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ABSTRACT

Identifying the model of the camera that captured an image is an im-
portant forensic problem. While several algorithms have been pro-
posed to accomplish this, their performance degrades significantly if
the image is subject to post-processing. This is problematic since so-
cial media applications and photo-sharing websites typically resize
and recompress images. In this paper, we propose a new convolu-
tional neural network based approach to performing camera model
identification that is robust to resampling and recompression. To
accomplish this, we propose a new approach to low-level feature ex-
traction that uses both a constrained convolutional layer and a non-
linear residual feature extractor in parallel. The feature maps pro-
duced by both of these layers are then concatenated and passed to
subsequent convolutional layers for further feature extraction. Ex-
perimental results show that our proposed approach can significantly
improve camera model identification performance in resampled and
recompressed images.

Index Terms— Camera identification, convolutional neural net-
works, constrained convolutional layer, deep convolutional features.

1. INTRODUCTION

Digital images are frequently used in important settings, such as ev-
idence in legal proceedings or criminal investigations. In order to
trust these images, it is important to verify their source. As a result,
many forensic algorithms have been developed to blindly determine
the make and model of an image’s source camera [1]. Forensic algo-
rithms have been developed to perform camera model identification
using a wide variety of features including heuristically designed sta-
tistical metrics [2], linear estimates of demosaicing traces [3, 4, 5],
demosaicing residuals [6, 7] and rich model features [8].

Recently, researchers have begun adapting convolutional neu-
ral networks to perform forensic tasks. Initial CNNs designed to
perform camera model identification operate by first suppressing an
image’s contents and extracting low-level using a fixed high-pass fil-
ter [9]. These low-level features are then passed to a CNN. This
approach was first proposed in steganalysis research [10]. Alterna-
tively, low-level forensic features can be adaptively learned using a
layer known as a constrained convolutional layer [11]. This layer,
which was initially proposed to learn image manipulation detection
features, is able to jointly suppress an image’s content and adaptively
learn diverse set of linear prediction residuals while training a CNN.

While these approaches can succesfully identify the model of an
unaltered image’s source camera, their performance often degrades
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signficantly if the image is subjected to post-processing. This is
especially the case for operations such as resizing/resampling and
JPEG compression. This performance degradation is an important
problem since online photo-sharing websites and social media ap-
plications often resize and recompress an image. In order for camera
model identification techniques to work in real world scenarios, it is
important to devise methods to make them robust to these common
post-processing operations.

Other areas of forensics, such as manipulation detection, have
encountered a similar problems with robustness to post-processing.
Work in these areas suggests that in some scenarios, utilizing non-
linear residuals can potentially increase an algorithm’s robustness to
post-processing. [12, 13]. As a result, researchers may ask: Can
the addition of low-level nonlinear residuals such as the median fil-
ter residual (MFR) [12] increase the robustness of camera model
identification algorithms? Since convolutional filters used by CNNs
are only able to learn linear feature extractors, how should low-
level nonlinear residual features be integrated into a CNN? Should
they replace linear feature extractors such as a constrained convolu-
tional layer or a fixed high-pass filter, or should another strategy be
adopted?

In this paper, we propose a new CNN-based camera model iden-
tification approach that is robust to resampling and JPEG recom-
pression. To accomplish this, we propose a new approach to low-
level forensic feature extraction that we call augmented convolu-
tional feature maps (ACFM). In this approach, both a constrained
convolutional layer and a nonlinear residual feature extractor such
as the MFR are used in parallel. The feature maps produced by
both of these layers are then concatenated and higher level associ-
ations between these feature maps are learned by subsequent con-
volutional layers. Through a set of experiments, we evaluate both
the accuracy and robustness of our camera model identification ap-
proach on a set of images from 26 camera models from the Dres-
den Image Database [14] subject to both resampling and JPEG post-
compression. Experimental results show that our proposed ACFM
approach can improve a CNN’s camera model identification robust-
ness to resampling and JPEG compression.

2. AUGMENTED CONVOLUTIONAL FEATURE MAPS

Recently, CNN-based forensic approaches have been proposed to
individually make use of adaptive linear prediction-error feature
extractors [11, 15, 16] as well as fixed nonlinear residual extrac-
tors [17]. Both of these feature extractors have their own set of
advantages. When a CNN is used with an adaptive feature extractor
such as a constrained convolutional layer, it has shown the ability to
learn a diverse set of prediction residual features that outperform the
fixed linear residuals proposed in [10, 9] for forensic tasks [18]. Al-
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ternatively, nonlinear residual features such as the MFR have been
experimentally shown to improve the robustness of manipulation
detection CNNs to JPEG compression [13].

In order to perform robust camera model identification in post-
processed images, we need to retain at the same time the adaptively
learned linear prediction residual features produced by a constrained
convolutional layer as well as nonlinear residual features such as the
MEFR. This suggests, we do not want to replace the first layer of a
CNN with a fixed nonlinear residual feature extractor. At the same
time, we want to integrate these low-level nonlinear residuals into
our CNN.

To solve this problem, we propose a new approach to low-level
residual feature extraction that we call augmented convolutional fea-
ture maps (ACFM). In this approach, a fixed nonlinear residual fea-
ture extractor is placed in parallel with a set of constrained convo-
lutional filters. The feature maps produced by the constrained covo-
lutional layer are concatenated with the nonlinear feature residuals
to create an augmented set of feature maps. This augmented set of
feature maps is then directly passed to a regular convolutional layer.
Deeper convolutional layers in the CNN will learn higher-level fea-
tures and associations between these linear and nonlinear residuals.

During training, the nonlinear feature extractors are held con-
stant, while filters in the constrained convolutional layer are updated
through stochastic gradient descent. In this way a diverse set of lin-
ear prediction-error feature extractors are learned that compliment
the nonlinear residual features which are mainly used to increase ro-
bustness of CNNs to post-processing.

In this paper, we form our augmented convolutional feature

maps using the nonlinear MFR features [12, 13]. The MFR is
formally defined as

where x(4, 7) is the (4, 7)'" pixel in the subject image and meds (i, §)
is the (i,j)th pixel in the median filtered form of the same image
using a 3x3 kernel. These nonlinear pre-computed MFR features
will take the form of a single feature map then will be used to aug-
ment the feature maps produced by the constrained convolutional
layer used in parallel.

The constrained convolutional layer, which is used in parallel
with the nonlinear residual layer, is designed to adaptively learn fea-
ture extractors that take the form of prediction error filters. This is
accomplished by actively enforcing the following prediction-error
filter constraints

{ wgcl)(ovo) = _17 (2)

Zm,n;éo wl(cl> (m7 n) = 17
during training on each of the K filters w,il) in the constrained con-
volutional layer. In this manner, training proceeds by updating the
filter weights w,(:) at each iteration using the stochastic gradient de-
scent algorithm during the backpropagation step, then projecting the
updated filter weights back into the feasible set by reinforcing the
constraints in (2). Pseudocode outlining this process is given in Al-
gorithm 1.

3. NETWORK ARCHITECTURE

In this section, we give an explicit description about how to imple-
ment the feature maps augmentation approach using the nonlinear
MER features. Fig. 1 depicts the overall architecture of our proposed
ACFM-based CNN. Our CNN has the ability to : (i) jointly suppress

Algorithm 1 Training algorithm for constrained convolutional layer

1: Initilize wy’s using randomly drawn weights

2: i=1

3. while : < max_iter do

4 Do feedforward pass

5 Update filter weights through stochastic gradient
descent and backpropagate errors
Set wy,(0,0)M) = 0 for all K filters

6
7. Normalize w'"'s such that > t.m0 wiV(6,m) =1
8

© Setwy(0,0)V) = —1 for all K filters
9: i=i+1

10: if training accuracy converges then
11: exit
12: end

an image’s content and adaptively learn low-level linear residual fea-
tures while training the network, (ii) perform convolutional feature
maps augmentation using linear and nonlinear residuals (iii) extract
higher-level features through deep layers and (iv) learn new associ-
ation between higher-level augmented feature maps using 1x1 con-
volutional filters. These type of filters are used to learn linear com-
bination of features located in different feature maps but located at
the same spatial location. In what follows, we give a brief overview
about each conceptual block that we used in our architecture.

3.1. Convolutional feature maps augmentation

Because CNNs in their existing form tend to learn features related
to an image’s content, we make use of a contrained convolutional
layer (“Constrained Conv”) in our architecture to jointly suppress
the image’s content and adaptively learn linear residual features.
The “Constrained Conv” layer consists of three constrained convo-
lutional filters of size 5x5x1x 1 each which operate with a stride of
1. This layer yields three prediction-error feature maps. The adap-
tively learned linear residuals take the form of low-level pixel-value
dependency features.

However, when images are post-compressed, existing linear fea-
ture extractors in CNN, such as convolution, may not capture all
camera model identification features. Therefore, we propose to aug-
ment the “Constrained Conv” layer output feature maps in CNN with
the nonlinear MFR by using a concatenation layer called “CFMA”
(see Fig. 1).

To accomplish this, the input layer of CNN consists of two-
channel image. The first channel corresponds to a 256 X256 green
layer image while second channel corresponds to the computed MFR
features of the same image. In order to concatenate the prediction-
error features with MFR, the feature maps output of “Constrained
Conv” layer and the MFR features should have same dimension, i.e,
252x252. To do this, the MFR channel of the input layer is first
convolved with a fixed 5x 5 identity filter with a stride of 1.

Subsequently, the outputs of “Constrained Conv” and “Identity
Conv” layers are concatenated using the “CFMA” layer. Thus, the
“Constrained Conv” layer’s output is augmented from 252 x 252x 3
to 252 x 252x4. Deeper layers in our proposed CNN will learn
new associations between MFR and prediction-error features. In our
experiments, when CNN is used without ACFM we use the archi-
tecture in red dashed line in Fig. 1 that we call NonACFM-based
CNN. Note that our ACFM approach can be generalized and used
with other types of nonlinear features to introduce diversity to the
existing features and increase the robustness of CNN in real world

4099



Input Layer
256x256x2

5x5x64x64, S=1

Image BN + TanH

256x256x1 256x256x1

Max-pooling

Constrained Conv 3x3, 5=2

5x5x1x3, S=1

Identity Conv

5x5x1x1, S=1
Conv5

CFMA: 1x1x64x128, S=1

Concat Layer H

Conv2
7x7x4x96 /

BN + TanH

Max-pooling
3x3, 5=2

200 neurons
TanH:

Conv3
5x5x96x64, S=1

EGZ
200 neurons

BN + TanH

Max-pooling
3x3, S=2

Softmax

Fig. 1: Our proposed ACFM-based CNN architectures; red dashed
line: NonACFM-based CNN; CFMA: Convolutional Feature Maps
Augmentation; BN:Batch-Normalization Layer; TanH: Hyperbolic
Tangent Layer; ET: Extremely Randomized Trees

scenarios.

3.2. Hierarchical feature extraction

To learn higher-level classification features, the low-level prediction-
error feature maps augmented by MFR features are directly passed
to a sequence of three regular convolutional layers followed by one
1 x 1 convolutional layer. From Fig. 1 we can see that every convo-
lutional layer in our CNN is followed by a batch normalization layer
(BN) [19], a hyperbolic tangent (TanH) activation function then a
pooling layer. By contrast, the “Constrained Conv” and “Indentity
Conv” layers are not followed by any type of nonlinear operation
since residual features can be destroyed by any of these types of
nonlinear operations. Additionally, we use the max-pooling layer af-
ter all the regular convolutional layers, whereas, an average-pooling
layer is used after the 1 x 1 convolutional layer to preserve the most
representative features. We use these filters to learn new associa-
tion across the highest-level convolutional feature maps in our CNN.
The size of each convolutional filter as well as the stride size are re-
ported in Fig. 1. Note that when CNN is used without feature maps
augmentation (i.e., NonACFM-based CNN) the “Conv2” layer is of
dimension 7x7x3x96.

3.3. Classification

The output of the hierarchical convolutional layers is fed to a reg-
ular neural network which consists of three fully-connected layers
to perform classification. The two first layers have 200 neurons and
followed by a TanH activation function, whereas, the output layer
is followed by a softmax activation function. The number of neu-
rons in the output layer is equal to the number of the considered
camera models, i.e. 26 camera models from the Dresden Image
Database [14].

In different applications, other classifiers have shown to perform
better than a softmax-based classifier. Therefore, in order to improve
CNN’s peroformance we adapt an alternate classification strategy us-
ing the “deep features” approach [20]. To accomplish this, we use
the activation levels of each neuron in the second fully connected
layer as a set of deep features. These are then passed to an extremely
randomized trees (ET) classifier [21] to perform camera model iden-
tification on the basis of these features.

4. EXPERIMENTS

We conducted a set of experiments to evaluate the effectiveness and
robustness of our proposed ACFM-based CNN to perform camera
model identification. To study the impact of augmenting a CNN with
nonlinear MFR features, we compared our CNN to an architecture
which did not include feature map augmentation, i.e., a NonACFM-
based CNN that used only a “Constrained Conv” layer to extract
low-level linear residual features. We then compared our results to
a CNN using a fixed high-pass filter to perform low-level feature
extraction as proposed in [9], i.e., HPF-based CNN.

To build our experimental dataset we downloaded images from
the publicly available Dresden Image Database [14]. We collected
15,000 images for the training and testing data which consists of 26
camera models. To train our CNNs we randomly selected 12, 000
images from our experimental database. Next, we divided these
images into 256 x256 pixel patches and retained all the 36 central
patches from the green layer of each image for our training database.
Each patch corresponds to a new image which is associated with
one camera model class. In total, our training database consisted of
432,000 patches.

When training each CNN, we set the batch size equal to 64
and the parameters of the stochastic gradient descent as follows:
momentum = 0.9, decay = 0.0005, and a learning rate ¢ =
1073 that decreases every 4 epochs (27, 000 iterations) by a factor
v = 0.5. We trained the CNN in each experiment for 44 epochs
(297, 000 iterations).

To evaluate the performance of our proposed approach, we cre-
ated a testing database by dividing the 3, 000 images not used for the
training into 256 X256 pixel patches in the same manner described
above. In total, our testing database consisted of 108, 000 patches.
We then used our CNN to identify the source camera model of each
image in the testing set. Note that training and testing are disjoint.

When digital images are downloaded or uploaded, they are
commonly resampled and/or JPEG compressed. In order to mimic
real world scenarios, we created seven corresponding experimental
databases for the training and testing patches by applying the fol-
lowing image editing operations to our unaltered collected database:
JPEG compression (QF=90), resampling (i.e., downscaling by 90%
and 50% as well as upscaling by 120%) and resampling followed
by a JPEG post-compression (QF=90). Furthermore, with non-
resampled patches we use 256 X 256 input layer in our CNN,
whereas, with resampled patches the size of the input layer is set
according to the rescaling factor, i.e., 307 x 307 with 120% upscal-
ing, 230 x 230 with 90% downscaling and 128 x 128 with 50%
downscaling.

4.1. ACFM-based CNN with median filter residual

We assessed the robustness of our approach using the augmented
convolutional feature maps (ACFM)-based CNN in Fig. 1 then we
compared it to a NonACFM-based CNN (red dashed line) where
MER features are not introduced to the network. To do this, for each
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Table 1: CNN’s identification rate on processed images using Softmax layer (top) and Extremely Randomized Trees (ET) classifier (bottom).

Resampling Resampling + JPEG (QF=90) JPEG Original
Methods 120% 90% 50% 120% 90% 50% QF =90 —
ACFM-based CNN 97.14% | 95.93% | 90.75% || 93.86% | 91.42% | 79.31% 97.26% 98.26 %
NonACFM-based CNN | 96.75% | 95.76% | 87.70% | 94.94% | 91.89% | 75.68% 97.23% 98.24%
HPF-based CNN 95.94% | 95.68% | 87.54% || 90.45% | 83.96% | 67.16% 96.00% 97.52%
Top: Softmax-based CNN; Bottom: ET-based CNN

ACFM-based CNN 97.61% | 96.44% | 91.47% || 94.71% | 92.10% | 79.74% 97.63% 98.58 %
NonACFM-based CNN | 97.28% | 96.38% | 88.88% | 95.50% | 92.50% | 76.05% 97.60% 98.52%
HPF-based CNN 96.47% | 96.14% | 88.67% || 91.31% | 84.71% | 67.42% 96.36% 97.83%

experimental database (training and testing data) we computed the
nonlinear MFR of each patch then added it to the existing patch as a
second channel. That is, the CNN’s input 256 X256 x 1 patches for
instance become of dimension 256 x256 x2. We trained and tested
our ACFM-based CNN as described above. Table 1 summarizes
the results of all our experiments using both a softmax classifica-
tion layer and an Extremely Randomized Trees (ET) classifier as
described in Section 3.3. We compare our proposed augmented fea-
ture maps-based approach to its homologue NonACFM-based CNN
that only uses linear residuals learned through a “Constrained Conv”
layer.

Our experimental results show that augmenting feature maps
produced by the constrained convolutional layer with MFR features
can typically improve the overall identification rate with all possible
tampering operations. Noticeably, it can achieve 98.58% identifica-
tion rate with unaltered images and at least 79.74% with 50% down-
scaled then post-compressed (QF=90) images using an ET classifier.
From Table 1, one can observe that the ET-based CNN approach
outperforms the softmax-based CNN.

When we use the augmented feature maps-based CNN, one
can notice that with 50% downscaling, we can improve the camera
model identification rate over an architecture which did not use non-
linear MFR features by 3.69% with JPEG post-compression and by
2.59% without JPEG post-compression (see Table 1). This demon-
strates that introducing the nonlinear MFR features to the network
can improve the robustness of CNN against real world scenario
processing operations.

Finally, we would like to make sure that our proposed ACFM-
based CNN did not learn higher-level features only related to MFR
features. That is, learning the association between prediction-error
features and MFR throughout deeper layers improves CNN'’s per-
formance. To accomplish this, we trained the NonACFM-based
CNN architecture without a “Constrained Conv” layer (i.e., with-
out prediction-error features) and using the MFR as an input layer
to CNN. We used our original experimental database as well as
the 50% downscaling with and without JPEG post-compression
databases where the augmented feature maps-based approach sig-
nificantly outperforms its homologue. Our experiments show that
ACFM-based CNN and NonACFM-based CNN both outperform
CNN that only used MFR features. The latter MFR-based CNN can
only achieve an identification rate equal to 96.60% with unaltered
images, 62.50% with 50% downscaled then JPEG post-compressed
images and 74.99% with 50% downscaled database. This ex-
perimentally demonstrates that learning the association between
prediction-error features and MFR throughout deeper layers in the
network significantly increases the robustness of CNN in real world
scenarios.

4.2. Comparison with non-adaptive linear residual extractors

As mentioned above, early approaches to perform CNN-based cam-
era model identification used non-adaptive hand-designed linear
residuals as classification features. In this part of experiments, we
compare the robustness of our ACFM-based CNN to a non-adaptive
linear residual extractor, i.e., HPF-based CNN. To accomplish this,
we use the NonACFM-based CNN architecture in red dashed line in
Fig. 1 where the “Constrained Conv” layer is replaced with the same
HPF used in [9].

From Table 1, one can notice that our proposed ACFM-based
CNN is significantly more accurate and robust than the non-adaptive
HPF-based CNN approach. Additionally, experimental results show
that the adaptive NonACFM-based approach is also better than the
HPF-based CNN and can achieve an identification rate which is typ-
ically higher than 90% accuracy with all possible tampering oper-
ations. More specifically, it can achieve 98.52% identification rate
with unaltered images and at least 76.05% with 50% downscaled
then post-compressed (QF=90) images using an ET classifier. This
demonstrates the ability of the constrained convolutional layer to
adaptively extract low-level pixel value dependency features directly
from data even when input images have undergone a single or mul-
tiple tampering operations.

From Table 1, one can notice that the ET classifier has also
significantly improved the camera model identification rate of CNN
with all underlying processing operations for the HPF-based ap-
proach. The HPF-based approach can achieve only 97.83% identi-
fication rate with unaltered images and at least 67.42% with 50%
downscaled then post-compressed (QF=90) images. The HPF ap-
proach achieves a lower identification rate since it is a suboptimal
solution of the trained network with a constrained convolutional
layer.

5. CONCLUSION

In this paper, we have proposed a new robust deep learning ap-
proach to forensically determine the make and model of a camera
that captured post-processed image. To accomplish this, low-level
pixel-value dependency feature maps learned by a constrained con-
volutional layer are augmented using the nonlinear MFR features.
We evaluated the effectiveness of our proposed approach using the
Dresden database, which consists of 26 camera models, on unal-
tered and altered images created by seven different types of com-
monly used image processing operations. When subject images are
50% downscaled with and without JPEG post-compression, our pro-
posed ACFM-based CNN significantly outperforms its homologue
networks which do not make use of the MFR features.
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