
Learning Unified Deep-Features for Multiple Forensic Tasks
Owen Mayer
Drexel University

Philadelphia, PA, USA
om82@drexel.edu

Belhassen Bayar
Drexel University

Philadelphia, PA, USA
bb632@drexel.edu

Matthew C. Stamm
Drexel University

Philadelphia, PA, USA
MStamm@coe.drexel.edu

ABSTRACT
Recently, deep learning researchers have developed a technique
known as deep features in which feature extractors for a task are
learned by a CNN. These features are then provided to another
classifier, or even used to perform a different classification task.
Research in deep learning suggests that in some cases, deep features
generalize to seemingly unrelated tasks. In this paper, we develop
techniques for learning deep features that can be used across multi-
ple forensic tasks, namely imagemanipulation detection and camera
model identification. To do this, we develop two approaches for
building deep forensic features: a transfer learning approach and a
multitask learning approach. We experimentally evaluate the per-
formance of both approaches in several scenarios and find that: 1)
features learned for camera model identification generalize well to
manipulation detection tasks but manipulation detection features
do not generalize well to camera model identification, suggesting
a task asymmetry, 2) deeper features are more task specific while
shallower features generalize well across tasks, suggesting a feature
hierarchy, and 3) a single, unified feature extractor can be learned
that is highly discriminative for multiple forensic tasks. Further-
more, we find that when there is limited training data, a unified
feature extractor can significantly outperform a targeted CNN.

KEYWORDS
Multimedia forensics, deep learning, deep features, transfer learn-
ing, multitask learning

1 INTRODUCTION
In recent years, there has been an explosion in deep learning re-
search targeted at multimedia forensic tasks. For example, work
in [11] shows that a convolutional neural network (CNN) can be
built to detect whether an image patch has undergone median
filtering. Other works have shown that resampling operations
can be detected using deep learning methods [4, 10], as well as
several approaches to classify multiple post-processing manipula-
tions [1, 5, 12]. Research has also shown that CNNs can be used
to identify the source camera model of an image patch with high
accuracy [2, 3, 7, 8, 20]. To date, many multimedia forensic deep
learning methods have targeted several types of manipulation de-
tection tasks and camera model identification tasks.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IH&MMSec ’18, June 20–22, 2018, Innsbruck, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5625-1/18/06. . . $15.00
https://doi.org/10.1145/3206004.3206022

More recently, research has found that techniques utilizing deep
features are also very effective for multimedia forensics tasks [4,
6, 7, 9, 15]. Deep features are the neuron responses, at a particular
layer of a CNN, induced by the feeding forward an image through
the network [13, 19]. In these approaches a CNN is trained for one
task, and then deep features extracted from that network are uti-
lized for a different task. For example, work by Bondi et al. in [7]
showed that deep features extracted from a closed set camera model
identification CNN can be used to train an SVM that classifies a
different set of camera models. Mayer and Stamm [15] showed
that pairs camera model deep features can be mapped to a simi-
larity score to identify whether two images were captured by the
same camera model, even if those camera models are unknown.
Additionally, Bayar and Stamm [6] proposed a technique for open
set camera model identification using deep features. The findings
of these works suggest that deep feature representations learned
for camera model identification may generalize to many different
camera models, not just those in the original training set.

In research outside of multimedia forensics, deep features have
been shown to generalize to seemingly unrelated tasks. For ex-
ample, deep features extracted from a CNN pre-trained for scene
detection can be used to train a object detection classifier and vice
versa [21]. Additionally, work in the remote sensing community
has shown that object recognition deep features can be trained for
land-usage classification tasks [17]. These findings suggest that
perhaps features learned in one specific multimedia forensics task
may be applicable to other forensic tasks.

While research has shown that features learned for cameramodel
identification generalize to other camera models [6, 7, 15], there
has been no research showing that camera model identification
features generalize to manipulation detection tasks, or vice versa.
Additionally, very little is understood about which image features
are being captured by deep learning methods. Because of this, we
are led to ask several questions:
• Are features learned for one forensic task useful for another
forensic task? Is it possible that forensic tasks, which are
often thought of as very different, are actually very similar?
• Does an abstract hierarchical structure exist for feature gen-
eralization? That is, is it possible that low-level features
generalize well across tasks but a more task-specific repre-
sentation does not?
• Does there exist a single set of universal features that work
for all multimedia forensic tasks?

In this paper we address these questions and show that 1) fea-
tures learned for camera model identification generalize well to
manipulation detection tasks, but that features learned for manip-
ulation detection tasks do not generalize well to camera model
identification tasks, suggesting a task asymmetry, 2) that deeper
features are more task-specific, while shallower features generalize

1

https://doi.org/10.1145/3206004.3206022

IH&MMSec ’18, June 20–22, 2018, Innsbruck, Austria O. Mayer et al.

well across tasks, suggesting a feature hierarchy, and 3) that a single,
unified feature extractor can be learned that is highly discriminative
for multiple forensic tasks. Furthermore, we find that when there
is limited training data, a unified feature extractor can significantly
outperform a targeted CNN.

To do this, we adopt two strategies for learning deep feature
extractors, and then experimentally evaluate the performance of
each to demonstrate the properties that are enumerated above. In
the first approach, we propse a transfer learning method where
a CNN is initially learned for one forensic task. Then, the lower
layers of the CNN are frozen, acting as a fixed feature extractor,
while learning new upper layers that target a different task. We
use this approach to experimentally demonstrate the transference
of features between tasks. Furthermore, to evaluate the feature
hierarchy, we experimentally vary the depth at which the CNN
layers are frozen during retraining on the second task.

In the second approach, we propose a multitask learning ap-
proach where we train two CNNs simultaneously while constrain-
ing the lower layers of both networks to learn the same weights and
biases. This approach effectively creates a single, unified feature
extractor that is highly discriminative for multiple forensic tasks.
Additionally, we find this approach to significantly outperform a
targeted CNN when there is limited training data.

2 DEEP FEATURES OVERVIEW
In deep feature based approaches, classification of an image patch
is broken down into two steps. In the first step, an image patch
X ∈ X, where X is the space of image patches, is mapped to an N-
dimensional, real-valued feature space by a deep feature extractor
function f (·):

f : X→ RN . (1)
The feature vector f (X) encodes high level forensic information
about the image patch X . Next, a task classifier д(·) maps the deep
feature vector into a classification decision

д : RN → T, (2)

where T is the set of target classes (e.g. a set of camera models or a
set of manipulations). Thus, the total system

y = д(f (X)) (3)

maps an input image X ∈ X to a classification decision y ∈ T.
A diagram of the deep feature approach is shown in Fig. 1. An

image patch X is input to a deep feature extractor f (·), and the
output deep features are input to task classifiers, дA (·), дB (·), дC (·),
which classify the image for the respective tasks A, B, and C .

In this work, we use a pre-trained CNN as the deep feature
extractor f (·). The features f (X) are evaluated by recording the
neuron responses, at a specified layer, induced by the feed-forward
of an input image patch X . Often, the last fully connected layer of
the CNN is used for deep feature extraction [13, 19]. The power of
using a deep feature approach is that

dimensionality (f (X)) << dimensionality (X) ,

which enables a task classifier д(·) to be trained with relatively few
training samples.

However, a deep feature approach also requires that the features
output by the feature extractor f (·) are general enough to discrim-
inate between the classes targeted by д(·). Ideally, the features

Deep Feature Extractor
f(·)

Image
X

Task A
Classifier

gA(·)

Deep
Features

f(X)

Task B
Classifier

gB(·)

Task C
Classifier

gC(·)

yA

yB

yC

Figure 1: Diagram showing deep feature extraction and clas-
sification. A feature extractor maps an input image patch X
into a deep feature space. Task classifiers then map these
features into a task-specific classification decision.

extracted from feature extractor encode general, low-dimensional
forensic information about the image patch, which allows for train-
ing task specific classifiers on many different forensic tasks.

3 CNN ARCHITECTURE
In this work, we use pre-trained CNNs to perform deep feature
extraction. For each CNN, we use a network architecture proposed
by Bayar and Stamm that has proven effective at both manipulation
detection and source camera model identification [3, 5]. Briefly, the
network consists of 5 convolutional layers and 3 fully connected
layers. The first convolutional layer, labeled ‘constr’ is a set of 3
5x5 constrained filters where the central weight is constrained to
be -1 and the rest of the weights sum to one, such that




w(0, 0) = −1∑
(l,m),(0,0) w(l ,m) = 1

(4)

where l ,m are the spatial indices of each constrained filter. These
constraints are designed to suppress image content while learning
salient forensic features. The remaining 4 convolutional layers,
labeled ‘conv1’–‘conv4,’ each have hyperbolic tangent activation,
mini-batch normalization and pooling. The network has 3 fully
connected layers. The first two are labeled ‘fc1’ and ‘fc2’, each with
200 neurons and hyperbolic tangent activation. Finally, the network
has an output fully connected layer with softmax function. Further
details of the baseline architecture, including filter dimensions and
parameter choice motivation, can be found in [5].

4 LEARNING DEEP FEATURE EXTRACTORS
The three goals of this work are to 1) propose and evaluate tech-
niques to develop a unified set of deep features that are discrim-
inative for multiple forensics tasks, as well as to 2) evaluate the
transference of deep features between tasks and finally to 3) identify
a potential abstract hierarchy of deep features. In this section, we
propose two approaches for learning deep feature extractors, i.e.
the mapping f (·) described in Eq. (1).

4.1 Transfer Learning
In the first approach, we use transfer learning to learn the deep
feature extractor. In transfer learning, portions of a convolutional
neural network (CNN) pre-trained for one task are used to extract
features for another task [16]. That is, the knowledge (feature rep-
resentations) learned for one task are “transferred" to another task.
In the experimental evaluation in Sec. 5.2, we use this approach to
evaluate how well the features learned from one task generalize
to another task. Additionally, by varying the depth of the feature

2

Learning Unified Deep-Features for Multiple Forensic Tasks IH&MMSec ’18, June 20–22, 2018, Innsbruck, Austria

XA

ConstrA

Conv1A

Conv2A

Conv3A

Conv4A

fc1A

fc2A

OutputA

XB

ConstrA

Conv1A

Conv2A

Conv3A

Conv4A

fc1A

fc2B

OutputB

Learned feature extractor

Fixed feature extractor

(a) Transfer Learning

H
ybrid feature extractor fH (·)

XA

ConstrH

Conv1H

Conv2H

Conv3H

Conv4H

fc1H

fc2A

OutputA

XB

ConstrH

Conv1H

Conv2H

Conv3H

Conv4H

fc1H

fc2B

OutputB

weight
sharing

weight
sharing

weight
sharing

weight
sharing

weight
sharing

weight
sharing

(b) Multitask Learning

Figure 2: Diagrams of proposed approaches (a) transfer
learning and (b) multitask learning, both using an example
share depth of fc1. In the transfer learning approach, layers
‘constr’ through ‘fc1’ are learned for an initial task A, then
‘fc2’ and ‘output’ are retrained for a new task B. In the mul-
titask approach, two networks are trained simultaneously
on different datasets, but with layers ‘constr’ through ‘fc1’
constrained to learn the same parameters. This multitask
approach creates a single, hybrid feature extractor that out-
puts deep features discriminative of both tasks A and B.

extractor, we use this approach to also evaluate the hierarchical
nature of feature transference.

The transfer learning process is accomplished in two training
phases. In the first training phase, a source CNN is trained for a
source task A, using a baseline architecture described in Sec. 3.
Training is performed with a set of training image patches XA that
are representative of classes in TA. The result of this training phase
is a trained network that has layers constrA through outputA, which
is depicted by the left hand side of the diagram in Fig. 2a.

In the second training phase, we first fix the source CNN learned
for task A, preventing its parameters from being updated. Then, we
discard the upper layers of the source CNN, above a layer called
the share depth. Finally, we replace the discarded layers with new
layers that are then learned for target task B. A diagram of this
approach with a share depth of f c1 is shown on the right of Fig. 2a.
The fixed lower layers of the source CNN through ‘fc1A’ are input
to new layers ‘fc2B ’ and ‘outputB ’ learned for the target task B.

The term share depth is used to signify the layers that are shared
between the two tasks. The layers below and including the share
depth act as the deep feature extractor fA (·). The layers above the
share depth act as the task specific classifier.

4.2 Multitask Learning
In our second approach, we propose a method to learn a single
feature extractor that outputs deep features highly discriminative
for multiple forensic tasks. To do this, we train two (or more) CNNs
simultaneously on two (or more) different tasks, but constrain the
lower layers of each network to learn the same parameters. This is a
form of multitask learning [18]. The shared layers of these networks

form a single, unified feature extractor that outputs deep features
discriminative of two (or more) forensic tasks, which we call a
hybrid feature extractor. In the experimental evaluation in Sec. 5.3,
we use this approach to evaluate how well hybrid features are
able to classify multiple tasks, and compare with feature extractors
learned in the transfer learning approach.

A diagram of the multitask learning process is shown in Fig. 2b,
which uses a share depth of fc1. Unlike the transfer learning process,
the multitask process is accomplished in a single learning phase.
One network leg has input database for taskA, and the network leg
has input database for task B. The bottom layers through the share
depth are called hybrid layers. In the example shown in Fig. 2b,
the hybrid layers are labeled ‘constrH ’ through ‘fc1H ’ creating a
feature extractor fH (·). The task A specific layers are labeled ‘fc2A’
and ‘outputA’, and the task B specific layers are labeled ‘fc2B ’ and
‘outputB ’, creating task specific classifiers дA (·) and дB (·).

During training, at each iteration the weights and biases of the
hybrid layers are updated according to

w ′k = wk + ∆wk , (5)

where wk is the original weight indexed by k , ∆wk is the weight
update step, and w ′k is the updated weight. The update step is
calculated by

∆wk =
∑
t ∈T

λt∆wk,t , (6)

whereT is the set of tasks that are being targeted, t is a specific task
in that set, λt is a specified weight (i.e. preference) given to task t ,
and ∆wk,t is the portion of the update step attributed to task t . In
our approach, we use λt = 1 ∀t , that is each task has equal weight.
The task portion of the update step is calculated according to

∆wk,t = −η
∂Lt
∂wk
, (7)

where η is the learning rate and Lt is the loss for task t . In summary,
we ensure the two network’s learn the same parameters by sum-
ming together the gradient for each task-specific loss and applying
the same update rule to each network.

In addition, the architecture that we use employs mini-batch
normalization. After each iteration, we average the normalization
parameters across network legs to ensure that each network uses
the same normalization.

5 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the following: 1) how
well features learned for one task transfer to another task, specifi-
cally the tasks of camera model identification and manipulation de-
tection, 2) whether shallower features are more generic and deeper
features are more task specific, and 3) whether a set of unified
features can be learned that are discriminative for multiple tasks.
The first two evaluations were performed using the transfer learn-
ing approach, and the third evaluation was performed using the
multitask learning approach.

To do this, we created two different databases, one for each
task under investigation. The first database we created was for
the manipulation detection task, following the steps used in [3].
We collected 400,000 training patches and 50,000 testing patches
of size 256 × 256 using 8334 images chosen at random from the
publicly available Dresden Image Database [14]. The training and

3

IH&MMSec ’18, June 20–22, 2018, Innsbruck, Austria O. Mayer et al.

Manipulation Detection, TA =
Unaltered Median Filter (5x5) Gauss. Blur (σ = 1.1)
AWGN (σ = 2) Bilinear Interp. (x1.5) JPEG (Q=70)

Camera Model Identification, TB =
Apple iPhone 4s∗ Nikon Coolpix S710† Rollei RCP-S7325XS†
Apple iPhone 6∗ Nikon D200† Samsung Gal. Note4∗
Canon Ixus70† Olympus mju-1050SW† Samsung Gal. S4∗
Casio EX-Z150† Panasonic DMC-FZ50† Samsung LZ74 wide†
FujiFilm FinePixJ50† Pentax OptioA40† Samsung NV15†
Kodak M1063† Praktica DCZ5.9† Sony DSC-T77†
LG Nexus 5x∗ Ricoh GX100†

Limited Training Data Camera Model Identification, TC =
HTC One M7∗ Nikon D70† Sony DSC-W170†
Mot. Droid Maxx∗ Samsung Galaxy S2∗

Table 1: Classes for the three investigated tasks.
Camera models from our database∗, and from the Dresden Image Database†

testing patches were created from two separate sets of images using
the nine central 256 × 256 blocks of each image. Only the green
color channel was used. Next, each block was edited using the six
processing operations in the set TA in Table 1.

We then created a second database for the source camera model
identification task. This database is composed of image patches
of size 256 × 256 from the set TB of 20 different camera models
in Table 1. The camera models were chosen such that they had at
least 2 devices. For each camera model, 20,000 non-overlapping
training patches were randomly selected from among all but one
device. For testing, 1500 non-overlapping patches were randomly
chosen from the remaining device. The camera models were also
selected to create a diversity of manufacturers and camera types
(e.g. point-and-shoot, DSLR, cell phone). These images were taken
from the publicly available Dresden Image Database [14], and from
our own database of cameras. Camera models from our database
had at least 300 images per device, with images taken in diverse
scene environments. In total, 400,000 training patches and 30,000
testing patches were used.

5.1 Single task baseline
To provide a measure for comparison, we trained the baseline net-
work for each task individually, i.e. ‘Single Task’ training. To do
this, we trained the baseline CNN network described in Sec. 3 for
each task. We performed training using stochastic gradient decent
with a base learning rate of 0.001, momentum of 0.9, and batch size
of 40 patches. The learning rate was halved every 3 epochs, and
the network was trained for 30 epochs total.1 Single task accuracy
of 97.5% was achieved for camera model identification, and 99.6%
for manipulation detection.

5.2 Feature transfer and hierarchy
In this experiment, we used the transfer learning approach outlined
in Sec. 4.1 to evaluate how well features learned from one forensic
task transfer to another task forensic task, as well as to evaluate a
feature hierarchy.

1Source code for this work can be found at misl.ece.drexel.edu/downloads or
gitlab.com/MISLgit/unified-features-ihmmsec2018. All experiments were conducted
using caffe with an Nvidia GTX 1080 or 1080ti GPU.

constr conv1 conv2 conv3 conv4 fc1 fc2
Share Depth

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Cam. Mod. ID (Single)

Cam. Mod. ID (Transfer)

Cam. Mod. ID (Hybrid)

Manip. Det. (Single)

Manip. Det. (Transfer)

Manip. Det. (Hybrid)

Figure 3: Accuracy, by share depth, for the single task, trans-
fer learning, and multitask learning approaches.

To do this, we used a pre-trained single-task network, learned
above in Sec. 5.1, as a deep feature extractor. Then we retrained
the upper layers, above a share depth, to target the other task. We
varied the share depth between the shallowest possible of ‘constr’
through the deepest possible of ‘fc2.’ This was done for both tasks.
Training was performed using stochastic gradient descent with a
base learning rate of 0.005, momentum of 0.9, and a batch size of
100 patches. The learning rate was halved every 3 epochs, and the
network was trained for 30 epochs total, with no early stopping.

The accuracy achieved for each transfer learning scenario, by
share depth, is shown in Fig. 3. Transfer of camera model features
to target the manipulation detection task is shown in solid green.
Transfer of manipulation features to target the camera model iden-
tification task is shown in solid blue.

When we transfered manipulation features to the camera model
identification task, an accuracy of 97.5% was achieved when using
the shallowest share depth of ‘constr’. Accuracy monotonically de-
creased as share depth was increased, and achieved an accuracy
of 57.8% at the deepest share depth of ‘fc2.’ When we transfered
camera model features to the manipulation detection task, an ac-
curacy of 99.8% was achieved when using the shallowest share
depth of ‘constr’. Accuracy monotonically decreased as share depth
increased, and achieved an accuracy of 97.6% for at ‘fc2’ share depth.

An important observation from this experiment is that when we
targeted the camera model identification task using manipulation
features, there was a significant drop in accuracy of 39.7 percentage
points relative to the single-task baseline, at a share depth of ‘fc2’.
However, there was only a 2.0 percentage point drop in accuracy
when we targeted the manipulation detection task using camera
model features up to the same share depth.

This result suggests that a task asymmetry exists in the gener-
ality of forensic deep features. That is, the camera model features
transfer much better to the manipulation task than manipulation
features transfer to camera model identification. One possible expla-
nation for this phenomenon is that camera model features may be
much more complex than manipulation features, and thus need to
discriminate a greater expanse of the forensic feature space, which
may include manipulation features. Another possible explanation
is that manipulation features are a subset of camera model features,
but that the reverse is not true.

4

Learning Unified Deep-Features for Multiple Forensic Tasks IH&MMSec ’18, June 20–22, 2018, Innsbruck, Austria

Target Task: Manipulation Camera Model

Feature Extractor CNN ERT CNN ERT

Manipulation (A) 99.6% 99.8% 57.8% 72.5%
Camera Model (B) 97.6% 98.9% 97.5% 97.7%
Hybrid (A + B, fc2) 99.4% 99.8% 96.8% 97.6%

Table 2: Accuracy comparison of extremely randomized
trees (ERT) classifier on fc2 deep features versus the single
task, transfer, and hybrid networks

Another important observation from this experiment is that,
for both tasks, the classification accuracy monotonically decreased
as the share depth was increased. This result suggests a feature
hierarchy of forensic features. That is, low-level features learned
by the shallower layers of a network are general across tasks, i.e.
higher level features for different forensic tasks can be learned from
these low-level representations. By contrast, high-level features
learned in the deeper layers appear to be more task specific. This
result has significant implications for forensic investigators who use
transfer learning methods, and shows that the choice of share depth
is a critical one. We note that also as the share depth decreases,
the parameters that must be retrained for the target task increases.
Thus if the training dataset is small, it may not be practical to use a
shallow share depth.

Another interesting observation is that classification accuracy
actually improves to 99.8% for the manipulation detection task
when using the ‘constr’ features transferred from camera model
network, versus the classification accuracy of 99.6% achieved by
the single-task CNN. Literature in multitask learning suggests that
training on different tasks may prevent overfitting by enforcing
generality of features [18], which perhaps happened in this case.

5.3 Unified deep features
In this experiment, we used the multitask learning approach out-
lined in Sec. 4.2 to evaluate how well unified features are able to
discriminate multiple tasks. To do this, we trained hybrid networks
using the multitask learning approach described in Sec. 4.2. Addi-
tionally, we varied the share depth from ‘constr’ through ‘fc2’. For
each hybrid network, we simultaneously trained on the manipula-
tion detection and camera model identification datasets. Training
was performed using stochastic gradient descent with a base learn-
ing rate of 0.001, momentum of 0.9, and batch size of 40 patches per
task. The learning rate was halved every 3 epochs, and the network
was trained for 30 epochs total with no early stopping.

The accuracy achieved for each task using this multitask learning
approach, by share depth, is shown by the dashed lines with squares
in Fig. 3. At a share depth of ‘fc2,’ the most difficult scenario for the
transfer learning approach, an accuracy of 96.8% was achieved for
the camera model identification task. This improved accuracy by
39.5 percentage points over the transfer learning method. For the
manipulation detection, and accuracy of 99.4% was achieved using
the multitask approach, a 1.6 percentage point improvement over
the transfer learning method.

Notably, at all share depths, the multitask approach improved
accuracy for the camera model identification task over the transfer
learning method. Additionally, for the manipulation detection task,

Feature Extractor CNN ERT

Manipulation Detection (A) 75.0%
20 Camera Model (B) 88.9%
5 Camera Model (C) 86.6% 85.6%
Hybrid (A + B, fc2) 91.5%
Hybrid (A + B +C, fc2) 92.1% 92.8%

Table 3: Classification accuracy for the 5 cameramodel iden-
tification task using different feature extractors.

the multitask approach improved classification accuracy over the
transfer learning approach at deep share depths of ‘fc1’ and ‘fc2.’

While the multitask approach did not improve classification ac-
curacy over the single-task baseline, it did improve classification
accuracy over the transfer learning approach especially at deeper
share depths. The results of this experiment demonstrate that uni-
fied features are much more effective for discriminating multiple
forensic tasks than using a transfer learning approach.

5.3.1 Hybrid features with extremely randomized trees. In this
experiment, we used extremely randomized trees (ERT) classifiers
to improve classification accuracy of the unified features. Work
in [4] found that the use of extremely randomized trees on deep
features extracted from the last fully connected layer improved
classification accuracy of resizing detection. We also compare to
the transfer learning and single task approaches.

For each task we extracted ‘fc2’ deep features from 1) the baseline
manipulation detection CNN (A), 2) the baseline camera model
identification CNN (B), and 3) the hybrid network with share depth
of ‘fc2’ (A + B). We then trained an ERT classifier on each set of
features, using 800 estimators and a minimum of 3 samples required
to split an internal node.

Results from this experiment are shown in Table 2, and are
compared to the results from the previous, CNN-based experiments.
In each case, the ERT classifier slightly improves the CNN classifier.
Notably, in the manipulation detection case the hybrid features
performed equally as well as the single task feature extractor case,
both achieving 99.8% accuracy. For camera model identification, the
hybrid features achieve an accuracy of 97.6%, which is very nearly
the single task accuracy of 97.7%.

The results of this experiment shows that the hybrid feature
extractor is able to learn a single, unified set of features that are
highly discriminative of multiple forensic tasks.

5.4 Classification with limited training data
In this experiment we tested the efficacy of using unified features
on a new task with limited training data. This experiment was
conducted to simulate a scenario where a forensic investigator may
employ a deep feature approach, i.e. a scenario where there is not
enough training data to robustly train a full CNN from scratch.

To do this, we first created a third database for camera model
identification of 5 camera models. This set of camera models is
labeled by TC in Table 1, and are disjoint from the 20 camera models
used in the above experiments. For training and testing, we collected
image patches using the procedure outlined for the 20 camera
model identification task. However, for each camera model, only
10,000 patches were collected per class for training and testing,

5

IH&MMSec ’18, June 20–22, 2018, Innsbruck, Austria O. Mayer et al.

resulting in 50,000 total training patches (1/8 of the 20 cameramodel
training data), and 50,000 testing patches. To establish a baseline
classification accuracy, we trained a single task CNN to target the
5 camera models using the same setup described in Sec. 5.1. The
single task classifier achieved relatively poor accuracy of 86.6%.

Additionally, we trained a new hybrid network on the three train-
ing databases simultaneously, using an ‘fc2’ share depth. Training
was performed using stochastic gradient descent with a base learn-
ing rate of 0.001, momentum of 0.9, and batch size of 40 patches per
for the manipulation detection and 20 camera model tasks, and a
batch size of 5 for the 5 camera model task. This was done to ensure
that number of iterations per epoch was the same across all tasks.
The learning rate was halved every 3 epochs, and the network was
trained for 30 epochs total.

We used the pre-trained CNNs for manipulation detection (A),
20 camera model identification (B), 5 camera model identification
(C), 2-task hybrid network with fc2 share depth (A + B), and 3-task
hybrid network with fc2 share depth (A+ B +C) to extract the ‘fc2’
features from the 5 camera model training data. Then, we trained
an ERT classifier on each set of deep features extracted from these
networks. To train each ERT, we used 800 estimators and required
a minimum of 3 samples to split an internal node.

The classification accuracy achieved by each ERT is shown in
Table 3. The ERT classifier achieved 85.6% when using ‘fc2’ features
extracted from the 5 camera model CNN, which was trained with
limited training data. Classification accuracy improved to 88.9%
when using an ERT trained on features from the 20 camera model
identification CNN. Accuracy was further improved to 91.2% when
using deep features from the 2-task hybrid network. These results
show that using deep features from well trained networks general-
ize well to new tasks, and that enforcing task generalization also
improves the ability of the deep features

Furthermore, the highest classification accuracy of 92.8% was
achieved when using deep features from the 3-task hybrid network.
This result shows that using hybrid, unified features that also incor-
porate training samples from the target class improves classification
accuracy over using a targeted CNN trained with limited training
samples. These results show that it is important for a forensic in-
vestigator to enforce class and task generality when targeting new
tasks that have limited training data.

6 CONCLUSION
In this paper, we adopted two strategies for learning deep feature
extractors; a transfer learning approach, where features from one
task are transferred to another task, and a multitask learning ap-
proach, where a single feature extractor is jointly optimized on
multiple tasks. We experimentally evaluated their performance in
several scenarios, in which we found that: 1) features learned for
camera model identification generalize well to manipulation detec-
tion tasks, but features learned for manipulation detection tasks
do not generalize well to camera model identification tasks, sug-
gesting a task asymmetry, 2) deeper features are more task-specific,
whereas shallower features generalize well across tasks, suggesting
a feature hierarchy and 3) a single, unified feature extractor can
be learned that is highly discriminative of multiple forensic tasks.
Furthermore, we found that unified feature extractors outperform
a targeted CNN when there is limited training data. These results

highlight several critical considerations that a forensic investigator
must make when using deep feature based approaches.

7 ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1553610. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] Belhassen Bayar and Matthew C Stamm. 2016. A deep learning approach to

universal image manipulation detection using a new convolutional layer. In Proc.
of the 4th ACM Workshop on Info. Hiding and Multimedia Security. ACM, 5–10.

[2] Belhassen Bayar and Matthew C Stamm. 2017. Augmented convolutional feature
maps for robust cnn-based camera model identification. In Image Processing (ICIP),
2017 IEEE International Conference on. IEEE, 1–4.

[3] Belhassen Bayar and Matthew C Stamm. 2017. Design principles of convolutional
neural networks for multimedia forensics. Electronic Imaging 7 (2017), 77–86.

[4] Belhassen Bayar and Matthew C Stamm. 2017. On the robustness of constrained
convolutional neural networks to jpeg post-compression for image resampling
detection. In ICASSP, 2017 IEEE. IEEE, 2152–2156.

[5] Belhassen Bayar and Matthew C Stamm. 2018. Constrained Convolutional Neu-
ral Networks: A New approach Towards General Purpose Image Manipulation
Detection. IEEE Transactions on Information Forensics and Security (2018).

[6] Belhassen Bayar and Matthew C Stamm. 2018. Towards open set camera model
identification using a deep learning framework. In Acoustics, Speech and Signal
Processing (ICASSP), 2018 IEEE International Conference on. IEEE, 1–4.

[7] Luca Bondi, Luca Baroffio, David Güera, Paolo Bestagini, Edward J Delp, and
Stefano Tubaro. 2017. First Steps Toward Camera Model Identification With
Convolutional Neural Networks. IEEE Signal Processing Letters (2017), 259–263.

[8] Luca Bondi, David Güera, Luca Baroffio, Paolo Bestagini, Edward J Delp, and
Stefano Tubaro. 2017. A preliminary study on convolutional neural networks for
camera model identification. Electronic Imaging 2017, 7 (2017), 67–76.

[9] Luca Bondi, Silvia Lameri, David Güera, Paolo Bestagini, Edward J Delp, and
Stefano Tubaro. 2017. Tampering Detection and Localization through Clustering
of Camera-Based CNN Features. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. 1855–1864.

[10] Jason Bunk, Jawadul H Bappy, Tajuddin Manhar Mohammed, Lakshmanan
Nataraj, Arjuna Flenner, BS Manjunath, Shivkumar Chandrasekaran, Amit K
Roy-Chowdhury, and Lawrence Peterson. 2017. Detection and Localization of
Image Forgeries using Resampling Features and Deep Learning. In Computer
Vision and Pattern Recognition Workshops (CVPRW). IEEE, 1881–1889.

[11] Jiansheng Chen, Xiangui Kang, Ye Liu, and Z Jane Wang. 2015. Median filtering
forensics based on convolutional neural networks. IEEE Signal Processing Letters
22, 11 (2015), 1849–1853.

[12] Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva. 2017. Recasting residual-
based local descriptors as convolutional neural networks: an application to image
forgery detection. In Proceedings of the 5th ACM Workshop on Information Hiding
and Multimedia Security. ACM, 159–164.

[13] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. 2014. Decaf: A deep convolutional activation feature for
generic visual recognition. In Int. Conference on Machine Learning. 647–655.

[14] Thomas Gloe and Rainer Böhme. 2010. The Dresden image database for bench-
marking digital image forensics. Jour. of Digital Forensic Practice (2010), 150–159.

[15] Owen Mayer and Matthew C Stamm. 2018. Learned forensic source similarity
for unknown camera models. In ICASSP, 2018 IEEE. IEEE, 1–4.

[16] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. 2014. Learning and
transferring mid-level image representations using convolutional neural net-
works. In Computer Vision and Pattern Recognition (CVPR). IEEE, 1717–1724.

[17] Otávio AB Penatti, Keiller Nogueira, and Jefersson A dos Santos. 2015. Do deep
features generalize from everyday objects to remote sensing and aerial scenes
domains?. In Proceedings of the IEEE CVPR Workshops. 44–51.

[18] Sebastian Ruder. 2017. An overview of multi-task learning in deep neural net-
works. arXiv preprint arXiv:1706.05098 (2017).

[19] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
2014. CNN features off-the-shelf: an astounding baseline for recognition. In IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 806–813.

[20] Amel Tuama, Frédéric Comby, and Marc Chaumont. 2016. Camera model iden-
tification with the use of deep convolutional neural networks. In Information
Forensics and Security (WIFS), 2016 IEEE International Workshop on. IEEE, 1–6.

[21] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.
2014. Learning deep features for scene recognition using places database. In
Advances in neural information processing systems. 487–495.

6

	Abstract
	1 Introduction
	2 Deep Features Overview
	3 CNN Architecture
	4 Learning Deep Feature Extractors
	4.1 Transfer Learning
	4.2 Multitask Learning

	5 Experimental Evaluation
	5.1 Single task baseline
	5.2 Feature transfer and hierarchy
	5.3 Unified deep features
	5.4 Classification with limited training data

	6 Conclusion
	7 Acknowledgments
	References

