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Abstract—Identifying the authenticity and processing history
of an image is an important task in multimedia forensics.
By analyzing traces left by different image manipulations, re-
searchers have been able to develop several algorithms capable
of detecting targeted editing operations. While this approach has
led to the development of several successful forensic algorithms,
an important problem remains: creating forensic detectors for
different image manipulations is a difficult and time consuming
process. Furthermore, forensic analysts need ‘general purpose’
forensic algorithms capable of detecting multiple different image
manipulations. In this paper, we address both of these problems
by proposing a new general purpose forensic approach using
convolutional neural networks (CNNs). While CNNs are capable
of learning classification features directly from data, in their
existing form they tend to learn features representative of an
image’s content. To overcome this issue, we have developed
a new type of CNN layer, called a constrained convolutional
layer, that is able to jointly suppress an image’s content and
adaptively learn manipulation detection features. Through a
series of experiments, we show that our proposed constrained
CNN is able to learn manipulation detection features directly
from data. Our experimental results demonstrate that our CNN
can detect multiple different editing operations with up to 99.97%
accuracy and outperform the existing state-of-the-art general
purpose manipulation detector. Furthermore, our constrained
CNN can still accurately detect image manipulations in realistic
scenarios where there is a source camera model mismatch
between the training and testing data.

Index Terms—Image forensics, deep learning, convolutional
neural networks, deep convolutional features.

I. INTRODUCTION

INFORMATION about image authenticity can be used in
important settings, such as evidence in legal proceed-

ings and criminal investigations. However, many commonly
available tools can allow a user to make visually realistic
image forgeries. As a result, image manipulation detection
has become a very important task in multimedia forensics.
To determine the authenticity and processing history of dig-
ital images, researchers have developed numerous forensic
approaches during the last decade [1]. Specifically, it has
been observed that image manipulations typically leave behind
traces unique to the type of editing an image has undergone.
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Researchers design forensic algorithms that extract features
related to these traces and use them to detect targeted image
manipulations. This approach has been successful in detecting
many types of image tampering such as resizing and resam-
pling [2], [3], [4], [5], [6], median filtering [7], [8], [9], [10],
contrast enhancement [11], [12], [13], [14], multiple JPEG
compression [15], [16], [17], [18], etc.

Although, research in image forensics has dramatically
advanced, these approaches still suffer from important draw-
backs. New editing operations are frequently developed and
incorporated into editing software such as Adobe Photoshop.
As a result, researchers must identify traces left by these new
operations and design associated detection algorithms. This is
difficult and time consuming since these algorithms are often
designed from estimation and detection theory. Furthermore,
the forensic algorithms described above are designed to detect
a single targeted manipulation. As a result, multiple forensic
tests must be run to authenticate an image. This results
in several challenges such as fusing the results of multiple
forensic tests and controlling the overall false alarm rate
among several forensic detectors.

To address these issues, researchers have recently focused
on developing general-purpose image forensic techniques to
determine if and how an image has undergone processing.
Tools from steganalysis have been adapted to perform general-
purpose image forensics [19], [20]. Specifically, powerful
steganalytic features called the spatial-domain rich model
(SRM) [19] have been successfully used to perform univer-
sal image manipulation detection [20]. Kirchner et al. [7]
showed the effectiveness of subtractive pixel adjacent matrix
(SPAM) [21] features when performing median filtering de-
tection. Furthermore, Fan et al. developed a general-purpose
manipulation detector where image manipulation traces are
learned from Gaussian mixture model (GMM) parameters of
small image patches [22].

While these recent approaches have resulted in noticeable
gains in detection accuracy, several important questions re-
main, including: How should low-level forensic feature ex-
tractors be designed? Do they have a common form? Can
image tampering traces be learned directly from data? Are
there alternative ways of extracting higher-level features for
tampering detection from low-level forensic traces?

Deep learning approaches, particularly convolutional neural
networks (CNNs), provide a potential answer to these ques-
tions. CNNs have attracted a significant amount of attention
given their ability to automatically learn classification features
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directly from data. They have been successfully used on a
variety of different types of signals such as images [23],
speech [24] and text data [25]. While CNNs provide a promis-
ing approach towards automatically learning image manipu-
lation traces, in their existing form they are not well-suited
for forensic purposes. This is because existing CNNs tend to
learn features representative of an image’s content as opposed
to manipulation traces, which are content-independent. As a
result, forensic researchers may ask: Is it possible to force
a CNN to learn manipulation detection features instead of
features that represent image’s content?

In this paper, we propose a new type of CNN architecture,
called a constrained CNN, designed to adaptively learn image
manipulation features and accurately identify the type of edit-
ing that an image has undergone. We use our constrained CNN
to construct a powerful general-purpose manipulation detector
called “MISLnet”, named after our lab, the Multimedia and
Information Security Lab (MISL). To accomplish this, we
propose a new type of convolutional layer called a constrained
convolutional layer that forces a CNN to learn low-level
manipulation features. Many forensic algorithms, such as
resampling detectors [2], [3], median filtering detectors [7]
and other forensic detectors based on steganalytic features like
the SRM [20], operate by first extracting prediction residual
features, then by forming higher-level features from these
residuals. Inspired by this, our constrained convolutional layer
is designed to only learn prediction error filters. This jointly
suppresses the image’s content and adaptively learns low-
level prediction residual features that are optimal for detecting
forensic traces. Higher-level forensic features are learned from
these residuals by deeper layers of our CNN.

Through a series of experiments, we show that our MISLnet
architecture can automatically learn to detect multiple types
of image editing directly from data. This removes the need
for difficult and time consuming human analysis to design
forensic detection features. Our results show that when given
comparable amount of training data, our constrained CNN can
perform as good or better than state-of-the-art general-purpose
detector based on steganalytic features [20]. Furthermore, we
show that we can significantly improve the performance of our
CNN-based detector by using very large amounts of training
data that are computationally prohibitive for forensic detectors
based on the SRM and its associated ensemble classifier. These
results show that our proposed method can achieve 99.97%
accuracy with five different tampering operations using a large
scale data.

The major contributions of this paper are as follows: (1)
We propose a CNN architecture that is capable of detecting
image editing and manipulations. This CNNs architecture
is deeper and more sophisticated than the one we initially
proposed in [26], and its design choices are systematically
investigated through a series of experiments. (2) We intro-
duce our proposed constrained convolutional layer, provide
a detailed discussion of how it is constructed and trained, as
well as provide intuition into why it works. (3) We conduct
a large scale experimental evaluation of our MISLnet CNN
architecture and show that it can outperform existing image
manipulation detection techniques, can differentiate between

multiple editing operations even when their parameters vary,
can detect sequences of operations, can provide localized
manipulation detection results, and can provide extremely
accurate manipulation detection results when trained using a
large scale training dataset.

The remainder of this paper is organized as follows: In
Section II, we present an overview about CNNs in literature.
Then, in Section III we describe how CNNs are used in
multimedia forensics task using the constrained convolutional
layer. Section IV provides details about our proposed CNN
architecture. Finally, in Section V we assess our proposed deep
learning approach in adaptively extracting image manipulation
features through a set of experiments. Lastly, Section VI
concludes our work.

II. CONVOLUTIONAL NEURAL NETWORKS

Deep learning approaches, such as convolutional neural net-
works [27], are an extended version of neural networks. Their
architecture, which is the set of parameters and components
that we need to design a network, is based on stacking many
hidden layers on top of one another. This has proven to be
very effective in extracting hierarchical features. That is, they
are capable of learning features from a set of previously
learned features. In a CNN architecture, the first layer is a
set of convolutional feature extractors applied in parallel to
the image using a set of several learnable filters. These filters
work as a sliding window that convolves with all regions of the
input image with an overlapping distance called the stride and
produce outputs known as feature maps. Similarly, the hidden
convolutional layers extract features from each lower-level
feature maps. Finally, the output of these hierarchical feature
extractors is stacked to a fully-connected neural network that
performs classification.

The convolutional operation between the input feature maps
and a convolutional layer within the CNN architecture is given
in Eq. (1):

h
(n)
j =

K∑
k=1

h
(n−1)
k ∗w(n)

kj + bj(n), (1)

where ∗ denotes a 2d convolution, h(n)
j is the jth feature map

output in the nth hidden layer, h(n−1)
k is the kth channel in

the (n− 1)th hidden layer, w(n)
kj is the kth channel in the jth

filter in the nth layer and b(n)j is its corresponding bias term.
The filter coefficients in each layer are initially seeded

with random values, then learned using the back-propagation
algorithm [27], [28]. The convolutional layers are also fol-
lowed by an activation function to introduce nonlineraity. The
set of convolutional layers yields a large volume of feature
maps. To reduce the dimensionality of these features, the
convolutional layers are followed by another type of layer
called pooling. This reduces the training computational cost of
the network and decreases the chances of over-fitting. There
exist many types of pooling operations such as max, average,
and stochastic pooling. In particular, the max-pooling layer
works also as a sliding window with a stride distance which
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retains the maximum value within the dimension of a sliding
window.

The training process of a CNN is done through an iterative
algorithm that alternates between feedforward and backprop-
agation passes of the data. The weights of the convolutional
filters and fully-connected layers are updated at each iteration
of the backpropagation passes. Ultimately, we would like to
minimize the average loss E between the true class labels (i.e.,
unaltered, manipulated, etc.) and the network outputs, i.e.,

E =
1

m

m∑
i=1

c∑
k=1

y
∗(k)
i log

(
y
(k)
i

)
, (2)

where y∗(k)i and y
(k)
i are respectively the true label and the

network output of the ith image at the kth class with m
training images and c neurons in the output layer. There have
been proposed a variety of solvers [29], [30], [31] to minimize
the average loss.

In this paper, we consider the stochastic gradient descent
(SGD) to train our model [29]. The iterative update rule for the
kernel coefficients w

(n)
ij in CNN during the backpropagation

pass is given below:

∇w(n+1)
ij = ε · ∂E

∂w
(n)
ij

−m · ∇w(n)
ij + d · ε ·w(n)

ij

w
(n+1)
ij = w

(n)
ij −∇w

(n+1)
ij , (3)

where w
(n)
ij represents the ith channel from the jth kernel

matrix in the nth hidden layer that convolves with the ith

channel in the previous feature maps of the (n − 1)th layer,
∇w(n)

ij denotes the gradient of w(n)
ij and ε is the learning rate.

The bias term b
(n)
j in (1) is updated using the same equations

presented in (3). For fast convergence as explained by LeCun
et al. in [28], we use the decay and momentum strategy which
are respectively denoted by d and m in (3).

III. CONSTRAINED CONVOLUTIONAL NEURAL NETWORK

A. Constrained convolutional layer

Instead of relying on hand-designed or predetermined fea-
tures, we propose a CNN-based approach to image manipu-
lation detection. Our approach is able to use data to directly
learn the changes introduced by image tampering operations
into local pixel relationships. We note that if CNNs in their
standard form (such as AlexNet [23]) are used to perform
image manipulation detection, they will learn features that
represent an image’s content. This will lead to a classifier that
identifies scene content associated with the training data as
opposed to learning image manipulation fingerprints.

By contrast, our approach is designed to suppress an image’s
content and adaptively learn image manipulation traces. To
accomplish this, we propose a new type of convolutional layer,
called a constrained convolutional layer, that is designed to
be used in forensic tasks. It is inspired by a common process
that we have observed in many existing forensic algorithms.
Several existing algorithms first use a predetermined predictor
to produce a set of pixel value prediction errors. These
prediction errors are then used as low-level forensic features

from which more sophisticated manipulation detection features
are built. To mimic this process, our constrained convolutional
layer is designed to only learn prediction error filters. The
feature maps it produces correspond to prediction error fields
that are used as low-level forensic traces.

The constrained convolutional layer is placed at the begin-
ning of a CNN designed to perform a forensic task. This serves
to suppress an image’s content (since prediction errors largely
do not contain image content) and provide the CNN with low-
level forensic features. Deeper layers in the CNN will learn
higher-level manipulation detection features from these low-
level forensic features.

To describe the constraints we enforce upon the constrained
convolutional layer, we adopt the notational conventions that
the superscript (`) denotes the `th CNN layer, the subscript
k denotes the kth convolutional filter within a layer, and that
the central value of a convolutional filter is denoted by spatial
index (0,0). We force the CNN to learn prediction error filters
by actively enforcing the following constraints{

w
(1)
k (0, 0) = −1,∑
m,n 6=0 w

(1)
k (m,n) = 1,

(4)

on each of the K filters w
(1)
k in the constrained convolutional

layer during training. Fig. 1 depicts a set of K constrained
convolutional filters convolved with an input image.

The prediction error filter constraints in the constrained
convolutional layer are enforced through the following training
process. Training proceeds by updating the filter weights w(1)

k

at each iteration using the stochastic gradient descent (SGD)
algorithm during the backpropagation step, then projecting the
updated filter weights back into the feasible set of prediction
error filters by reinforcing the constraints in (4). The projection
is done at each training iteration by first setting the central filter
weight to -1. Next, the remaining filter weights are normalized
so that their sum is equal to 1. This is done by dividing
each of these remaining weights by the sum of all the filter
weights excluding the central value. It is worth mentioning that
experimentally we have found that using a central value larger
than one (i.e. set the central value to -10,000 and ensure the
remaining values sum to 10,000) can help improve both the
numerical stability of these filters and the convergence of our
CNNs loss1. Doing this still produces prediction error filters of
the same form, but the filter weights are proportionally larger.
Pseudocode outlining this process is given in Algorithm 1.

B. Analogy with existing forensic approaches

Many existing state-of-the-art approaches to perform image
manipulation detection proceed by extracting hand-designed
prediction residual features. Our proposed constrained con-
volutional layer can be viewed as a generalization of these
non-adaptive feature extraction based approaches. Examples
of these include resampling detectors that use the variance of
prediction residues [3], [32], median filter streaking artifact

1The python scripts used to conduct the experiments can be found at
misl.ece.drexel.edu/downloads or the project git repository https://gitlab.com/
MISLgit/constrained-conv-TIFS2018/.
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Fig. 1: The constrained convolutional layer. The red coefficient is -1
and the coefficients in the green region sum to 1.

Algorithm 1 Training algorithm for constrained convolutional
layer

1: Initilize wk’s using randomly drawn weights
2: i=1
3: while i ≤ max iter do
4: Do feedforward pass
5: Update filter weights through stochastic gradient

descent and backpropagate errors
6: Set wk(0, 0)

(1) = 0 for all K filters
7: Normalize w

(1)
k ’s such that

∑
`,m 6=0 w

(1)
k (`,m) = 1

8: Set wk(0, 0)
(1) = −1 for all K filters

9: i = i+1
10: if training accuracy converges then
11: exit
12: end

residuals [7], median filter residual features [8], [33], SPAM
features [21], and rich model predictors [19]. These examples
of prediction residual features suppress an image’s contents
but still allow traces in the form of content-independent pixel
value relationships to be learned by a classifier.

To provide intuition into this, prediction residual features are
formed by using some function f(·) to predict the value of a
pixel based on that pixel’s neighbors within a local window.
The true pixel value is then subtracted from the predicted value
to obtain the prediction residual r such that

r = f(I)− I, (5)

where I is the input image or image patch. Frequently, a
diverse set of K different prediction functions are used to
obtain many different residual features.

It can easily be shown that the K feature maps produced
by a constrained convolutional layer in Eq. (4) are residuals
of the form (5). A simple way to see this is to define a new
filter w̃k as

w̃k(m,n) =

{
wk(m,n) if (m,n) 6= (0, 0),

0 if (m,n) = (0, 0).
(6)

As a result, wk can be expressed as w̃ − δ where δ is an
impulse filter whose central value is 1 and 0 elsewhere. The
feature map produced by convolving an image with the filter
w

(1)
k in the constrained convolutional layer is

h
(1)
k = w

(1)
k ∗ I = (w̃k − δ) ∗ I = w̃k ∗ I − I, (7)

where h(1)k is the kth feature map produced by the kth con-
strained filter in the first convolutional layer defined in Eq. (1).
By defining f(I) = w̃k ∗ I , we can see these residuals are
produced in the same manner that the above mentioned feature
extraction based approaches produce prediction residuals r
in (5).

The residual predictors used in different multimedia forensic
tasks [2], [3], [7], [20] take the form w̃k to predict local
pixel relationships. Resampling detectors for instance, operate
by computing a probability measure called a p-map from a
prediction residual r of the form shown in Eq. (5). Then
higher-level features in the frequency domain of the p-map
are learned to detect resampling artifacts [2], [3]. To detect
median filtering, Kirchner and Fridrich similarly compute low-
level residual features [7]. These residual features capture
streaking artifacts, then higher-level detection features are
learned. Furthermore, the steganalytic rich model method used
in forensics [20] operates in the same manner by building
several local models of pixel dependencies to compute a
diverse set of residual features. Then higher-level features are
learned using the co-occurrence of these residuals [19].

As a result, our approach suppresses an image’s content
in the same manner as prediction residual based methods.
In order to capture a large number of different types of
dependencies among neighboring pixels, a diverse set of w̃k’s
is typically used. The advantage of modeling the residual
instead of the pixel values is that the image content is largely
suppressed.

Unlike prior forensic methods which use fixed predictors,
however, our approach adaptively learns good predictors for
feature extraction through backpropagation. Nonlinearities can
be further introduced by the subsequent application of activa-
tion functions and pooling layers in higher CNN layers. Thus,
the constrained convolutional layer based approach unifies an
important amount of research in multimedia forensics.

IV. NETWORK ARCHITECTURE

In the previous section, we showed how low-level image
manipulation features can be adaptively extracted using the
constrained convolutional layer approach. We use this ap-
proach to design a CNN that is able to identify the type of
editing operations in an image. Fig. 2 depicts the overall design
of our proposed architecture with details about the size of each
layer. Our architecture consists of four different conceptual
blocks and has the ability to: (i) jointly suppress an image’s
content and learn prediction error features while training, (ii)
extract higher level representation of the previously learned
image manipulation features and (iii) learn new associations
between feature maps in deeper layer by using a block that
consists of 1×1 convolutional filters. These type of filters learn
a linear combination of features located at the same position
but in a different feature map across channels. The output of
the latter block is fed to the classification block which consists
of three fully-connected layers. In this work, the input layer of
our CNN is a grayscale image patch sized 256×256 pixels. In
what follows, we present a detailed overview of our proposed
conceptual blocks as well as the different layers that we have
used in our CNN’s architecture.
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Fig. 2: MISLnet: our proposed constrained CNN architecture; BN:Batch-Normalization Layer; TanH: Hyperbolic Tangent Layer.

A. Conceptual Blocks

a) Prediction error feature extraction: CNNs in their
existing form tend to learn content-dependent features. There-
fore, in our proposed architecture the first block consists of a
constrained convolutional layer [26], [34]. This suppresses the
content and constrains CNN to learn prediction error features
in the first layer [35], [36]. As a result, the first conceptual
block learns low-level pixel value dependency features. These
features are fragile and vulnerable to be destroyed by many
types of nonlinear operations [37] such as pooling and activa-
tion layers which are explained later. Therefore, the output of
this block is directly passed to a regular convolutional layer.

b) Hierarchical feature extraction: In order to learn
higher-level prediction error features, we use a conceptual
block that consists of a set of three consecutive convolutional
layers each followed by a batch normalization, activation
function and pooling layers. Each convolutional layer will
learn a new representation of feature maps learned by the
preceding convolutional layer (lower-level features).

c) Cross feature maps learning: The previously learned
hierarchical features are produced by learning local spatial
association within a receptive field (local region/patch con-
volved with a filter) in the same feature map. Next, a new
association is learned between these feature maps. In order to
constrain CNN to learn only association accross feature maps,
we use 1×1 convolutional layer after the hierarchical feature
extraction conceptual block. This has been demonstrated to
improve the learning ability of CNN in steganalysis [38].
In our architecture, this layer also followed by a a batch
normalization, activation function and pooling layers.

d) Classification: The deepest convolutional features
learned by the previous conceptual block are directly passed
to a classifiation block. This block consists of a regular
neural network that will learn to classify the input data
from the previously learned features throughout CNN. To
improve the performance of our CNN we use the deep features

approach [39] that we explain in Section IV-G. In what follows
we give more details about each type of layer we used in our
CNN.

e) Differences from original architecture: Differences
from original architecture: Compared to our original CNN
architecture proposed [26], our new CNN architecture has
gone through substantial design refinement. Specifically, this
new architecture contains fewer filters in the constrained
convolutional layer, uses a different filter size in the Conv3
(referred to as Conv2 in [26]) convolutional layer, uses a differ-
ent number of filters in the Conv3 and Conv4 layers, includes
one more ‘traditional’ convoltional layer than our architecture
in [26], adds an additional 1×1 layer after the ‘traditional’
convolutional layers, uses a different type of pooling before the
fully connected layers, uses different activation functions, uses
batch normalization instead of local response normalization,
contains a different number of neurons in each fully connected
layer (this network uses noticeably fewer neurons in these
layers), and uses the activations of the last fully connected
layer as “deep features” that are provided to an extremely
randomized tree classifier. These design choices have been
motivated by an extensive series of experiments, the most
important of which are discussed in detail in Section V.
Additionally, while training this network we use a different
initial learning rate as well as a learning rate that decreases
during training [26] uses a fixed learning rate) and train using
a different batch size. Training information for this network is
discussed in detail in Section V.

B. Convolutional Layers

From Fig. 2, one can notice that we use three different
types of convolutional layers, namely one “Constrained Conv”
layer which is the constrained convolutional layer presented
in Section III, three regular convolutional layers and the 1×1
convolutional filters in “Conv5”. More specifically, a patch
sized 256×256 from a grayscale input image is first convolved
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with three different 5 × 5 constrained convolutional filters
with a stride equal to 1. These filters learn the prediction
error features between the estimated center pixel and it’s local
neighbors. The constrained convolutional layer yields feature
maps of prediction residuals of dimension 252× 252× 3.

To learn higher-level representative features and new asso-
ciations between the prediction residual feature maps, we use
three regular convolutional layers, namely “Conv2” with 96
filters of size 7×7×3 and stride of 2, “Conv3” with 64 filters
of size 5× 5× 96 and stride of 1 and “Conv4” with 64 filters
of size 5 × 5 × 64 and stride of 1. The output dimensions
of these convolutional layers are respectively, 126× 126× 96,
63×63×64 and 31×31×64. Finally, we use 128 different 1×1
convolutional filters with stride of 1 in “Conv5”. This type of
layer learns the association across feature maps, i.e., linear
combination of features across channels located at the same
spacial location. The output dimension of this convolutional
layer is 15× 15× 128. Finally, from our architecture one can
notice also that we use a batch normalization layer after every
regular convolutional layer. A brief overview about the batch
normalization layer is given in Section IV-E.

C. Fully-connected Layers

To identify the type of the processing operation that an input
image has undergone, the output of all these convolutional
layers is fed to a classification block which consists of a
fully-connected neural network defined by three layers. More
specifically, the first two fully-connected layers contain 200
neurons. These layers learn new association between the
deepest convolutional features in CNN. The output layer, also
called classification layer, contains one neuron for each possi-
ble tampering operation and another neuron that corresponds
to the unaltered image class.

D. Activation Function

A convolutional layer is typically followed by a nonlinear
mapping called an activation function. This type of function
is applied to each value in the feature maps of every convo-
lutional layer. There exist many types of activation functions.
In computer vision applications, the ReLU activation function
has been used successfully [23], [40]. He et al. [41] proposed
another type of activation function called PReLU that leads
to surpass human-level performance on visual recognition
challenge [42]. Additionally, Clever et al. [43], proposed
the exponential linear units (ELU) activation function, which
considerably speeds up learning and obtains less than 10%
classification error compared to a ReLU network with the same
architecture.

In our proposed CNN, as depicted in Fig. 2 we propose to
constrain the range of data values with the saturation regions of
hyperbolic tangent (TanH) activation function at every stage of
the network. Introducing nonlinearity throughout the network
layers strengthens CNN capability to separate the feature
space. However, one can notice that feature maps learned
by the constrained convolutional layer are not followed by a
TanH layer. This is mainly because the learned prediction error
features can easily be destroyed by many types of nonlinear

operations including activation functions. In our experiments
(see Section V-G), we compare the performance of our pro-
posed TanH based CNN architecture to CNN models with
different choices of activation functions that we mentioned
above.

Finally, the output layer is followed by a softmax activa-
tion function. This type of activation function maps features
learned by the last fully-connected layer to a set of probability
values where the output of all neurons in this layer sum up
to 1. The identification of the image manipulation types in
subject images can be performed by choosing the editing
operation associated with the neuron in the softmax layer with
the highest activation level.

E. Batch Normalization
Researchers in computer vision have developed several

techniques to normalize the data throughout the CNN architec-
ture. Early deep learning architectures use the local response
normalization (LRN) layer which normalizes the central coef-
ficient within a sliding window in a feature map with respect
to its neighbors. Recently Ioffe et al., proposed in [44] the
batch normalization layer which dramatically accelerates the
training of deep networks. This type of mechanism minimizes
the internal covariate shift which is the change in the input
distribution to a learning system.

This is done by a zero-mean and unit-variance transforma-
tion of the data while training the CNN model. The input
to each layer gets affected by the parameters of all previous
layers and even small changes get amplified. Thus, this type
of layer addresses an important problem and increases the
final accuracy of a CNN model. Therefore, in our proposed
architecture we use a batch normalization layer after each
regular convolutional layer. However, the prediction error
convolutional filters outputs are directly convolved with the
next convolutional layer without using the batch normalization
layer.

F. Pooling
In our CNN, we use two different types of pooling, i.e.,

three max-pooling and one average-pooling. We experimen-
tally demonstrate our choice of pooling layers in Section V.
Similarly to [23], we use an overlapping kernel with size 3×3
and stride of 2. Explicitly, the max-pooling layer retains the
maximum value within the local neighborhood of the sliding
window, whereas, the average-pooling layer retains the average
in a local neighborhood. The purpose of this type of layer is
to reduce the dimensionality of the feature maps. This reduces
the computational cost of training and decreases the chances of
over-fitting. More specifically, the set of parallel convolutional
operations yields a high dimensional feature maps volume.
Therefore, pooling layers are useful for subsampling as well
as improving the accuracy by retaining the most representative
features.

In our architecture, the four used pooling layers have
respectively reduced the feature maps dimensions from
126×126×96 to 63×63×96, from 63×63×64 to 31×31×64,
from 31×31×64 to 15×15×64 and finally from 15×15×128
to 7×7×128.



7

G. Deep Convolutional Features

As depicted in Fig. 2, to classify the output features learned
by the set of convolutional layers we use a neural network
classifier with a softmax activation function in the output layer.
However, other approaches to producing a final classification
decision may work better than a fully-connected and softmax
layer. Therefore, we propose to extract the output of the
activation function [39] from the second fully-connected layer
“FC2” by doing a feedforward pass of the training and testing
data after completing the training of our CNN. Subsequently,
we train an extremely randomized trees classifier using the
new collected data. Each 256× 256 patch in the training and
testing data has its corresponding 200 features vector.

V. EXPERIMENTS

To assess the performance of our proposed constrained CNN
for performing image manipulation detection, we conducted
a set of experiments and analysis. In these experiments, we
first evaluated our proposed CNN’s ability to detect a single
manipulation. This was done for each of the editing operations
and parameters listed in Table I. Next, we evaluated our CNN’s
ability to be used as a multiclass classifier to perform general
image manipulation detection with five different editing opera-
tions listed in Table III. We also evaluated our approach in two
more challenging scenarios, i.e., when the editing parameters
are chosen to be arbitrary as listed in Table V, and when the
editing operation can be followed by another editing operation.
We compared our CNN-based approach to an existing general-
purpose manipulation detection approach that uses steganalysis
features [19] to perform manipulation detection [20]. Next,
we compared the performance of our proposed architecture
with different structural design choices, e.g., the choice of
pooling and activation function layers. Finally, we tested the
performance of our proposed CNN trained with a large scale
dataset, then we evaluated it in a real world scenario. The
results of these experiments demonstrate that our CNN can
accurately learn detection features directly from data and
achieve state-of-the-art performance.

In every experiment, we trained each CNN for 60 epochs,
where an epoch is the total number of iterations needed to pass
through all the data samples in the training set. Additionally,
while training our CNNs, their testing accuracies on a separate
testing dataset were recorded every 1, 000 iterations to produce
tables and figures in this section. Note that training and testing
processes were disjoint. We implemented all of our CNNs
using the Caffe deep learning framework [45]. We ran our
experiments using an Nvidia GeForce GTX 1080 GPU with
8GB RAM. The datasets used in this work were all converted
to the lmdb format.

A. Single manipulation detection

In our first set of experiments, we used our proposed CNN
architecture in Fig. 2 to distinguish between images edited
with one particular type of manipulation and unaltered images.
The output layer of our CNN consisted of two neurons, i.e.,
original (OR) versus manipulated image. As described in
Section IV-G, we also used the deep convolutional features

TABLE I: Editing parameters used to create our 10 experimental
databases for CNN-based single manipulation detection.

Editing operation Parameters
Median Filtering (MF) Ksize = 3, 5
Gaussian Blurring (GB) with σ = 1.1 Ksize = 3, 5
Additive White Gaussian Noise (AWGN) σ = 0.5, 2
Resampling (RS) using bilinear interpolation Scaling = 1.2, 1.5
JPEG compression QF = 70, 80

extracted from our CNNs to train an extremely randomized
trees (ET) classifier in order to identify manipulated images
in testing data.

To conduct these experiments, we created 10 different
databases, where each database corresponded to one type of
manipulation with different editing parameters. Each database
consisted of 60, 000 grayscale images of size 256×256 pixels.
These were created using images from the first IEEE IFS-TC
image forensics challenge2. We used 3, 334 images of size
1024×768 for the training and testing data. Each image was
converted to grayscale by retaining only its green color layer.
Next, each grayscale image was divided into 256×256 pixel
subimages, then nine central subimages were retained.

To train our CNNs, we used 50, 000 grayscale patches of
size 256×256 for each type of manipulation. This consisted
of 25, 000 unaltered patches and 25, 000 manipulated patches.
These grayscale patches were created in the same manner
described above by randomly selecting 2, 778 images. Each
block corresponds to a new image that has its corresponding
tampered images created by the 10 different editing operations
listed in Table I, i.e., five types of image manipulations with
two different editing parameters for each.

When training our CNN, we set the batch size equal to
64 and the parameters of the stochastic gradient descent as
follows: momentum = 0.95, decay = 0.0005, and a learning
rate ε = 10−3 that decreases every six epochs (approximately
4, 700 iterations) by a factor γ = 0.5. We trained the CNN
in each experiment for 60 epochs (approximately 47, 000
iterations).

To evaluate the performance of our proposed approach,
we used 10, 000 grayscale patches of size 256×256 for each
type of manipulation listed in Table I. Each testing dataset
consisted of 5, 000 unaltered patches and 5, 000 manipulated
patches. These grayscale patches were made from 556 images
not used for the training in the same manner described
above. Thus, each training dataset has its corresponding testing
dataset for the 10 types of manipulations. Table II depicts the
detection rate for every type of manipulation using the softmax
classification layer and the ET classifier associated with the
deep convolutional features extracted from the second fully-
connected layer as explained in Fig. 2. We trained the ET
classifiers by varying the number of trees from 100 to 600
with a step of 100 then we reported the best detection rates
that our ET-based CNN achieved.

From Table II, one can notice that our proposed CNN can
achieve at least 99.36% (JPEG with QF = 70) detection rate
with all types of manipulations. Noticeably, it can achieve
99.95% detection rate with 5×5 Gaussian bluring database.

2Dataset website: http://ifc.recod.ic.unicamp.br/fc.website/index.py?sec=5
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TABLE II: CNN identification rate for single manipulation detection.

Classifiers MF GB AWGN RS JPEG
3×3 5×5 3×3 5×5 σ = 0.5 σ = 2 Scaling= 1.2 Scaling= 1.5 QF = 70 QF = 80

Sotmax 99.58% 99.57% 99.74% 99.95% 99.82% 99.93% 99.40% 99.53% 99.36% 99.66%
ET 99.82% 99.71% 99.85% 99.87% 99.85% 99.96% 99.62% 99.55% 99.97% 99.89%

TABLE III: Editing parameters used to create our experimental
database for CNN-based general purpose manipulation detection.

Editing operation Parameter
Median Filtering (MF) Ksize = 5
Gaussian Blurring (GB) with σ = 1.1 Ksize = 5
Additive White Gaussian Noise (AWGN) σ = 2
Resampling (RS) using bilinear interpolation Scaling = 1.5
JPEG compression QF = 70

We also can notice that the ET classifier has improved the
detection rate of each corresponding manipulation except with
the 5×5 Gaussian bluring database. Our ET-based CNN ap-
proach can achieve at least 99.55% (re-sampling with scaling
1.2) detection rate with all types of manipulations. Our ET-
based CNN can noticeably achieve 99.97% in identifying
JPEG compression with QF = 70. These results show the
ability of our constrained CNN in extracting good image
manipulation features directly from data with different editing
parameters for binary detection. Additionally, these results are
very promising since our proposed deep learning approach was
able to accurately detect several types of single manipulations
using the same network architecture.

B. Multiple manipulation detection

In the previous experiments, our proposed constrained CNN
was effective at extracting image manipulation features with
different types of tampering for single manipulation detection.
In this part, we evaluate our proposed approach in performing
multiple image manipulation detection. Similarly to the previ-
ous set of experiments, we used the images from the 1st IEEE
IFS-TC image forensics challenge website to create a database
that consisted of 132, 000 grayscale patches of size 256×256.
We used 2, 445 images of size 1024×768 for the training and
testing data.

To train our CNNs, we used 100, 000 grayscale patches
of size 256×256 in which 16, 667 patches were unaltered.
These grayscale patches were made from randomly selected
1, 852 images in the same manner described in the previous
experiment. The altered patches were created using the five
tampering operations listed in Table III. When training our
CNN, we used the same training parameters of the stochastic
gradient descent that we used for the binary classifier with a
learning rate ε = 10−3 that decreased every six epochs (9, 375
iterations) by a factor γ = 0.5. We trained the CNN in each
experiment for 60 epochs (93, 750 iterations). We subsequently
created a testing dataset that consisted of 32, 000 grayscale
patches of size 256×256 where 5, 337 patches were not edited.
These grayscale patches were made from the remaining 593
images not used for the training in the same manner described
above. To create the altered patches we used the same editing
operations listed in Table III.

We used our trained CNN to classify each of the images
in the testing dataset. The overall manipulation identification
rate of our CNN was 99.66%. Table IV shows the confusion
matrices of our two proposed methods. From this table, we
can see that each type of manipulation was identified with an
accuracy typically greater than 99% except for the original and
re-sampled images which were detected with an accuracy of
98.70% and 98.87% respectively. These results demonstrate
that our proposed CNN was able to both accurately detect
tampered images and identify the type of tampering.

Similarly to our single manipulation detection approach, we
compared the performance of using a softmax layer versus
the “deep features” approach with an extremely randomized
trees (ET) classifier. More specifically, we used the activated
deep convolutional features [39] that we extracted from the
second fully-connected layer of our network to train an ET
classifier with 700 trees. In the rest of our experiments, all
the ET classifiers were trained with the same number of
trees, i.e., 700 trees. Our experimental results show that the
ET classifier increased the overall classification rate from
99.26% to 99.66%. We compare the results of ET-based CNN
classifier to our proposed CNN with a softmax classification
layer in Table IV. We can notice that the ET-based CNN
method increased the identification rate of each tampering
operation. The lowest detection accuracy was 99.46% for
Gaussian blurring, which is still very high.

As we noted previously, the constrained convolutional layer
was designed to suppress the scene and learn prediction error
features. Fig. 3 depicts the output of the three filters learned
by the constrained convolutional layer for three different
grayscale images. One can notice that our proposed con-
strained convolutional layer was able to successfully suppress
each image’s content.

C. Multiple manipulation detection with arbitrary parameters

We assessed the performance of our approach at performing
image manipulation detection in a more general scenario
where editing parameters are chosen to be arbitrary. To
accomplish this, we created a training and testing datasets
using the same unaltered 256×256 grayscale patches that
we collected in the previous experiment in Section V-B. We
created modified patches using each of the manipulations
and associated parameter values listed in Table V. When
modifying a patch with using a specific manipulation, the
associated parameter was chosen uniformly at random from
the set of possible values. Additionally, Gaussian blurring
was implemented using OpenCV which determines the blur
variance as a function of the filter size according to the
equation σ2 =

(
0.3× ((Ksize − 1)× 0.5− 1) + 0.8

)2
.

In total, our database consisted of 100, 000 training patches
and 32, 000 testing patches. Table VI shows the confusion



9

TABLE IV: Confusion matrix for identifying the manipulations listed in Table III using MISLnet.
Tr

ue
C

la
ss

Predicted Class Predicted Class
Softmax Extremely Randomized Trees

OR MF GB AWGN RS JPEG OR MF GB AWGN RS JPEG
OR 98.70% 0.67% 0.01% 0.01% 0.13% 0.45% 99.49% 0.15% 0.09% 0.02% 0.13% 0.11%
MF 0.01% 99.08% 0.07% 0.00% 0.00% 0.82% 0.07% 99.77% 0.11% 0.00% 0.04% 0.00%
GB 0.00% 0.05% 99.15% 0.00% 0.00% 0.78% 0.02% 0.41% 99.46% 0.00% 0.11% 0.00%

AWGN 0.03% 0.00% 0.00% 99.96% 0.00% 0.00% 0.02% 0.00% 0.00% 99.98% 0.00% 0.00%
RS 0.05% 0.00% 0.01% 0.00% 98.87% 1.05% 0.07% 0.36% 0.00% 0.00% 99.51% 0.06%

JPEG 0.07% 0.00% 0.00% 0.00% 0.13% 99.79% 0.06% 0.00% 0.00% 0.00% 0.15% 99.79%

Fig. 3: Output of the three learned filters in “Constrained Conv” layer using three different grayscale images.

TABLE V: Editing parameters used to create our experimental
database for CNN-based general purpose manipulation detection
with arbitrary parameters; Gaussian blur with adaptive σ = 0.3 ×
((Ksize − 1)× 0.5− 1) + 0.8.

Editing operation Parameter
Median Filtering (MF) Ksize = 3, 5, 7, 9
Gaussian Blurring (GB) with adaptive σ Ksize = 3, 5, 7, 9
Additive White Gaussian Noise (AWGN) σ = 1.4, 1.6, · · · , 2
Resampling (RS) using bilinear interpolation Scaling = 1.2, 1.4, · · · , 2
JPEG compression QF = 60, 61, · · · , 89, 90

matrices of our two proposed approaches, namely softmax-
based CNN and ET-based CNN. Experiments showed that
our approach can achieve 98.82% and 98.99% identification
rates respectively with the softmax and the ET classifiers.
Noticeably, MISLnet can achieve 99.89% identification rate
for JPEG compression manipulation with continuous quality
factor parameter between 60 and 90, which is particularly high.

These results demonstrate that even in this more challenging
scenario, our CNN is still able to accurately identify image
manipulations. Additionally, in order to have a better repre-
sentation for each type of manipulation this task requires to
train a CNN with a larger training dataset compared to the task
where images have been manipulated with fixed parameters.
In Section V-H, we demonstrate that one can significantly

improve CNN’s performance using a larger size of the training
dataset.

D. Manipulation chain detection with re-compression
To evaluate the performance of MISLnet in another chal-

lenging scenario, we used our CNN to identify an image’s
manipulation history when more than one manipulation could
be applied, followed by JPEG re-compression. To demonstrate
this, we conducted another experiment where each image patch
was edited by a sequence of up to two different manipulations,
then JPEG compressed using a quality factor of 90. By re-
compressing each image after manipulation, we can mimic
conditions similar to those in social networking applications
which typically re-compress each image before distributing it.

We created data for this experiment by using 256 × 256
grayscale image patches collected from the Dresden Image
Database [46]. This was done by retaining the 16 central
blocks of the green color layer of each image. These im-
age patches were then manipulated using a sequence of
the following manipulations: median filtering (MF) using a
5×5 kernel, Gaussian blurring (GB) with σ = 1.1 using a
5×5 kernel, resizing (RS) by a factor of 1.5 using bilinear
interpolation. Each manipulation sequence consisted of up
to two of these operations. We adopt the notation X-Y to
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TABLE VI: Confusion matrix for identifying the manipulations listed in Table V with arbitrary editing parameters using MISLnet.
Tr
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C
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ss

Predicted Class Predicted Class
Softmax Extremely Randomized Trees

OR MF GB AWGN RS JPEG OR MF GB AWGN RS JPEG
OR 97.21% 0.47% 0.02% 1.78% 0.00% 0.53% 97.73% 0.11% 0.04% 1.95% 0.06% 0.11%
MF 0.04% 99.01% 0.24% 0.02% 0.02% 0.68% 0.07% 99.59% 0.26% 0.02% 0.06% 0.00%
GB 0.00% 0.71% 98.73% 0.00% 0.00% 0.56% 0.04% 1.03% 98.93% 0.00% 0.00% 0.00%

AWGN 1.56% 0.02% 0.00% 98.39% 0.00% 0.04% 1.31% 0.02% 0.00% 98.61% 0.00% 0.06%
RS 0.11% 0.36% 0.02% 0.00% 99.16% 0.36% 0.13% 0.19% 0.02% 0.00% 99.64% 0.02%

JPEG 0.09% 0.00% 0.00% 0.02% 0.00% 99.89% 0.17% 0.26% 0.02% 0.04% 0.04% 99.47%

denote a sequence where the patch was first edited using
manipulation X, then subsequently edited using manipulation
Y (i.e. MF-RS corresponds to first applying median filtering,
then applying resizing). We divided these into sets of training
and testing patches created from two separate sets of images
of total size 2, 175, resulting in a set of 296, 000 training
patches and 52, 000 testing patches for both. In total, 29, 600
training patches and 5, 200 testing patches were unaltered. We
then trained MISLnet to distinguish between each sequence of
editing operations.

Tables VII shows the confusion matrix obtained from this
experiment when a softmax is used to perform manipulation
chain classification, while Table VIII shows the confusion
matrix obtained using an extremely randomized trees (ET)
classifier. Results of these experiments demonstrated that
we can achieve an accuracy of 92.90% with the softmax-
based CNN and 94.19% using the ET-based CNN. From
Table VIII, one can observe that we can identity the type of
processing operation with an accuracy typically higher than
91%. Noticeably, we can achieve 99.17% identification rate at
detecting median filtering followed by resampling and 96.69%
at detection Gaussian blur followed by resampling, which is
particularly high. Additionally, one can also observe that the
ET classifier significantly improved the detection rate of the
processing operations followed by median filtering (i.e., GB-
MF and RS-MF). These results demonstrate the robustness
of our proposed CNN at performing image manipulation
detection in a challenging and realistic scenario.

E. Comparison with SRM-based approach

We compared our trained MISLnet CNN for multiple
manipulations to the rich model approach [19], [20] using
both the same training and testing datasets described in Sec-
tion V-B. Table IX displays a confusion matrix containing the
manipulation detection results obtained using the rich model
based approach. The results of these experiments showed
that the rich model approach was able to achieve an average
manipulation identification accuracy of 99.63%. By contrast,
our constrained CNN was able to achieve an accuracy of
99.66% on the same dataset. From Tables IV and IX one can
notice that our CNN achieved better identification rates for
median filtering, Gaussian bluring and re-sampling.

These results demonstrate that our CNN based detector
can perform as well as, or slightly better than, the rich
model based detector. In Section V-H, we show that we can
achieve an even higher detection accuracy with a larger amount

of training data. These results are very important because
our approach can learn salient image manipulation detection
features directly from data. This may allow us to learn better
feature extractors than the human designed incorporated into
the rich model feature extractors.

Training time is an important factor when devising a data-
driven manipulation detection approach. Our CNN based ap-
proach took approximately six hours to train on this database.
By contrast, a multi-threaded implementation (using eight
threads) of the rich model took over 58 hours to perform only
feature extraction on this database using the same computer.
Training the classifier for the SRM took several additional
hours. As a result, it becomes extremely challenging, if not
infeasible, to train the SRM on a very large database.

F. Prediction error feature extractor design choices

The overall performance of MISLnet depends on several
design choices. An important one of these is the design of
first CNN layer, which extracts prediction error features in
our network. To determine the optimal design of this layer,
we conducted several experiments to examine the influence of
other filter type choices for the first CNN layer including the
use of a fixed high-pass filter [37], [38], as well as not using
a prediction error feature extraction block (i.e. beginning our
CNN with a standard convolutional layer). Additionally, we
conducted experiments to determine the optimal number and
size of the filters in the constrained convolutional layer of
MISLnet.

Choice of prediction error feature extractor: We evaluated
the advantage of using the constrained convolutional layer
as MISLnet’s first layer through two sets of experiments. In
each experiment, we trained and evaluated our proposed CNN
architecture using three different choices for the first layer:
(1) using a constrained convolutional layer, (2) without using
a constrained convolutional layer, and (3) replacing the con-
strained convolutional layer in MISLnet with a generic fixed
high-pass filter. In these experiments, we used the same high-
pass commonly employed in forensics and steganalysis [37],
[38].

To assess the performance gains achieved by the constrained
convolutional layer, we report the classification accuracy MIS-
Lnet achieved using each choice of filter for the beginning of
our CNN. Additionally, we report the relative error reduction
achieved by using the constrained convolutional layer instead
of each alternative. Relative error reduction measures the
reduction in error achieved by a classifier normalized by total
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TABLE VII: Confusion matrix for identifying manipulation chains followed by re-compression using MISLnet with a softmax.

Tr
ue
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ss

Predicted Class
OR MF GB RS MF-GB GB-MF MF-RS RS-MF GB-RS RS-GB

OR 99.27% 0.06% 0.12% 0.52% 0.02% 0.00% 0.02% 0.00% 0.00% 0.00%
MF 0.13% 90.54% 0.02% 0.02% 1.08% 3.02% 0.10% 5.10% 0.00% 0.00%
GB 0.00% 0.23% 93.56% 0.25% 0.44% 0.04% 0.04% 0.04% 0.02% 5.38%
RS 0.19% 0.06% 2.12% 97.15% 0.04% 0.00% 0.12% 0.08% 0.00% 0.25%

MF-GB 0.00% 0.10% 0.23% 0.00% 98.08% 0.77% 0.02% 0.04% 0.23% 0.54%
GB-MF 0.00% 1.40% 0.12% 0.00% 8.65% 80.13% 0.08% 9.48% 0.04% 0.10%
MF-RS 0.02% 0.23% 0.00% 0.19% 0.06% 0.50% 97.69% 1.04% 0.27% 0.00%
RS-MF 0.00% 2.90% 0.02% 0.00% 1.65% 10.75% 0.21% 84.21% 0.06% 0.19%
GB-RS 0.00% 0.08% 0.00% 0.02% 0.87% 0.02% 0.94% 0.12% 93.94% 4.02%
RS-GB 0.00% 0.25% 1.06% 0.02% 1.23% 0.08% 0.06% 0.10% 2.71% 94.50%

TABLE VIII: Confusion matrix for identifying manipulation chains followed by re-compression using MISLnet with an ET classifier.

Tr
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Predicted Class
OR MF GB RS MF-GB GB-MF MF-RS RS-MF GB-RS RS-GB

OR 99.33% 0.06% 0.1% 0.05% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00%
MF 0.15% 91.77% 0.02% 0.02% 0.52% 2.12% 0.29% 5.10% 0.00% 0.02%
GB 0.00% 0.21% 95.00% 0.87% 0.42% 0.04% 0.04% 0.00% 0.06% 3.37%
RS 0.17% 0.00% 0.65% 98.94% 0.02% 0.00% 0.08% 0.08% 0.02% 0.04%

MF-GB 0.00% 0.31% 0.19% 0.00% 95.87% 2.48% 0.02% 0.29% 0.42% 0.42%
GB-MF 0.00% 1.44% 0.00% 0.02% 3.38% 86.02% 0.13% 8.87% 0.06% 0.08%
MF-RS 0.02% 0.04% 0.00% 0.01% 0.00% 0.08% 99.17% 0.38% 0.21% 0.00%
RS-MF 0.00% 3.54% 0.02% 0.00% 0.17% 9.38% 0.65% 86.00% 0.17% 0.06%
GB-RS 0.00% 0.02% 0.00% 0.00% 0.40% 0.02% 0.96% 0.06% 96.69% 1.85%
RS-GB 0.00% 0.10% 2.08% 0.06% 0.63% 0.13% 0.04% 0.23% 3.56% 93.17%

TABLE IX: Confusion matrix for identifying the manipulations listed in Table III using the rich model.

Tr
ue
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Predicted Class
OR MF GB AWGN RS JPEG

OR 99.83% 0.07% 0.00% 0.00% 0.02% 0.07%
MF 0.02% 99.23% 0.06% 0.00% 0.13% 0.56%
GB 0.08% 0.09% 99.42% 0.00% 0.04% 0.38%

AWGN 0.00% 0.00% 0.00% 100% 0.00% 0.00%
RS 0.17% 0.04% 0.00% 0.00% 99.47% 0.32%

JPEG 0.02% 0.04% 0.00% 0.02% 0.04% 99.89%

error reduction that is possible. For reference, the relative
error reduction (RER) is calculated according to the formula
RER = (e1 − e2)/e1 where e1 corresponds to the error
achieved by the lower performing method and where e2
corresponds to the error achieved by the higher performing
method.

In our first experiment, we examined the effect of each
filter choice when performing manipulation detection in the
same manner as in Section V-B, i.e. images altered using the
manipulations listed in Table III. This was done by using the
same training and testing datasets described in Section V-B, as
well as the same training procedures (i.e. batch size, learning
rate, etc.). Each trained CNN was then used to classify each
image patch in the test set.

The results of this first experiment are shown in Table X.
From this table, we can see that when MISLnet was trained
without the constrained convolutinal layer, it’s performance
decreased by 0.90%. This corresponds to a relative error re-
duction of RER = 54.87% achieved by using the constrained

convolutional layer. Additionally, we can see that using the
constrained convolutional layer achieved an accuracy 0.31%
higher detection than when a fixed high-pass filter was used.
This corresponds to a relative error reduction of RER =
29.54% over a fixed high-pass filter. These results demonstrate
the advantage of using the constrained convolutional layer.

The full benefit of using a constrained convolutional layer
can be seen when considering more challenging forensic
scenarios. To demonstrate this, we conducted another set of
experiments where each image patch was edited by a sequence
of up to two different manipulations, then JPEG compressed
using a quality factor of 90. By re-compressing each image
after manipulation, we can mimic conditions similar to those
in social networking applications which typically re-compress
each image before distributing them.

We built our experimental database by using the same
training and testing datasets in Section V-D. We then trained
MISLnet to distinguish between each sequence of editing
operations using both a constrained convolutional layer, a fixed
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TABLE X: MISLnet accuracy with different settings in the prediction
error feature extraction block for multiple manipulation detection.

Prediction error conceptual block Accuracy RER (w.r.t. ours)
Constrained conv layer 99.26% −
W/out constrained conv layer 98.36% 54.87%
High-pass filter 98.95% 29.54%

TABLE XI: MISLnet performance with different settings in the pre-
diction error feature extraction block for sequence of manipulations
detection; Image patches were JPEG post-compressed with QF=90.

Prediction error conceptual block Accuracy RER (w.r.t. ours)
Constrained Conv layer 92.90% −
W/out constrained Conv layer 84.10% 55.34%
High-pass filter 80.63% 63.35%

high-pass filter, and without using a prediction error block (i.e.
a normal convolutional layer). Next, we used each version
of our CNN to determine the manipulation sequence of each
patch in the testing set.

The classification accuracies obtained by our CNN using
each choice for the first layer is shown in Table XI. From
this table, we can see that when the constrained convolu-
tional layer was used, MISLnet can identify the sequence
of manipulations used to modify each patch with 92.90%
accuracy. By contrast, using a fixed high-pass filter yields an
accuracy of 80.63%, while using a normal convolutional layer
yields an accuracy of 84.10%. In these experiments, using
a constrained convolutional layer produces a relative error
reduction of 63.35% over a fixed high-pass filter and a relative
error reduction of 55.34% over a normal convolutional layer.
These results clearly demonstrate the advantage of using the
constrained convolutional layer in challenging manipulation
detection scenarios.

TABLE XII: MISLnet detection accuracy with different number of
filters in the “Constrained Conv” layer.

#. Filters Testing Accuracy
1 99.04%
2 98.02%
3 99.26%
4 99.11%
5 99.05%
6 98.97%

“Constrained Conv” layer parameters: We conducted two
sets of experiments to investigate the impact of the number
of filters and their dimension in the “Constrained Conv” layer
on CNN’s performance. To accomplish this, we used the same
training and testing datasets that we described in Section V-B.
In our first experiment, we identified the optimal number of
filters to use in the constrained convolutional layer by letting
the number of filters vary from 1 to 6 and evaluating the
manipulation detection accuracy achieved by our CNN under
each scenario. Table XII shows the results of our experiments.
We can notice that our proposed MISLnet architecture with
the choice of three constrained filters maximizes CNN’s per-
formance and outperforms the other choices of filter numbers
by at least 0.15%.

In our second experiment, we examined the effect of the

Fig. 4: CNN testing accuracy v.s. training epochs, blue: max-pooling
with avg-pooling after Conv5, red: max-pooling, green: avg-pooling.

TABLE XIII: CNN testing accuracy with different pooling operations.

Pooling operations Accuracy
Avg-pooling 96.35%
Max-pooling 98.95%

Max-pooling w/ avg-pooling after Conv5 99.26%

size of the filters in the constrained convolutional layer. This
was done by evaluating the detection accuracy of our CNN
using filters of size 3×3, 5×5 and 7×7 in the constrained
convolutional layer. We kept the total number of filters in
the “Constrained Conv” layer fixed (3 filters). Experiments
showed that our choice of 5×5 “Constrained Conv” layer
with 99.26% identification rate outperforms the other dimen-
sion choices. More specifically, with 3×3 constrained filters
MISLnet can achieve 98.91% identification rate and 99.07%
identification rate when using 7×7 constrained filters in the
“Constrained Conv” layer. Taken together, the results of these
two experiments show that using three 5×5 filters in the
constrained convolutional layer maximizes the performance of
our CNN.

G. Architecture design choices

The structural design of a CNN’s architecture has a large
impact on its final accuracy. We ran several sets of additional
experiments related to the structural design of our CNN’s
architecture. In this paper we present three of these exper-
iments, namely (1) the choice of the pooling layer, (2) the
choice of the activation function, and (3) the choice of the
stride size in the “Conv2” layer with different input patch sizes
(i.e., 256×256, 128×128 and 64×64). To accomplish this, we
started with the fixed architecture defined in Fig. 2. Then we
changed one architectural design choice in each experiment
such as the choice of pooling layer or activation function.
For smaller patch sizes, each image patch in the training and
testing datasets were cropped in the center.

Pooling layer: We first evaluated the impact on our CNN’s
performance using different types of pooling layers. We
trained three CNN models using the architecture described
in Fig. 2 with different choices of pooling layers, i.e., max-
pooling, average-pooling and max-pooling with average pool-
ing after the “Conv5” layer. In our CNN we used 1×1 convo-
lutional filters in the “Conv5” layer to learn new association
between feature maps. Because of this, the choice of pooling
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Fig. 5: CNN testing accuracy v.s. training epochs with different
activation functions, blue: TanH, red: ReLU, purple: PReLU, green:
ELU.

TABLE XIV: CNN testing accuracy with different activation func-
tions.

Activations functions Accuracy
PReLU 98.63%
ReLU 99.02%
ELU 99.02%
TanH 99.26%

before the fully-connected layers that perform classification
is important. Table XIII summarizes the best identification
rates achieved by the different pooling choices that we have
considered in this experiment. We can observe that the choice
of max-pooling with average pooling after the “Conv5” layer
outperforms the other pooling choices and can achieve an
average accuracy of 99.26%. From Fig. 4, one can also
notice that the average-pooling layer based CNN converges
considerably slower to a lower overall accuracy than the other
two alternatives.

Activation function: In our second experiment, we evaluated
the choices of activation functions. We compared our TanH-
based network in Fig. 2 to ELU, ReLU and PReLU based
networks. We report the best achieved identification rates of
these networks in Table XIV. We can notice that the TanH
network performance is 0.63% better than a PReLU network
and 0.24% better than ReLU and ELU networks. Fig. 5 depicts
the testing accuracy versus the training epochs curves for the
four choices of activation function. One can observe from this
that TanH and ReLU networks converges slightly quicker to a
higher accuracy.

Convolutional Stride Size: The choice of the convolutional
stride size is important since it will determine the dimension of
features throughout CNN. The bigger the convolutional stride,
the smaller the dimension of the feature maps produced by the
CNN. This is critical when using relatively small input patch
sizes. We evaluated the impact of the stride size in the “Conv2”
layer on the CNN’s performance. When performing image
manipulation detection using different patch sizes, the CNN
architecture with 256×256 input layer doesn’t necessarily
achieve the best identification rate. Therefore, we compared
the identification rate of our CNN using a stride of 1 versus
using a stride of 2 in “Conv2” layer (see Fig. 2) with different
input patch size.

The results of our experiments are shown in Table XV. We

TABLE XV: Identification rate of CNN when trained with different
image patch sizes; stride of 1 versus stride of 2 in “Conv2” layer.

Patch size Stride of 1 Stride of 2
256×256 98.93% 99.26%
128×128 98.48% 98.25%
64×64 97.80% 97.33%

can notice that with 128×128 and 64×64 patches, a CNN
that uses a stride of 1 in “Conv2” layer outperforms one that
uses a stride of 2 in the “Conv2” layer. Thus, the “Conv2”
layer with a smaller stride extracts higher dimensional features
which may lead deeper CNN layers to extract better high-level
image manipulation features. However, with 256×256 patches,
a CNN with a stride of 2 in the “Conv2” layer can achieve a
higher identification rate. These experiments show that using
different choices in the structural design of CNN we can still
improve the identification rate with smaller input patches. In
the rest of our experiments we use a stride of 1 in the “Conv2”
layer only with patches smaller than 256×256.

H. Effect of training set size

We have shown through our experiments that our proposed
constrained CNN is very effective at learning manipulation
detection features and accurately detecting multiple manipu-
lations. A CNN’s performance, however, is dependent on the
size and quality of the training set [47], [48]. We conducted
an experiment to show the effect of the training set size on our
CNN’s accuracy. This experiment shows that we can improve
our results even further using a large database of training data.
Given the limited number of images in the 1st IEEE IFS-
TC image forensics challenge database, we used the Dresden
Image Database [46] to build our training and testing data.
In total, our experimental database consisted of 1, 250, 000
grayscale patches of size 256×256.

We built our training dataset in the same manner that we
described in the previous experiments. Our training dataset
consisted of 1.2 million patches where 200, 024 patches were
unaltered and 999, 976 patches were altered. To accomplish
this, we randomly selected 16, 483 images that we divided into
256×256 blocks and we retained all the nine central patches
from the green layer of the first 14, 816 images and the 40
central patches from the green layer of the remaining images.
We then created their corresponding edited patches using the
five tampering operations listed in Table III.

We trained our CNN with different input patch sizes (i.e.,
256, 128 and 64) and different numbers of training patches
(i.e., 100K, 200K, 400K, 800K and 1.2M ). For training, we
used the same parameters that we used in the previous set of
experiments, where the learning rate was decreased every six
epochs and every CNN was trained for 60 epochs.

To evaluate our trained CNNs, we built a testing dataset
that consisted of 50, 000 grayscale patches of size 256×256
where 8, 350 patches were not tampered. These grayscale
patches were made from 334 images not used for the training.
Similarly to the training dataset, all the images were divided
into 256×256 blocks and we retained all the 25 central patches



14

Fig. 6: CNN testing accuracy v.s. number of training patches from Dresden database [46] using Softmax (dashed line) and Extremely
Randomized Trees (ET) (solid line) with different patch sizes; blue: 256×256, red:128×128, green: 64×64.

Fig. 7: Training and testing loss versus training epochs using 1.2
million training patches and 50K testing patches from Dresden
Database of size 256×256. Losses were recorded every 1K iterations

TABLE XVI: MISLnet performance when trained using 1.2 million
patches from the Dresden Image Database [46] and tested on patches
from the both the Dresden Image Database and from a dataset of
images taken by 34 different camera models (External Testing Data).

Dresden Testing Data External Testing Data
Patch size Softmax ET Softmax ET
256×256 99.93% 99.93% 99.27% 99.33%
128×128 99.61% 99.67% 99.60% 99.69%
64×64 99.36% 99.43% 99.38% 99.51%

from the green layer. The edited testing patches were created
using the five tampering operations listed in Table III.

Fig. 6 depicts the testing accuracy of our constrained CNN
versus the number of training patches. Results are shown
for different input patch sizes using both softmax and ET
classifiers. We can notice that the performance of our CNN
is almost always improved when we used a larger number
of training patches. One can observe that when the number
of training patches is sufficiently large, the softmax and ET
classifiers achieve almost the same testing accuracy. Our CNN
was able to achieve at least 99.18% with 100, 000 training
patches of size 64×64. Additionally, we can observe that when
CNN trained with 1.2 million training patches of size 256×256

we can achieve 99.93% using softmax and ET classifiers. This
is noticeably better than the results achieved by the SRM.

To differentiate overfitting from poor optimization, machine
learning researchers monitor the loss rate on the training set
and the testing set [48]. If the training and testing losses
converge to approximately the same rate, and the testing loss
rate does not increase over training cycles (i.e., epochs), it is
an evidence that the CNN is not overfitting [48].

Fig. 7 depicts the training and testing loss versus the training
epochs of our CNN trained with 1.2 million patches and tested
with 50 thousand patches of size 256×256. Both training and
testing datasets were collected from the Dresden database and
used in the previous experiment in Section V-H where CNN
was trained with different size of large scale data. Recall that
training and testing are disjoint in all our experiments.

One can observe that the testing loss decreases throughout
the training epochs. We can notice that after 48 epochs as
we add more training cycles (i.e., epochs) the testing loss
does not increase and both training and testing converge
to approximately the same loss rate (see Fig. 7). Thus, we
experimentally demonstrated that the proposed CNN is not
overfitting [48]. This demonstrates also that we can avoid
overfitting when training a reasonably small CNN with a large
scale training data [48]. It is worth mentioning that in all our
experiments CNN achieves its best identification rate when the
testing loss decreases and converges to the same training loss
rate during the last several epochs of training. In what follows
we evaluate our proposed approach in real world scenario.

I. External experimental database

In a real world scenario, a forensic investigator must
examine images captured by several different and possibly
unknown cameras. These may be different than the cameras
used to train their CNN. It is important for their results to
hold consistent when using two different sets of data captured
by different devices for training and testing. To mimic this
scenario, we used our CNN trained with 1.2 million patches
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TABLE XVII: Confusion matrix for identifying the operation types using MISLnet (w/ softmax) trained with 2.5 million patches.

Tr
ue

C
la

ss

Predicted Class
OR MF GB AWGN RS JPEG

OR 99.95% 0.01% 0.00% 0.00% 0.00% 0.04%
MF 0.02% 99.89% 0.02% 0.00% 0.02% 0.04%
GB 0.00% 0.00% 100% 0.00% 0.00% 0.00%

AWGN 0.00% 0.00% 0.00% 100% 0.00% 0.00%
RS 0.00% 0.00% 0.00% 0.00% 99.99% 0.01%

JPEG 0.01% 0.00% 0.00% 0.00% 0.00% 99.99%

from the Dresden database to perform general-purpose image
manipulation detection on images taken using 34 different
camera models that we have manually collected.

To evaluate the performance of our trained CNN on a
different dataset, we built a “wild” testing dataset of images
taken by 34 new camera models. This dataset consisted of
50, 000 grayscale patches of size 256×256, where 8, 350
patches were not edited. This was accomplished by retaining
all the 25 central 256×256 blocks from the green layer of 334
randomly selected images. Next, similarly to our previous set
of experiments, we created their corresponding edited patches
using the five tampering operations listed in Table III.

Table XVI shows the performance of our CNN in a “real
world” scenario with different input patch sizes. One can
notice that we can still identify the type of image editing with
at least 99.33% accuracy when we use 256×256 testing input
patches. We also can notice that with smaller patch sizes our
deep learning method is able to detect the type of image editing
with an accuracy higher than when tested on patches from the
Dresden testing dataset. More specifically, in the real world
scenario, our proposed ET-based constrained CNN can identify
the different types of image manipulations in 64×64 and
128×128 input image patches with accuracies of 99.51% and
99.69% respectively, whereas with our Dresden experimental
testing dataset it can achieve accuracies of 99.43% and 99.67%
respectively. These results demonstrate the robustness of our
proposed approach when used in real world scenarios.

Finally, to further improve the learning ability of CNN we
built a new training dataset that contains 2.5 million patches
from our collected ‘34-camera-model’ database to classify
each patch in the testing dataset. To accomplish this, we
similarly retained all the 25 central patches of size 256×256
from the green layer of the remaining 16, 667 images not used
for testing. Then we created their corresponding edited patches
using the five tampering operations. In total, the unaltered
training patches consisted of 416, 675. We finally trained our
CNN using the same parameters that we have used in the
previous experiments.

We used our re-trained CNN to identify the type of manipu-
lation the testing dataset described in the previous experiment.
Our proposed constrained CNN was able to classify the testing
dataset with 99.97% accuracy. Table XVII shows the confusion
matrix of the trained CNN. Our method can achieve at least
99.89% accuracy for all manipulations considered. Notice-
ably, our approach can identify Gaussian blur and AWGN
operations with 100% accuracy. Additionally, compared to the
performance using 100K training patches (see Table IV), one

can notice that our CNN trained with significantly more data
can accurately distinguish between JPEG compressed images
and both resampled and unaltered images. Similarly to the
experiments in Section V-H, these results demonstrate again
that with a larger scale of training data we can improve our
CNN’s performance.

VI. CONCLUSION

In this paper, we proposed a novel deep learning based
approach to perform general-purpose image manipulation de-
tection. Unlike existing approaches that rely on hand-designed
features, our proposed CNN is able to jointly suppress an
image’s content and adaptively learn image manipulation de-
tection features directly from data. To accomplish this, we de-
veloped a new type of layer, called a constrained convolutional
layer, that forces our CNN to learn prediction error filters
that produce low-level forensic features. Using this layer, we
designed a new CNN architecture that is able to accurately
detect multiple types of image manipulations.

Through a series of experiments, we assessed the ability of
our proposed constrained CNN to perform image manipulation
detection. The results of these experiments showed that our
CNN can be trained to accurately detect individual targeted
manipulations as well as multiple types of manipulations.
To further assess the performance of our constrained CNN,
we compared it to the SRM-based general purpose image
manipulation detection approach (i.e. the current state-of-the-
art detector) using five different image manipulations. This
experimental comparison showed that our proposed CNN
architecture can outperform the SRM, particularly when using
large scale training data. Additionally, we conducted a set of
experiments to mimic a realistic scenario where a forensic in-
vestigator will use our CNN to analyze images from different,
possibly unknown source devices than we used to train our
CNN. These experimental results show that our CNN can still
accurately detect image manipulations even when there is a
source mismatch between the data used to train our CNN and
an image under investigation.
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