paper is organized as follows. In
Sec. II we describe the background and theory of lateral
chromatic aberration and how it is used to detect image
forgeries. In Sec. Il we propose a new, efficient algorithm to
obtain local estimates of lateral chromatic aberration, called
diamond search. In Sec. IV we develop a new method that
determines if a region of an image is forged or authentic. We
do this by proposing a statistical model of LCA inconsistency,
posing forgery detection as a hypothesis test, and deriving
an optimal detection metric. In Sec. V we conduct a series
of experiments that compares the computation efficiency and
estimation error of our proposed LCA estimation algorithm,
and compare to the method proposed by Gloe et al. [22].
Finally, in Sec. VI we conduct a series of experiments that
tests the efficacy of our proposed forgery detection metric,
and compare to methods proposed by Johnson and Farid [17],
in our initial conference paper related to this work [24], and
to the purple fringing based method in [18].

II. BACKGROUND

When light passes through a lens, it is focused onto a
camera’s imaging sensor through refraction. The refractive
index of glass, however, is dependent upon the wavelength
of the light passing through it [16]. This causes different
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color components of light, originating from the same point
source in a scene, to be focused onto laterally offset locations
on the sensor. This phenomenon, known as lateral chromatic
aberration, is shown Fig. 1. An example of how LCA manifests
in an image is shown in Fig. 2, where red and blue fringes
become visibly apparent near the edges of the image.

Since the angle of refraction is also dependent on a light
ray’s angle of incidence with the lens, the distance between
the focal locations for different wavelengths of light becomes
greater as the distance from the optical center increases. As
a result, LCA causes an image’s color channels to be related
through a relative expansion or contraction about the image’s
optical center. That is, one color channel of the image can be
thought of as an expanded or contracted version of another
color channel.

The effects of LCA are characterized by the mapping that
relates the location of a point r = (r,,7,)" in a reference
color channel to its corresponding location in a comparison
color channel ¢ = (¢, c,)T. Johnson and Farid proposed the
following parametric model of this mapping [17]

c=f(r,0)=alr—¢)+( ()

where « is the expansion coefficient, and ¢ = (¢;, ()7 is the
location of the image’s optical center, and 8 = (a, )7 is the
parameter tuple for the model f(-). We note that the optical
center of an image is not necessarily its geometric center.

Additionally, it is often useful to think about the displace-
ment vector between corresponding reference and comparison
channel points r and c

d(r,0)=c—r=a(r—¢)+¢—r. )

Displacement d(-,-) is a function of both the reference loca-
tion, r, as well as the chromatic aberration model parameters
6. The displacement vector describes the spatial offset between
a focal point in a reference color channel relative to its corre-
sponding point in a comparison color channel. The description
of LCA displacement is completed by specifying the reference
and comparison color channels, which we often leave out of
the notation to be described in the text. An example of an
authentic image’s LCA displacement vector field is shown in
Fig. 3a. A distinct patterning is observed with all displacement
vectors pointing radially outward (inward, if the expansion
coefficient were less than 1) from the image optical center,
growing in magnitude as distance from the optical center
increases.

In addition to lateral chromatic aberrations, other types of
chromatic aberrations can be found in digital images including
axial chromatic aberration and purple fringing aberration.
Axial chromatic aberration is a type of optical aberration, like
LCA. It arises due to corresponding focal points in different
color channels being focused out of plane with respect to each
other. This results in an effect where, locally, one color channel
appears out of focus with respect to the other.

Purple fringing aberration (PFA) is another type of chro-
matic aberration and is used in [18] as a feature for forgery
detection. PFA appears as blue-purple halos around edges of
objects in an image. PFA is attributed to a number of sensor
effects including 1) electron overflow in CCD sensors, 2)
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Fig. 3. Lateral chromatic aberration (LCA) displacement fields in (a) an
authentic image and (b) a forged image. The LCA displacement in the forged
region (in red) is inconsistent with the LCA in the rest of the image.

sensitivity of the CCD sensor to non-visible light, and 3)
light impingement on neighboring cells from refraction of
the sensor micro-lens [18]. In this work, we solely consider
optically induced lateral chromatic aberrations as a feature for
forgery detection.

A. Lateral Chromatic Aberration Estimation

In practice, the expansion coefficient and optical center of an
image are typically unknown and must be estimated. Johnson
and Farid proposed estimating these model parameters by
using the inverse mapping f~1(-,0") of (1) to undo the
effects of LCA [17]. The estimated parameter values 6" are
chosen as those that maximize the mutual information Z(-;-)
between the reference channel R and a corrected version of
the comparison channel C that has been warped by the inverse
mapping f~!, ie.

0" = arg max 7 (f7HC,0);R)) 3)

The optimal parameter values " are found by performing an
exhaustive search over a large set of candidate values. While
this approach can accurately estimate the true LCA parameters
in an image, its computational cost renders it impractical for
use in large-scale forensic settings.

B. Efficient Estimates Based on Local Displacements

To address the problem of high computational cost, Gloe
et al. proposed a more computationally efficient technique to
estimate the model parameters [22]. It operates by obtaining
estimates of the LCA displacement vector d(r) at many
keypoints r located throughout an image. The optimal model
parameters are then identified by performing a least-squares fit
of the estimated displacement vectors to the model (2) using
an iterative Gauss-Newton method.

Local estimates of the LCA displacement vector d(r) are
obtained by searching for a W x W block C(z,y) in the
comparison channel centered at location (z,y)" that maxi-
mizes similarity with an equivalently sized block R(r;,r,) in
the reference channel centered around r, such that

d(r) = argmax  S(R(ry,ry),Clryz+m,ry+n)) 4)

(mn)e{—A,...,A}

where the similarity S(-) is measured using the correla-
tion coefficient. The algorithm searches for the displacement
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(m,n) that relates two maximally similar blocks across color
channels, and attributes this displacement to LCA. To enable
a search over fractional pixel displacements, both blocks
are upsampled by a factor of w. This search is performed
exhaustively over a set of displacements between —A and A.
That is, A defines the largest allowable displacement in the x
or y direction, and bounds the search space.

This method implicitly assumes that LCA displacement is
constant over the W x W block, and thus W should be chosen
to be sufficiently small so that this assumption holds. The
window size W should also be chosen to be sufficiently large
so that an accurate assessment of similarity can be made.
Furthermore, the keypoint locations are chosen to be corner
points using Shi and Tomasi’s minimum-eigenvalue corner
metric [26]. Using corner points ensures there is sufficient
spatial gradient in both the x and y directions to properly
resolve LCA in both spatial dimensions.

In addition to determining local estimates of LCA, Gloe et
al. proposed a method for determining an estimate for the
global model parameters of LCA. This is done by finding
the tuple 6" that minimizes the sum squared error between
a sequence of local estimates and the parameterized model:

N 2
0" = arg;ninz H(Ai(rl) —d(r;, 0)H2 5)
i=1

using the N local displacements estimated in the image
for a specified reference and comparison channel pair. The
minimization is solved using an iterative Gauss-Newton
method [22], [27]. This provides an estimate for the LCA
model parameters in an image, provided that the forgery
area is sufficiently small and does to significantly bias the
minimization. Since determining many local estimates is more
run-time efficient than the Johnson and Farid’s estimation
method, it is able to more quickly determine an accurate
estimate for global model parameters [22].

C. Forgery Detection

In a copy-paste forgery, image content in a region of an
image is moved to another image. This includes any inherent
chromatic aberration that exists within the copied region.
When looking at the LCA displacement field of a copy-paste
forgery, the falsified region becomes readily apparent as a
region that does not agree with the global model of the rest
of the image, as shown in Fig. 3b.

Johnson and Farid proposed using the absolute angular
difference between a LCA displacement determined locally to
a displacement determined by the global model as a forgery
detection feature [17].

1 .
6= 3 2 1440) — 2w, o) ©

This angular difference is averaged over pixels in a region
and compared to a threshold. Image patches with an average
angular error less than the threshold are considered true to
the global model, and thus authentic. Patches that result in
angular error greater than a threshold are considered to be
from a falsified region.

ITI. EFFICIENT ESTIMATION OF LOCAL LCA

Long and inefficient processing times are a burden to
forensic investigation. Gloe et al. developed a technique to
estimate local lateral chromatic aberration, which has been
shown to reduce the computational expense of LCA-based
forensic investigations [22]. However, their method still incurs
a high computation cost that is prohibitive in practical and
large scale forensic scenarios. A majority of the incurred
computational expense is due to the high number of similarity
calculations required to estimate local displacements. In this
section, we propose a new, computationally efficient algorithm
that reduces the number of similarity calculations required
to accurately estimate local LCA displacements. To do this,
we use an efficient block matching algorithm, called diamond
search. By adapting the diamond search algorithm, which was
originally developed for efficient MPEG encoding [23], we are
able to significantly reduce the computational cost and time
of using lateral chromatic aberration as a feature for forgery
detection.

A. Diamond Search

In Gloe et al.’s method for estimating local LCA displace-
ment, a small block of one color channel is compared to a
displaced block of another channel using a similarity measure
(e.g. correlation coefficient). The local estimate for lateral
chromatic aberration at image location r is the displacement
a(r) = (mm,m,nmagc)T that results in maximum similarity
between the two blocks across color channels. The variables
m and n correspond to shifts in the x and y directions,
respectively. To find this displacement, an exhaustive search
is performed over all possible m and n that are bounded
by —A and +A in increments of % The variable u is an
upsample factor that allows for fractional displacement, and
also roughly introduces a notion of measurement resolution.
In this exhaustive search (2uA + 1)? possible displacements,
and thus that many similarity calculations, are required to find
a local LCA displacement.

The total number of similarity calculations in an exhaustive
search can be quite large (e.g. 961 for u = 5, A = 3).
Furthermore, the high number of similarity calculations is
compounded by the need to estimate local LCA at many
locations within an image in a forensic investigation. Since
similarity measures themselves are complex operations, LCA
displacement estimation is a time consuming process, espe-
cially when using an exhaustive search.

We find that the use of an efficient block matching algorithm
significantly reduces the number of similarity calculations
required to estimate local lateral chromatic aberration. Con-
sequently, by reducing the number of similarity calculations,
a significant decrease in computation time is achieved. In
particular, we adapt for LCA the diamond search algorithm,
which was developed by Zhu and Ma for motion vector
estimation in MPEG encoding [23].

The search for local LCA displacement is analogous to the
search for motion vectors used in MPEG encoding; local LCA
estimation searches for the lateral displacement that maximizes
block similarity across color channels, whereas motion vector
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estimation searches for the lateral displacement that maximizes
block similarity across time frames.

By utilizing the diamond search method, only a subset
of all possible displacements are tested for similarity while
achieving a similar estimate. This is accomplished by iter-
atively choosing a small number of displacement test points,
which ultimately converge upon the displacement of maximum
similarity. The result of fewer similarity calculations is an
overall reduction in the computational expense and increase
in time efficiency of estimating local LCA displacements.

At each step of the diamond search algorithm, similarity is
tested at multiple displacements that are designated by the
search patterns in Fig. 4. Similarity can be determined by
any measure of similarity for gray-scale images, such as the
correlation coefficient [28] or mutual information. Initially, the
Large Diamond Search Pattern (LDSP) is used and centered
about (m,n) = (0,0). Similarity is measured between color
channel blocks with the comparison block displaced by all
(m,n) designated by the LDSP. The LDSP is then recentered
at the displacement which resulted in maximum local sim-
ilarity, and all new displacements designated by the LDSP
are tested (there will be some overlap of the LDSP with
its previous position). This recentering process is repeated
until the center of the LDSP maintains maximum similarity.
Then, the Small Diamond Search Pattern (SDSP) is centered
at the new LDSP center. The displacement (m 40, Mmaz) 1S
designated by the SDSP that results in maximum similarity.

A more explicit algorithm is as follows:

Algorithm 1 Diamond Search
1: repeat
2:  if First repetition then
3: Center LDSP at (m,n) = (0,0)
4:  else
5 Center LDSP at displacement that resulted in maxi-
mum similarity
end if
7:  Measure similarity at displacements as designated by
the LDSP and that are within the search space
8: until Maximum similarity found at the LDSP center
9: Center SDSP at LDSP center
10: Measure similarity at displacements designated by SDSP
11: (Mynazs Mmaz) < SDSP displacement that results in
maximum similarity
12: return d = (Mmazs Mmaz)

T

B. Keypoint Selection

In a forensic investigation, local LCA displacement esti-
mates are made at many corner points throughout an image.
To select corner points, we use Shi and Tomasi’s minimum-
eigenvalue corner point metric [26]. Using corner points are
necessary to ensure that LCA displacement is measured accu-
rately in both the x and y directions. Since the local estimation
technique is a spatial average of LCA over an image block,
estimates at nearby corner points within the block add very
little LCA information while adding significant computation
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Fig. 4. Large Diamond Search Pattern (LDSP) and Small Diamond Search
Pattern (SDSP).

expense. To mitigate this, in the keypoint selection step we first
segment the image into many small, non-overlapping blocks
and select the largest corner point within each block among
those whose corner metric exceed a threshold. Selecting cor-
ners block-wise ensures that local LCA measurements are
distributed spatially within the image (i.e. to prevent clumping
of corner points in texture-rich areas), without incurring undue
computation cost.

IV. ACCURATE FORGERY DETECTION

Forgeries are discovered by detecting the regions of an
image where the local estimates of lateral chromatic aberration
(LCA) deviate from the global LCA model of the image.
Previously, researchers have proposed using the average abso-
lute angular difference between local and global displacement
vectors as a metric for inconsistency [17]. However this
metric has several explicit shortcomings that result in inferior
detection performance. To address this, we propose a new
methodology that not only detects forgeries in the scenarios
where previous detectors do not, but also improves detection
performance in general scenarios.

A. Shortcomings of Existing Metrics

Here, we describe the shortcomings of the detection metric
proposed by Johnson and Farid [17]. Johnson and Farid used
the average absolute angular difference between local and
global LCA displacements as an inconsistency metric:

1 - .
0=y LoIdr) - (e 0] g

where the N local displacement estimates, &(ri), and global
displacement estimates, d(r;, 8"), are at corresponding points,
r;, in a region of interest for ¢ € {1,..., N}. N is the number
of corner points found in the region. Large angles between
the local and global LCA displacement vectors are indicative
of forgeries, and thus when this metric is sufficiently large
then a forgery is declared. Johnson and Farid suggest a 60°
threshold.
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Fig. 5. Lateral chromatic aberration displacement field in a forged image.
Global model (green), local estimates in authentic regions (blue), and local
estimates in forged regions (red). The top right inset highlights that authentic
local estimates noisily approximate the global model, whereas the local
estimates in a forged region, as in the bottom right inset, are additionally
biased by a forgery related offset.

There are, however, two deficiencies of this approach that
our proposed metric overcomes. First, when image content
originates from a location the near the image optical center,
an angular error metric is unable to render a decision on it.
This is because LCA at locations near the optical center is
small and so local displacements have zero-magnitude when
near the optical center. Local displacement estimates with zero
magnitude have undefined angle. Thus, when forged image
content is sourced from near the image optical center, angle
based detectors are unable to render a decision on them. This
is a significant deficiency since image content near the center
tends to contain salient visual information that may likely be
the subject of a forgery.

Second, Johnson and Farid’s metric fails in forgery sce-
narios where the LCA local to the forged region differs
from the global model in magnitude, but not angle. This
occurs, for example, when image content is copied and pasted
radially inward or outward towards the image optical center.
An angular error based metric is unable to resolve LCA
inconsistencies in such scenarios, resulting in an ineffective
classification methodology.

Furthermore, the metric proposed by Johnson and Farid is a
heuristic approach. That is, this type of approach may not form
an optimal decision region, and therefore cannot be guaranteed
to make the best detection decision.

B. Proposed Model of LCA Inconsistency

In our approach, we first observe that local LCA estimates
noisily fit the global model estimate. This can be seen in
Fig. 5, which shows the the local LCA displacement field
for a forged image, as well as the global model. The local
LCA displacement estimates fit, but do not exactly match, the
global LCA model. We propose a new model that captures this
inconsistency between local and global LCA with two possible
distributions; one for inconsistency in authentic regions and the
other for forged regions. From the two distributions, we frame
forgery detection as a hypothesis testing problem. Using the
hypothesis test, we derive a detection statistic that decides if
an image region has been falsified through copy-paste forgery.

As seen in Fig. 5, the local estimates of lateral chromatic
aberration displacement can be viewed as noisy approxima-
tions of the global model. In this figure, the local estimates
in the authentic regions closely approximate the the global
model, and any inconsistency between the global model and
authentic local estimates we attribute to observational noise.
This observational noise arises from the discrete and quantized
nature of the local estimation method, compression artifacts,
other chromatic aberration artifacts like purple fringing aber-
rations, as well as scene-dependent biases.

We propose a new model that incorporates a model mis-
match term, n = (nx,ny)T that, when added to the scaled
reference location of the global model, captures the discrep-
ancy between a local estimate of LCA to the global model:

d(r)=a(r+n-¢)+¢—r 8)

Where d(r) is the local estimate for LCA displacement at
pixel location r in the reference color channel, determined by
our proposed estimation method in Sec. III. The right side of
the equation is the global model of LCA introduced earlier
(2), with expansion coefficient o and optical center ¢, and
the observational noise term n added to the scaled reference
location.

We model this noise term as an independent and identically
distributed (IID) Gaussian random variable with a near-zero
mean i, and covariance 3. Fig. 6a shows a histogram of this
noise term calculated from an unaltered, JPEG compressed
image. A Gaussian distribution is fit to the observed noise,
and is shown in red. It can be seen in Fig. 6a that, by
eye, the Gaussian fit reasonably captures the empirical noise
distribution. In Fig. 6b, Quantile-Quantile (Q-Q) and scatter
plots are shown of the observed noise for both z and y
components as well as different reference-comparison color
channel pairings. The Q-Q plots are referenced to the fit
Gaussian distribution and appear linear for each component,
save a few outliers on either end, suggesting that a multi-
variate Gaussian distribution is appropriate in this case. The
scatter plots show that across directional components (z vs.
y) of the distributions are roughly uncorrelated, whereas some
correlations exist across color pairings (gr vs. gb). We also
consider each noise observation to be spatially independent
of each other as well as identically distributed. In practice,
these assumptions may not be exact in every case (e.g. due to
mismatch between the estimated and true LCA global model)
but we assume them to be sufficiently close going forward.

In a forged image region, the local estimates of LCA
have an additional discrepancy we denote the forgery offset,
8 = (8,,6,)T. As a result, the local estimate of LCA displace-
ment d(r) in a forged region is

dr)=a(r+n+86-¢) +¢—r ©)

Again, &(r) is the local estimate for LCA displacement at a
reference location r in the image. The expansion coefficient «
and optical center ¢ are the parameters of the global model.
The observational noise n has the same mean and covariance
as in the unaltered scenario. The forgery offset arises from the
copy-paste operation, where image content, and consequently
LCA, is displaced from one image location to another. Thus
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Fig. 6. Normalized histogram, Quantile-Quantile (Q-Q) and scatter plots of
observational noise components in an unaltered Kodak M1063 image. The

plots are is calculated from local estimates of green-to-red (gr) and green-to-
blue (gb) LCA at N = 1094 locations.

the resultant LCA in the forged region appears to come from
another reference location which is related by the forgery
offset §. The effect of the forgery offset can be see in the
lower right inset of Fig. 5, where the local estimate vectors
are biased away from the global model.

In order to capture the differences between the local es-
timates and global model, we introduce a new function,
e(r) = (ex(r),e,(r))", called LCA inconsistency, which we
define as the Cartesian difference vector between the local and
global LCA estimate of displacement, d and d respectively,
at a point r in the reference channel, scaled by the inverse of
the global LCA expansion coefficient:

e(r)=a! (a(r) —d(r, 9)) (10)

7
Solving for e in an authentic image region yields
e(r)=a~ ((a(r+n-¢)+¢) — (alr = ¢) +¢))
=n 1D
and in a forged region yields
e(r)=a™ ((alr+n+8—¢) +¢) — (alr = ¢) +¢))
=n+4 (12)

We can see that LCA inconsistency captures purely ob-
servational noise at locations in authentic regions. In forged
regions, however, we see that there is the forgery offset in
addition to observational noise. Therefore, by measuring LCA
inconsistency in an image region, we can gain insight into
whether the region is forged by how far the inconsistency
vector deviates from the mean observational noise p,. It
often suffices to think of the mean observational noise as
being zero, but in practice any misestimation of the global
model parameters can add bias to the noise. Allowing the
observational noise to be non-zero gives slight improvement
to detection accuracy.

So far we have not explicitly stated which reference and
comparison channel, to use. In most images, there are three
color channels - red, green, and blue - and thus three possible
reference-comparison channel pairings. Since we would like
to exploit all LCA information between channels, we use
two pairs with green as the reference color channel and red
and blue as the comparison color channels.! This is done
by concatenating two 2D LCA inconsistency vectors, each of
which are determined from one reference-comparison channel
pair, into a single 4D vector.

P 197 (r) — dZ (v, 0°")

e (r .
€9 (r) o (a7 (x) — df (r,07")

e(r) = ed(r)| T | 1 (eb b gb (13)
. v (dP°(r) —d3’(r,0%7)
ey (I‘) lqb A‘gb(r) N dgb(r, agb)

The superscripts gr and gb denote green-to-red (i.e. using the
green channel as reference, and red as comparison) and green-
to-blue LCA, respectively. Furthermore, since the true global
model of LCA is typically unknown for an image, we estimate
it for each of the color channel pairs using the iterative Guass-
Newton method described in Sec. II-B substituting 6* for 0
in the equation above.

C. Optimal Detection

In order to determine if an image region contains forged
content, we begin by measuring a sequence of N LCA incon-
sistency vectors {e(ry),e(rs),...,e(ry)} from the N corner
points in that region, and use this sequence to construct a
hypothesis test. We assume the sequence of LCA inconsistency
to be either purely observational noise that is IID Gaussian
about mean p,, and thus not indicative of forged content,

The third possible pair, red-to-blue LCA displacement, adds no new
information since it can be determined by the addition of red-to-green and
green-to-blue LCA.
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or alternatively the sequence of LCA inconsistency contains
a forgery offset with IID Gaussian distribution about mean
o + 0 and thus indicative of a forgery. We use the log-
likelihood ratio to construct the optimal detection statistic,
which is compared to a threshold to render a decision.

From the two forms of the LCA inconsistency model shown
in (11) and (12), we form the following two hypotheses:

Hy: e(r) ~N(py,X)
Hy ' elr) ~ Ny +6.5)

Authentic
Forged

(14)
15)

The mean of the observational noise p, and covariance of the
observational noise X are not known apriori and are estimated
from all LCA inconsistency vectors outside of the region.
The following equation specifies the likelihood £(-) of mean
p and covariance 3 conditioned on an observed sequence of
N independent and identically distributed LCA inconsistency
vectors {e(r1),e(rz),...,e(rn)}:
L(pn,Xle(ry),...,e(rn))
= f(e(r1)7 s 7e(rN)“"l" E)
‘E‘_N /2 1 X

- W Py 75 Z; (e(r;) — )" =71 (e(r;) — )
) (16)

where f(-) is the probability density function of a sequence
of N independent and identically distributed 4D Gaussian
random variables.

We construct a log-likelihood ratio using the likelihood
function (16) with the two hypotheses in (15):

o f(e(rl)v"'ve(rN”p’O +67 2)
lg( f(e(r), - e(rn)|pg, =) )

N
Z(ei — Mo — 5)T2_1(e(1’z‘) — Mo —0)
1

a7

N =

7

+ (e(ri) — po) "= (e(r;) — o)

N =

Il
-

K2

Applying a threshold to (17) forms an optimal, Neyman-
Pearson detector. Algebraic reduction yields a simplified form
of the optimal detector:
_ Tw-—1 Hy
NEe—py) X0 (18)
H,

where e is the sample average of the N LCA inconstancy
vectors e(r;),i € {1,..., N} measured in a region, and 7 is a
decision threshold, such that when the detection score is less
than 7 we accept the null hypothesis Hj and declare the region
to be authentic. Alternatively, if the detection score on the left
side of (18) is greater than 7, we reject the null hypothesis
and declare the region to be forged.

We note that the optimality of this detector requires the
assumptions of e(r) to be Gaussian and IID. In practice, these
assumptions may not be exact and as a result the detector may
not always form the optimal decision region. This may arise
due to mismatch between the estimated LCA global model
and true global model, which may contain 2nd or higher order
terms than used in (1). However, empirical results in Sec. VI,
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Fig. 7. Normalized histograms of the horizontal component of green-to-

red LCA inconsistency in a forged image. We model both distributions as
Gaussian, where the inconstancy in the forged region has a forgery-related
bias. The forgery was created by copying a 512x512 pixel block from a Sony
DSC-H50 image and randomly pasting into a Olympus Mju 1050 SW image.

which show markedly improved detection performance over
prior art, suggest that these assumptions may be close enough
in practice.

The form of this detector differs slightly from our previous
derivation in [24] where the scaling by N is not included.
In our previous derivation, we had implicitly assumed that
the number of LCA inconsistency observations N in a region
is constant and thus absorbed into the decision threshold. In
practice, the number of inconsistency vectors in a region is
dictated by the number of corner points that are found, which
are scene dependent and not controllable. So, by allowing N to
scale, this form is able to account for variations in the number
of corner points in a region, which leads to a superior result
as shown in our experimental validation.

Furthermore, without knowledge of the LCA in the forged
region’s source image, the forgery offset § is unknown. In its
place, we use its maximum-likelihood estimate d. Since LCA
inconsistency in forged regions has a Gaussian distribution
with mean g, + d, we determine the forgery offset estimate
with the following equation.

N
; 1 ~
5=N;e(ri)—uo=e—uo (19)

Substituting & for & in (18) yields:

_ Tw-1/- Ho
N(Ee—py) X (efuo)ET (20)

which is the final form of our proposed detection metric.
The resulting metric above takes the form of a scaled (by
N) Mahalanobis distance. The Mahalanobis distance provides
a metric of dissimilarity between the LCA inconsistency in
a region and purely observational noise. Notably, the inverse
covariance matrix X' term takes into account any inherent
component correlations that may exist in the authentic incon-
sistency distribution, which aids in detection if those same
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Fig. 8. Average number of similarity calculations performed in the estimation
of local LCA displacement at image locations in the “Schoner Muehle” and
“Reed” image sets. The proposed Diamond Search method reduces the number
of similarity calculations by over two orders of magnitude for upsample factors
6 and greater.

correlations do not exist in the forged region. Additionally, the
scaling term N provides some confidence proportional to the
number of observations; it allows small forgery offsets to be
detected provided there are enough observations, and prevents
single outliers from causing false alarms.

V. COMPUTATIONAL EFFICIENCY EXPERIMENTS

Fast and accurate estimates of local lateral chromatic aber-
ration (LCA) are essential to the practical forensic investigator.
Here, we evaluate the computational efficiency and accuracy
performance of our proposed LCA estimation algorithm com-
pared to the method presented by Gloe et al. [22]. In one
experiment, we estimated local LCA displacements in natural,
JPEG compressed images from the publicly available Dresden
Image Database [25]. We compared the number of similarity
calculations performed by each method in the estimation of
local LCA, as well as elapsed processing time. We found
that our proposed method reduces the number of similarity
calculations by at least one, and typically two orders and
reduces computation time at least one, and typically two orders
of magnitude compared to Gloe et al.’s method, achieving
substantial time savings.

In another experiment, we evaluated estimation error in-
troduced by each method. We compared local estimates to
known LCA in a synthetically generated checkerboard image.
We found that our method incurs no additional error over Gloe
et al.’s method, and does so in a much more run-time efficient
manner.

A. Computation and Run-Time Efficiency

In our first experiment, we tested the computational effi-
ciency improvement of using our proposed diamond search
(DS) algorithm, compared to the exhaustive search (ES)
method proposed by Gloe et al. We started with a database of
434 images from the “Schoner Muehle” and “Reed” image sets
of the Dresden Image Database. These image sets were chosen
for their diversity of texture and texture location, and contain
unaltered images from 27 camera models. We randomly chose
one image from each camera model. In each image, 100 corner
points were chosen at random among those that exceeded
a threshold of 0.005 as determined by the Shi and Tomasi
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Fig. 9. Average estimation time of local LCA displacement per location, in
seconds, in images from the “Schoner Muehle” and “Reed” image sets. The
proposed Diamond Search method reduces estimation time by over two orders
of magnitude for upsample factors 6 and greater.

corner metric [26]. In total, we estimated LCA at 2700 corner
locations.

We then compared the elapsed time and number of simi-
larity calculations performed in the estimation of local LCA
displacement at each corner point. For the estimation of
LCA, we used a window size of W = 64 x 64, maximum
displacement A = 3, and upsample factor v varied from 2
to 10. We used the correlation coefficient [28] as a similarity
measure with the green color channel as the reference channel
and the red color channel as the comparison channel.

Fig. 8 summarizes the average number of similarity calcula-
tions performed by each algorithm in the estimation of a single
local displacement. We see that at all upsample factors our
proposed diamond search (DS) method estimates local LCA
with fewer similarity calculations than Gloe et al.’s exhaustive
search (ES) method. For example, at an upsample factor of
5 our method estimates local LCA with an average of 14.4
similarity calculations, which is 1.5% of the 961 similarity
calculations used in the exhaustive search method. Further-
more, at an upsample factor of 10, our method estimates local
LCA with an average of 16.3 similarity calculations, which is
0.4% of the 3721 similarity calculations used by the exhaustive
search method.

Fig. 9 summarizes the mean computation time of estimating
a single local displacement for each algorithm.”? At each
upsample factor the DS algorithm achieves an improvement in
run-time efficiency over the ES method. At an upsample factor
of 5, the ES estimates a single displacement in an average of
0.77 seconds, whereas the DS completes 59 times faster in an
average of 0.013 seconds. At an upsample factor of 10, the ES
estimates a single displacement in 21.96 seconds compared to
0.099 seconds for the DS, 221 times faster. As an example of
the scale of improvement in a forgery investigation, measuring
local LCA in 1000 images with 1000 corners each would take
over 8 months using the exhaustive search using an upsample
factor of 10, compared to just one day and 4 hours using the
diamond search.

2Experiments were conducted on a 3.4 GHz Intel i7-4770 CPU using
MATLAB 2015b.

Source code for this work can be found at misl.ece.drexel.edu/downloads
or the project git repository gitlab.com/mislgit/misl-lca-tifs
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TABLE I
MEAN EUCLIDEAN ERROR (PIXELS) OF LOCAL LCA DISPLACEMENTS
ESTIMATED IN A SYNTHETIC CHECKERBOARD IMAGE

Upsample Factor, u
2 3 4 5 6 7 8 9 10

Clean Image
ES 0.050 0.026 0.015 0.013 0.010 0.010
DS 0.050 0.026 0.015 0.013 0.010 0.010

0.009
0.009

0.008
0.008

0.006
0.006

Noisy, Blurred, and JPEG Compressed Image
ES 0.138 0.080 0.063 0.059 0.060 0.060
DS 0.138 0.080 0.063 0.059 0.060 0.060

0.057
0.057

0.057
0.057

0.057
0.057

B. Estimation Error

In the second experiment, we measured the estimation
error incurred by our algorithm and compare to Gloe et al.’s
algorithm. To do this, we generated a synthetic checkerboard
image with induced, ground truth lateral chromatic aberration.
We then calculated local estimates in the image using our
proposed method and the one proposed by Gloe et. al, and
compare to the ground-truth LCA.

The checkerboard image has 100 x 100 pixel blocks, 20
blocks across and 15 blocks down forming a 4000 x 3000 pixel
image. The blocks alternate between black and white creating
1131 corner points, excluding those along the image edge.
We induced artificial LCA into the image using the method
presented in our previous work [20], which algorithmically
shifts and scales the color channels in an image to alter it’s
LCA. We introduced green-to-red LCA with an optical center
at the center of the image, with an expansion coefficient of
1.00032, simulating an Agfa Sensor 530s image. In order to
simulate a real-world imaging scenario, we created a second
image with additive Gaussian white noise with variance 1/255,
Gaussian blurring with variance 0.25, and JPEG compression
with quality factor 95 and 4:2:0 chroma subsampling. The use
of chroma subsampling reduces the spatial resolution in the
chroma domain, which likely introduces additional error in
the compressed image LCA.

Table I shows the average Euclidean error between the local
estimate and ground truth using Gloe et. al’s exhaustive search
(ES) method and our proposed diamond search (DS) method.
At an upsample factor of 2, both the diamond search and
exhaustive search methods have an average estimation error of
0.05 pixels in the clean image and 0.138 pixels in the noisy,
blurry, and compressed image. At an upsample factor of 10,
both diamond search and exhaustive search methods have an
average estimation error of 0.006 pixels in the clean image
and 0.057 pixels in the noisy, blurry and compressed image.
We see that estimation error decreases as the upsample factor
increases. Intuitively, this is due to the higher upsample factor
allowing for more precise local LCA estimates. Furthermore,
the error incurred is the same between all methods. That
is, there is no accuracy penalty incurred by using our more
efficient approach. The local estimation accuracy was worse
in the noisy, blurry and compressed image than in the clean
version. This finding suggests that image quality plays an
important role in local LCA estimation accuracy and, by
extension, forgery detection accuracy.

10

In addition, we assessed the error between the two methods
by comparing the local LCA estimate values from the timing
experiment in Sec. V-A, which uses captured images from
the Dresden Image Database. At an uspample factor of 10
(the most sensitive measurement resolution), only 1 of the
2700 local estimates was different between the diamond and
exhaustive search methods. The distance between the two
estimates was 0.3 pixels. Without knowing the ground truth
it is impossible to know which estimate is more correct.
The average disagreement between the two methods over all
2700 estimates is 0.3/2700 = 1.1 x 10~* pixels per local
estimate. Since this is well below the expected error in even
the clean and uncompressed synthetic image, we conclude that
any disagreement between the methods is negligible.

The results of the experiments in Sec. V-A and the above
experiments introduce a notion of accuracy-versus-efficiency
trade off. An increase in upsample factor reduces estimation
error, but also significantly increases computational time.
Similarly, a decrease in upsample factor decreases computation
time but also has the effect of increasing estimation error.

VI. FORGERY DETECTION EXPERIMENTS

To test the efficacy of our proposed forgery detection
methodology, we conducted a series of experiments under
various forgery scenarios, and compare to the performance of
the angular error metric proposed by Johnson and Farid [17] as
well as the metric we proposed in previous work (MS‘16) [24],
which doesn’t adjust for the number of corner points.

We started with a database of 16961 unaltered, JPEG
compressed images from the publicly available Dresden Image
Database [25]. Forgeries were created by copying image
content from a source location in a source image and pasting
into a destination location in a destination image. The source
and destination images may be the same image, in the case
of a copy-move scenario. Blocks of size 512 x 512 were
used to create the forgeries, and we required there to be 10
corner points within the source location since LCA cannot be
measured in smooth regions.

To detect forgeries, we first determined corner points at
which to measure local LCA. To do this, we divided the image
into 72 x 72 pixel blocks, and within each block specified the
local estimate location to be the corner point that achieved the
largest corner metric, as defined by the Shi and Tomasi metric,
among those that exceeded a threshold of 0.005.

Second, we estimated local LCA at each specified location
using the procedure described in Sec. III. We used window
a size of W = 64 x 64, maximum displacement A = 3, and
upsample factor v = 5. The green color channel was used
as the reference channel, with both red and blue channels as
comparison. Global LCA estimates are determined for each
test image by using the Gauss-Newton method described in
Sec. II-B to determine estimates of the green-to-red and green-
to-blue LCA model parameters.

The detection method was then applied in regions of interest
within the test image. For forged images, we specified the
region of interest to be the destination location of the forged
content. In authentic images, we defined multiple regions
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Fig. 10. Receiver operator characteristic curves of copy-paste forgery detection in forgery scenarios where source and destination image and location are
chosen randomly. These curves provide a comparison between our proposed metric, one proposed in our previous work (MS’16) and the angular error metric

proposed by Johnson and Farid.

TABLE 11
DETECTION RATES OF RANDOM COPY PASTE FORGERIES COPIED FROM
SONY DSC-H50 AND PASTED INTO AGFA SENSOR530S IMAGES

u=>5 u =10
Prp 0.01 0.05 0.10 0.01 0.05 0.10
Proposed 0.76 087 091 0.80 090 0.93
MS’16 044 077 0.87 049 082 0.90
Ang. Err.  0.10 0.38  0.57 0.12 041 0.59

of interest of size 512 x 512, which span the image with
50% overlap. This region specification was chosen to directly
compare the efficacy of our proposed metric with Johnson and
Farid’s on known forged regions.

A. Randomized Copy and Paste Locations

We tested the efficacy of our proposed detection metric in
generalized forgery scenarios by randomly selecting the source
and destination images, as well as source and destination
locations to create a forgery. By randomly selecting copy
and paste locations, we make no assumptions on location
tendencies of a forger.

Fig. 10 shows receiver operator characteristic (ROC) curves
of our proposed metric, the metric we used in previous work
(MS©16), and the angular error metric proposed by Johnson
and Farid. We tested on forged images created on various
subsets of the image database.

In the first scenario, we restricted the source and destination
images to be from either a Sony DSC-H50 or Agfa Sensor
530s camera. These camera models were chosen for exhibiting
strong LCA characteristics. We create 1000 forgeries for
each of the four possible source-destination camera model
permutations. The ROC curves for the four cases are shown in
Fig. 10a for our proposed metric and the angular error metric.
At a false alarm rate of 0.05, our proposed metric achieved
a positive detection rate between 0.78 and 0.87, whereas the
angular error metric achieved a detection rate between 0.33
and 0.48, highlighting a significant improvement in detection
rate when using our proposed metric. Generally, we found that
cross-camera model forgeries are detected at higher rates, such

TABLE III
DETECTION RATES OF RANDOM COPY PASTE FORGERIES ON ENTIRE
IMAGE DATABASE

u=2>5 u =10
Pryq 0.01 0.05 0.10 0.01 0.05 0.10
Proposed 052 0.66 0.73 059 073 0.79
MS’16 023 054 0.66 028 0.61 0.72
Ang. Err. 007 029 046 0.08 032 0.50

as the “Sony—Agfa” case (i.e. cut from a Sony DSC-HS50
image and paste to a Agfa Sensor530s image), than same-
camera model forgeries, such as the “Agfa—Agfa” case, due
to mismatch between the LCA global model parameters.

Fig. 10b shows the best case from the above scenario where
source images come from a Sony DSC-H50 camera and desti-
nation images are from a Agfa Sensor 530s camera. Fig. 10b
shows, in addition, comparisons to our previously proposed
detection metric (MS‘16) as well as using a higher upsample
factor of 10. The corresponding numeric detection rate values
for these curves at false alarm rates of 0.01, 0.05 and 0.1
are found in Table II. Our proposed algorithm significantly
outperformed both our previously proposed metric and the
angular error metric at all false alarm rates. Notably, at a
lower false alarm rate of 1%, our proposed method achieved
detection rates of 0.76 and 0.80 at upsample factors of 5 and 10
respectively, which improved detection rates over Johnson and
Farid’s angular error metric by 66 and 68 percentage points.
Additionally, we note that increasing the upsample factor from
5 to 10 increased detection rates by 2 to 5 percentage points
in all cases shown in Table II.

In a second scenario, we changed conditions on source
and destination camera models and allowed any image in the
database to be used as the source or destination image. We
created 10000 such forgeries and also compared with a higher
upsample factor of 10. Fig. 10c shows the ROC curves for this
scenario and Table IIT contains the corresponding numeric de-
tection rate values for these curves at false alarm rates of 0.01,
0.05 and 0.1. Again, our new proposed metric outperformed
both our previously proposed metric and the angular error
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Fig. 11. Forgery detection rates by upsample factor. The upsample factor
determines the search resolution of the local LCA estimation method, where
a higher upsample factor yields a finer resolution and thus more accurate
LCA estimates. The proposed forgery detection method was applied to a set
of forgeries with the upsample factor varied. Increasing the upsample factor
from 5 to 10 significantly increases detection rates, with little improvement
at upsample factors greater than 10.

metric at all false alarm rates. For example, at a false alarm rate
of 1%, our proposed method achieved detection rates of 0.52
and 0.59 at upsample factors of 5 and 10 respectively, which
improved detection rates over Johnson and Farid’s angular
error metric by 45 and 51 percentage points. Increasing the
uspample factor from 5 to 10 increased detection rates by 1
to 7 percentage points in all cases shown in Table III. In this
scenario the detection rates for all metrics were lower than
in the first scenario. This is partly due to the fact that some
of the cameras within the Dresden Image Database suppress
chromatic aberration distortions, either computationally or
through multi-element lens configurations. Other cameras may
have worse image quality, which affects local LCA estimation
(see experiments in Sec. V-B), or there may be other sources
of non-LCA chromatic aberrations present, such as purple
fringing aberrations, that may be causing unreliable LCA
estimates.

Also of note is that the angular-error metric cannot render
a decision on the forged and authentic regions that contain
all zero-magnitude LCA displacements, since displacements
with zero magnitude have undefined angle. As a result the
angular-error metric cannot detect some of the forged regions
or false-alarm on some authentic regions. This prevents the
angular error ROC curve from achieving the 100%-detection-
rate 100%-false-alarm-rate point that is typical of ROC curves.

B. Effect of Upsample Factor

In the first experiment, we found that forgery detection
improved when the upsample factor was increased from 5
to 10. In this experiment we explore in depth the effect that
the choice of upsample has on forgery detection. To do this,
we repeated the copy-paste forgery detection experiment as
performed in the previous experiment using different upsample
factors. A higher upsample factor allows for finer resolution
and precision of local LCA estimates, which should give more
accurate forgery detection. To test this, we created an expanded
set of 2500 forgeries by copying a 512 x 512 block from Agfa
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Fig. 12. Receiver operator characteristic curves for the proposed detection
method on forgeries of varying size. Forgeries were created by copying image
content from Agfa Sensor530s images and were pasted into Sony DSC-H50
images, with randomly chosen copy and paste locations. Forged content that
is large relative to the entire image, as with the 512 x 512 case, skew the
global LCA model estimate and consequently degrade detection performance.
Best detection performance is achieved at smaller forgery sizes of 128 x 128
and 256 X 256

TABLE IV
DETECTION RATES OF FORGERIES BY FORGED WINDOW SIZE

u =10
Prap 0.01 0.05 0.10
128x128 0.77 090  0.93
256x256 082 090 094
512x512  0.75 0.85 091

Sensor530s images pasted into Sony DSC-H50 images, using
random copy and paste locations. We measured the forgery
detection rates using our proposed algorithm, with local LCA
estimation performed using upsample factors 5, 6, 7, 8, 9, 10,
12, 15, and 20.

Fig. 11 shows the forgery detection rate versus the upsam-
pling factor obtained at different false alarm rates. Generally,
detection rates increase with the upsample factor. However,
detection improvement flattens out at upsample factors greater
than 10. Detection rates increased by 4.5 percentage points,
from 78.6% to 83.4%, when doubling the upsample factor
from u=5 to u=10 at a false alarm rate of 1%. However,
detection rates only increased by 0.4 percentage points, from
83.4% to 83.8%, when doubling the upsample factor from
u=10 to u=20 at a false alarm rate of 1%.
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Fig. 13. Reciever operator characteristic curves of radial copy-move forgeries. Forged images were created by moving a 512 x 512 block radially inwards
toward the image optical center in (a) Sony DSC-H50 images and (b) Agfa Sensor 530s images. In this forgery scenario, forged local displacements are
inconsistent with the global model in angle only, thus Johnson and Farid’s angular error metric is ineffective.

TABLE V
DETECTION RATES ON RADIAL FORGERIES

Sony DSC-H50 Agfa Sensor 530s

Pry 0.01 0.05 0.10 0.01 0.05 0.10
Proposed 059 0.73  0.80 061 076 0.83
Ang. Err. 001  0.04 0.07 0.00 0.04 0.10

C. Effect of Forgery Size

In this experiment, we tested how the size of the forged
region affects the detection performance of our proposed
algorithm. Since we cannot enforce nor predict the behavior of
an image forger, it is important to understand the limitations
of forgery detection methods. In images with small forged
regions, there are likely fewer keypoints and as a result fewer
opportunities to measure LCA. This can lead to diminished
forgery detection performance. In images with large forged
regions the statistics of the LCA in the forged regions will
become non-negligible, skewing estimates of the global model.
Poor global model estimates result in poor detection perfor-
mance, due to an increase in the LCA inconsistency variance.
Thus, there is likely a range of preferable forgery sizes for
LCA based forgery detection for which any size smaller
becomes too hard to detect, and any size larger causes poor
global estimates.

To test the effect of forgery size on detection performance,
we repeated the random copy and paste forgery experiment
described in Sec. VI-A, varying the size of the copied content.
We copied image content from Agfa Sensor530s images, and
pasted into Sony DSC-HS50 images, using random copy and
paste locations, with forgery blocks of size 128 x 128, 256 x
256, and 512 x 512. For each size scenario, 1000 forgeries
were made. We used a detection window size that matched
the forgery size in each experiment, and a 16 x 16 corner
point selection window to ensure a sufficient number of corner
points for detection in the 128 x 128 case. An upsample factor
of 10 was used.

Fig. 12 shows ROC curves for our proposed detection
method in the different forgery size scenarios. At false alarm
rates less than 40% these curves show that the smaller

128 x 128 and 256 x 256 cases have improved detection rates
over the the larger 512 x 512 forgery size. This suggests that
a forgery size of 512 x 512 is large enough to skew the global
model estimates, leading to poor detection performance. Fig.
12b shows a detailed view of the ROC at false alarm rates
below 10%. At false alarm rates below 1%, the 128 x 128
case shows decreased detection performance relative to the
best case at 256 x 256. The inherent reduction in the number
of corner points available is the likely cause of reduced forgery
detection at the 128 x 128 size. The 256 x 256 has the highest
detection rates at all false alarm rates.

D. Radial Forgery

In this experiment, we tested the efficacy of our proposed
detection method in a difficult forgery scenario where local
displacements are inconsistent with the global model in mag-
nitude only, and not angle. This type of scenario is challenging
to detect from a lateral chromatic aberration perspective. To
do this, we start with the 372 Agfa Sensor30s images and
572 Sony DSC-HS50 images from the database. Forgeries were
made by copying image content from 100x100 pixels away
from the image corners, and moving inwards along the radius
to the image optical center, so that destination location is
100 pixels away from the optical center. This configuration,
where forged LCA is inconsistent in magnitude only, is one
of the most difficult forgery scenarios to detect in from a
lateral chromatic aberration perspective. In total, 971 and 422
forgeries were created using from the Sony and Agfa images,
where there were at least 10 corner points in the source region.

Fig. 13 shows the ROC curves for our proposed metric and
the angular error metric. In both cases, our proposed metric
significantly outperformed the angular error metric, which
did little better than random chance, if at all. For example,
at a false alarm rate of 0.05, our proposed metric achieved
detection rates of 0.76 and 0.73 for the Agfa Sensor530s
and Sony DSC-H50 radial forgeries respectively, whereas the
angular error metric achieved detection rates of 0.04 and 0.04.

While a forger may not explicitly utilize such a scenario,
this experiment highlights a significant deficiency in the de-
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TABLE VI
PROPORTION OF IMAGE AREA THAT HAS UNDEFINED LOCAL LCA ANGLE

Upsample Factor

Camera Model u=>5 u=10
Agfa DC-504 0.33 0.15
Agfa DC-733s 0.60 0.34
Agfa DC-830i 0.42 0.21
Agfa Sensor505-x 0.70 0.35
Agfa Sensor530s 0.09 0.02
Canon Ixus55 0.47 0.22
Canon Ixus70 0.45 0.19
Canon PowerShotA640  0.06 0.01
Casio EX-Z150 0.67 0.43
FujiFilm FinePixJ50 0.59 0.27
Kodak M1063 0.37 0.17
Nikon CoolPixS710 0.55 0.31
Nikon D200 0.24 0.10
Nikon D70 0.40 0.20
Nikon D70s 0.38 0.20
Olympus mjul050SW 0.14 0.05
Panasonic DMC-FZ50 0.50 0.23
Pentax OptioA40 0.45 0.22
Pentax OptioW60 0.35 0.15
Praktica DCZ5.9 0.27 0.09
Ricoh GX100 0.80 0.56
Rollei RCP-7325XS 0.03 0.00
Samsung L74wide 0.20 0.07
Samsung NV15 0.16 0.04
Sony DSC-H50 0.11 0.03
Sony DSC-T77 0.29 0.11
Sony DSC-W170 0.40 0.14
Average 0.39 0.20

tection metric proposed by Johnson and Farid that our method
overcomes.

E. Area of Undefined Angular Error

In this experiment, we estimated the area of images where
local LCA estimates have no magnitude. If content were to be
cut from this area during the creation of a forgery, the angular
error metric would not be able to render a decision, since the
local LCA in such areas have undefined angle.

To measure this area, we divided each image in our database
into 72 x 72 blocks, and measured local LCA at the corner
point within each block with the highest corner metric, among
those that exceeded a threshold of 0.005 as determined by
the Shi and Tomasi corner operator. Then, we calculated the
proportion of blocks that have zero-magnitude LCA, for both
green-to-red and green-to-blue LCA, to the total number of
blocks that contain a corner point.

Table VI summarizes the proportion of image area that
contains zero-magnitude LCA by camera model. The area
proportion varied greatly; the smallest proportion is seen in
the Rollei RCP-7325XS images, where 3% and 0% of the
image area has zero-magnitude LCA for upsample factors 5
and 10 respectively, whereas the Ricoh GX100 images has
80% and 56% area with zero-magnitude LCA. Using a higher
uspample factor reduces the zero-magnitude image area, since
it allows for finer resolution measurement.

Many these cameras with high zero-magnitude area ratios
employ some aberration compensation methods such as multi-
element lenses with achromatic doublets, or low-dispersion
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Fig. 14. Receiver operator characteristic for our proposed LCA-based forgery
detection method and Yerulshalmy and Hel-Or’s PFA-based forgery detection
method. Forgeries were created using images from two different cameras, a
Sony DSC-HS50 and a Canon Ixus-55.

TABLE VII
PROPOSED AND PFA DETECTION RATES ON FORGERIES

Sony DSC-H50 Canon Ixus-55

Praqa 0.01 0.05 0.10 0.01 0.05 0.10
Proposed 073 084 0.89 036 057 0.67
Purp. Fring. 0.03 0.16 0.26 006 021 036

lenses. For example, the specification sheets of the Casio
EX-7Z150, Panasonic DMC-FZ50, and Ricoh GX100 cameras
indicate that they contain such lens configurations, and these
cameras contain high image areas with zero-magnitude LCA.
Images from these types of cameras may not be suitable for
LCA based forgery detection, since they suppress the LCA
fingerprint.

F. Comparison to PFA-Based Forgery Detection

In addition to lateral chromatic aberrations, images may also
contain purple fringing aberrations (PFA) which appear as
blue-purple halos around object edges. Research has shown
that localized inconsistencies in PFA can be used to detect
image forgeries [18]. In this experiment, we compare the
efficacy of our proposed LCA-based method to Yerushalmy
and Hel-Or’s PFA-based method of detecting forged image
regions [18].

To conduct this experiment, we created a set of forg-
eries from images in the publicly available Dresden Image
Database [25]. We created 1000 forgeries using Sony DSC-
H50 images as source image and destination images, and
another 1000 forgeries using Canon Digital Ixus-55 images
as source and destination images. Forgeries were created by
randomly choosing the source image and destination image,
and copying and pasting a 512 x 512 image block from
the source image into the destination image. The source
and destination locations were chosen at random. The set of
forgeries in the Sony DSC-HS50 scenario are same used in the
experiment in Sec VI-A. The Sony DSC-H50 camera were
chosen for the presence of strong LCA traces in those images.
Additionally, the Canon Ixus-55 camera was chosen for the
strong presence of PFA traces in those images. This setup
was used to give a favorable and unfavorable scenario for each
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(a) Sony DSC-H50

(b) Canon Ixus-55

Fig. 15. Example images from (a) a Sony DSC-H50 camera and (b) a Canon Ixus-55 camera taken from the Dresden Image Database. In similar imaging
environments, purple fringing aberrations are perceptible about the light fixtures (red inset) of the Canon image, but not the Sony image. In the Sony image,
magenta and green chromatic aberrations are perceptible (orange inset), whereas the blue-purple and yellow fringing aberrations that are described in [18] are

seen in the Canon image.

method. Fig. 15 shows examples of the PFA and LCA effects
in a similar image for both cameras.

We calculated our proposed forgery detection metric on the
forged region in each image. For the PFA method, we used
an implementation of Yerushalmy and Hel-Or’s method to
detect forged image regions. Briefly, their method works by
first identifying possible PFA events at object edges. Then,
the color profile across each edge is examined in the xyY
color space, and chroma excursions of significant distance
towards the blue-purple region (x= 0.2, y = 0.1) are deemed
PFA events. A direction and reliability measure are assigned
to each PFA event. A sensor center location is then estimated
from the PFA events, and PFA events that do not agree with
the center estimate are assigned high inconsistency scores.
A map of inconsistency scores is created and smoothed via
spatial averaging. If an image region contains an inconsistency
score above a forgery threshold, it is deemed a forged region.
We used an implementation of this method provided by the
authors of [18]. We modified this code to change the fixed
forgery threshold to one that could be varied in order to
measure detection performance at different false alarm rates.
False alarm rates were assessed by measuring the detection
statistic on all unaltered images from the Dresden Image
Database. Each unaltered image was segmented into 512 x 512
blocks with 50% overlap, and the forgery detection metric was
measured for each block. Only images with 300 or more corner
points, and blocks with 10 or more corner points were assessed
to ensure sufficient content to accurately measure LCA and
PFA effects.

The receiver operator characteristics for our proposed LCA-
based forgery detection method and Yerulshalmy and Hel-Or’s
PFA-based forgery detection method are shown in Fig. 14.
In both forgery scenarios, our proposed method outperforms
the PFA-based method. For example, at a 5% false alarm
rate our proposed method detects 84% of the Sony DSC-H50
forgeries whereas the PFA-based method detects 16% of the
forgeries, a 68 percentage point difference. For the Canon
Ixus-55 forgeries, our method detects 57% of the forgeries
whereas the PFA-based method detects 21% of the forgeries,
a 36 percentage point difference.

Interestingly, our proposed method detects more of Sony
DSC-H50 forgeries than the Canon Ixus-55 forgeries scenario,
but the PFA-based method detects fewer Sony DSC-H50
forgeries than the Canon Ixus-55 forgeries. We attribute this
result to the inherent differences in aberrations between the
two camera models. That is, the LCA trace is stronger in the
Sony DSC-H50 images than in the Canon Ixus-55 images,
and the PFA trace stronger in the Canon Ixus-55 images than
in the Sony DSC-H50 images. These effects are shown in
Fig. 15. Our LCA-based method outperforms the PFA-based
method in both tested scenarios. Additionally, the results of
this experiment highlight that the efficacy of each detection
method is tied to the strength of the respective fingerprint in
the forgery.

VII. CONCLUSION

In this paper, we proposed a new methodology for detecting
forged image regions using inconsistencies in lateral chro-
matic aberration (LCA). To do this, we proposed a statistical
model that captures the inconsistency between global and
local estimates of LCA. Using this statistical model, we
pose forgery detection as a hypothesis testing problem, from
which we derive a detection statistic that we show is optimal
when LCA inconsistency is Gaussian and [ID. We conduct a
series of experiments that tests the efficacy of our proposed
methodology and compare against previous metrics. In gener-
alized forgery scenarios, we found that our proposed method
improves detection rates by 51 percentage points over previous
research at a 1% false alarm rate. When using image forgeries
that exhibit strong LCA characteristics, our proposed method
improves detection rates by 68 percentage points over previous
research at a 1% false alarm rate. Additional experiments
show that our proposed methodology overcomes significant
deficiencies of previous research, namely when local estimates
LCA are inconsistent in magnitude only and not angle, and
when forged image content is cut from near optical center,
which cannot be detected by methods in previous research.
We also experimentally characterize the effect of upsample
factor and forgery size on forgery detection performance.
Furthermore, we proposed a new and efficient method to
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estimate lateral chromatic aberration in a digital image. To
do this we adapted for LCA a block matching algorithm,
called diamond search, which efficiently finds the inter-channel
spatial misalignment that is due to chromatic aberration in a
localized region. We experimentally show that our proposed
estimation algorithm reduces estimation time by two orders of
magnitude without introducing additional estimation error.
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