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ABSTRACT

Image filters have become a popular feature of photo editing soft-
ware and camera phones. Filter identification can provide useful
information for us to determine source and processing history of im-
ages. Currently, there is no forensic work done to perform filter iden-
tification. In this paper, we propose a framework to search for color
correlations left by different filters in a set of interpolation residuals
obtained from various demosaicing algorithms. To effectively cap-
ture the structures of color correlations, we design a diverse set of
geometric co-occurrence patterns and gather both intra-channel and
inter-channel color dependencies using co-occurrence matrices. Ex-
periments conducted on two large image databases full demonstrate
the ability of our framework to identify a wide range of filters pro-
vided by both cameras and third-party software.

Index Terms— Filter identification, Multi-media forensics, Co-
occurrence matrix, Ensemble classifier

1. INTRODUCTION

Over the past several years, software applications known as image
filters have risen in popularity. These applications are typically de-
signed to mimic the effects of optical filters that can be physically
attached to a camera’s lens. Additionally, some image filters are de-
signed to perform artistic enhancements such as making an image
appear as if it was taken by a vintage camera. These filters, which
we distinguish from the linear shift-invariant filters frequently dis-
cussed in the image processing community, are very widely used
to enhance or alter images. Popular social networking applications
such as Instagram and Snapchat have image filters integrated to their
services. Furthermore, many smartphones include image filtering
software into their cameras and third-party image filtering applica-
tions are widely available on the Internet.

Since digital images often serve as evidence in many scenarios,
it is critical to determine an image’s authenticity and processing his-
tory before its contents can be trusted. Several forensic algorithms
have been developed to detect evidence of image editing and deter-
mine an image’s origin [1]. The widespread use of image filters,
however, may significantly affect the performance of these foren-
sic algorithms. For example, image filters may alter or interfere
with traces left by other image manipulations [2, 3]. They may also
change camera specific traces used in camera model identification
techniques. Furthermore, it is possible that these image filters may
effect the performance of steganalysis tools.

Currently, there are no forensic techniques proposed to perform
image filter identification. This is a difficult problem because image
filters are typically a composite of multiple processing operations.
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While forensic algorithms have been proposed to detect individual
editing operations that may make up part of an image filter such
as resizing and re-sampling [4, 5], contrast enhancement [6], median
filtering [7, 8], sharpening [9], and seam carving [10]. But operations
used to make a filter can vary dramatically from filter-to-filter. As a
result, none of these techniques can be used to reliably identify all
image filters.

While the operations used to make up a filter can be complex
and propriety, all image filters change the relationships between an
image’s color channels. Furthermore, these filters may alter local
content-independent pixel relationships within a single color chan-
nel. By characterizing these relationships, we can potentially both
detect the use of filters and identify the specific filter used to mod-
ify an image. Since filters impose color relationships conditioned on
the latent color filter array (CFA) structure which is created during a
camera’s demosaicing process, it is important to take these inherent
structures into account when examining the traces of filters.

In this paper, we propose a framework to both determine if an
image has been filtered and to identify the specific filter applied. To
accomplish this, our framework searches for content-independent
pixel value relationships and cross-channel color correlations in-
troduced by image filters. To expose these relationships with re-
spect to the CFA structure, we suppress an image’s contents by
re-interpolating it using a set of existing demosaicing algorithms,
then obtaining interpolation residuals as the difference between each
re-interpolated version and the original image. We then characterize
statistical dependencies between these residuals using a set of newly
design CFA-aware co-occurrence patterns. We use the resulting
co-occurrence matrices as a set of features to perform filter detec-
tion and identification. Experiments conducted on images modified
using both a camera’s built-in image filters as well as third-party
software show that our proposed approach can identify a wide range
of filters with an average accuracy over 97% and is robust to JPEG
post-compression.

2. PROBLEM FORMULATION

When performing filter identification, we assume that the filtered im-
ages are originally captured by a camera and are filtered only once.
The filtered images may be produced directly by a camera after im-
age formation using its built-in software filters. Alternatively, a user
can employ third-party image editing software to filter images di-
rectly output by a camera. Under both scenarios, the filtered images
may possibly be re-compressed by either the camera or the image
editing software.

To create their desired effects, most filters provided by current
cameras and image-editing software actually perform a composition
of multiple processing operations. These operations often adjust the
color balance, change the saturation level and apply other percep-
tual enhancement to photos. Depending on their targeted effects, the
internal operations within filters and the specific implementation of



Fig. 1: Possible processing pipeline of a filtered image within and
outside a camera.

each operation can be highly complex and vary from filter-to-filter.
The implementation details of most filters are usually not publicly
available due to commercial reasons. As a result, it is very difficult
to build parametric models capable of characterizing all filters. No
matter what operations are used to make filters, however, they in-
evitably leave traces in an image in the form of content-independent
color correlations and pixel value dependencies. These can serve as
universal traces to identify different filters.

Cameras can also introduce color or pixel value dependencies
during the image formation process, primarily during demosaicing.
As is shown in Fig. 1, when capturing an image, light reflected from
a scene passes through the camera’s lens and color filter array (CFA)
before hitting the sensor. Due to the CFA’s filtering, only one color
component is recorded by the sensor at each pixel location. After-
wards, a processing known as demosaicing is responsible for gener-
ating color images by interpolating the missing two colors for each
pixel from directly recorded ones. This will introduce a set of color
dependencies related to the CFA structure. The demosaiced image
may then be JPEG compressed by the camera before a filter is ap-
plied. We can see that color correlations and pixel value dependences
in a filtered image are caused by both cameras’ internal demosaicing
process and filtering process. As a result, it is important to take CFA
structure into account when characterizing filter traces.

3. FILTER IDENTIFICATION FRAMEWORK

To mimic the effects of physical filters attached to the lens of cam-
era, image filters often perform complex operations to artistically
adjust or perceptually enhance the colors in images. This not only
modifies local pixel value dependencies but also changes the relative
color relationships in images. Since the algorithmic implementation
of filters can be very complex and highly diverse, finding an effective
way to extract general intra-channel and inter-channel color correla-
tions from filtered images becomes a key issue for universal filter
identification. Additionally, as described in Section 2, when inter-
polating missing color components, the demosaicing process within
cameras can potentially introduce certain sets of color correlations
aligned with CFA pattern into cameras’ output images. Therefore,
the color relationships in filtered images are actually imposed by fil-
ters conditioned on the latent CFA structure.

To better expose color correlations with respect to the CFA struc-
ture, we propose a filter identification framework that uses interpo-
lation residuals from demosaicing algorithms to measure color re-
lationships in images according to a CFA pattern. Fig. 3 shows
an overview of our proposed framework. We first re-sample color
components from images according to a certain CFA pattern, then
re-interpolate the missing colors using several demosaicing algo-
rithms. The interpolation residuals are then calculated by subtract-
ing the original filtered images from the re-interpolated ones. This
re-interpolation process can suppress image contents and allow the
discovery of content-independent color relationships in the interpo-
lation residuals. To capture inherent color correlations exposed in
interpolation residuals, we then quantize and truncate residuals and
extract a diverse set of CFA-aware co-occurrence features. Finally a
multi-class ensemble classifier is applied to utilize color correlation
information for filter identification. We now explain the detailed im-

plementation of our framework.

3.1. Re-sampling and Re-interpolation

Before re-interpolating images using different demosaicing al-
gorithms, we re-sample color components according to a pre-
determined CFA pattern. In our framework, we use the Bayer
pattern to sample one color component at each pixel location. Sup-
pose I is a filtered image under investigation, we denote image after
re-sampling as Ĩ. Let DemosH be the re-interpolation operator
using demosaicing algorithm H . We then calculate interpolation
residual E as:

E = I−DemosH(Ĩ). (1)
Since different demosaicing algorithms interpolate color com-

ponents in different ways, they provide different hypotheses of color
correlations in an image. As a result, interpolation residuals ob-
tained from these algorithms should uncover different properties of
color correlations in the image. Therefore, we use a diverse set
of demosaicing algorithms to measure complex color relationships
left by filters. We choose nearest neighbor, bilinear, bicubic, verti-
cal bilinear, horizontal bilinear, alternating projection [11] and local
polynomial approximation [12] demosaicing algorithms to perform
re-interpolation. The vertical and horizontal bilinear algorithms are
two directional versions of the bilinear algorithm which only utilize
re-sampled color components in either vertical or horizontal direc-
tion for interpolation. Since the chosen seven demosaicing algo-
rithms cover a wide range of demosaicing properties like nonlinear-
ity, cross-channel interpolation and adaptiveness to image contents,
they can potentially expose complex and diverse color relationships
imposed by different filters.

3.2. Geometric Pattern and Co-occurrence Matrix

To capture color correlations within interpolation residuals, we em-
ploy co-occurrence matrices to measure their statistical dependen-
cies. Co-occurrence matrices are empirical approximations of the
joint probability of the residual values. By carefully choosing the oc-
curring patterns of different color sets in interpolation residuals, we
can gather different types of intra-channel and inter-channel color
correlations left by image filters. In order to extract color depen-
dencies with respect to the CFA structure, we make the geometric
patterns used to form co-occurrences also CFA-aware. Fig. 3 and
Fig. 4 show the 3 intra-channel and 8 inter-channel geometric pat-
terns we designed according to the Bayer pattern respectively.

We can see each geometric pattern specifically defines the loca-
tions of a tuple of colors (d1, d2, d3) within the CFA pattern. The
color correlation among the three defined colors is then calculated
as a 3-rd order co-occurrence matrix. To calculate a co-occurrence
given a geometric pattern, we start by quantizing and truncating the
interpolation residuals. This is because a co-occurrence matrix es-
sentially computes a discrete joint-histogram. In this paper, after
examining the empirical distribution of interpolation residuals, we
choose the quantization step as q = 2 and truncation threshold as
T = 3. We then calculate the frequency of the tuple (d1, d2, d3)
occurring in every repeated lattice of the CFA pattern throughout
the interpolation residuals. Finally, the co-occurrence matrix for
the geometric pattern is obtained by normalizing the frequency of
its tuple (d1, d2, d3). Note that for intra-channel pattern ‘G’ and
inter-channel patterns ‘RGhv’,‘GBhv’,‘RB1’,‘RB2’, we average the
co-occurrence matrices for four or two tuples to remove possible re-
dundant information due to the overlapping between tuples.

Each of the 11 geometric patterns defines a unique set of colors
to capture a particular type of color dependency. As a result, the



Fig. 2: Full architecture of our proposed filter identification framework.

Fig. 3: Intra-channel geometric pattern for red (left), green (middle) and blue (right) channel.

Fig. 4: Inter-channel geometric patterns for red and green (left), green and blue (middle) and red and blue (right) channels.

Table 1: Filter ID and name of built-in filters of iPhone 6S.

Filter ID Name Filter ID Name Filter ID Name

1 Chrome 4 Mono 7 Process

2 Fade 5 Noir 8 Tonal

3 Instant 6 None 9 Transfer

color correlations captured by these patterns should be significantly
different from each other. Specifically, the intra-channel patterns
focus on capturing the statistical correlations of colors introduced by
filters performing single-layer enhancement throughout the whole
image. The inter-channel geometric patterns focus on uncovering
the color layer dependencies caused by filters changing the relative
relations of red, green and blue color layers. The diversity among
geometric patterns is very critical for collecting a comprehensive set
of color correlation information introduced by image filters.

3.3. Multi-class Ensemble Classifier
After calculating co-occurrence matrices using our proposed ge-
ometric patterns for each interpolation residual, we unite all co-
occurrences together as our full feature set. We then provide these
features to a multi-class ensemble classifier to perform filter identi-
fication. When training the classifier, it is useful to gather training
data for each filter from a variety of camera models. This can help
improve the robustness of our method in real scenarios where filters
can be applied to images from a wide range of source cameras.

The multi-class ensemble classifier we apply is adapted from
the classifier used in [13] based on the binary ensemble classifier
proposed in [14]. The binary ensemble classifier is essentially a ran-
dom forest made from a number of base learners. Each base learner
is a Fisher Linear Discriminant (FLD) trained on a random feature
subspace and a bootstrap of training samples. The decisions of all
FLDs are fused following the majority voting strategy. To construct
the multi-class classifier, we train a binary classifier to differentiate
every possible pairing of classes. The class receiving majority votes
from all binary classifier is then chosen as the decision of the multi-
class ensemble classifier.

4. EXPERIMENTS AND RESULTS

4.1. Testing on Camera’s Built-in Filters

We conducted a series of experiments to demonstrate the efficacy of
our framework. In our first experiment, we tested our framework’s
ability to determine which filter (if any) was applied to an image
while controlling for scene content. We first captured 390 identi-
cal scenes using 8 different filters available on an Apple iPhone 6S
(iOS 9.2). For each scene, we pre-select the filter we want to add
before capturing an image. This ensures that the filters are directly
applied by the camera after image formation. Including the directly
output images without filtering, our database contained 3,510 images
in 9 different classes. Table 1 shows the 9 classes of images in our
database. Among the 8 filters provided by iPhone 6S, ‘Mono’,‘Noir’
and ‘Tonal’ can only produce grayscale images. For the convenience
of description, we named class without filtering as ‘None’.

After data collection, we preprocessed all full-size images in our
database by first cropping them into 512×512 blocks and then mea-
suring the intensity, texture and flatness of each block using three
features proposed in [15]. We only kept blocks with enough illumi-
nation and texture for feature extraction, because low quality blocks
which are dark, saturated or smooth contain less informative color
correlations for classification. This result in a total number of 60,429
image blocks from 9 classes.

After pre-selecting, we extracted co-occurrence features for each
selected block according to the framework described in Section 3.
90% of blocks from each class were randomly chosen to train the
multi-class ensemble classifier. The remaining 10% of blocks were
then tested using the trained classifier. The testing result is shown
as a 9 × 9 confusion matrix in Table 2. Numbers in the first row
and column denote the true and predicted filter ID. ∗ means zero
percentage and entries highlighted on the diagonal line are correct
identification accuracies for each class.

As is shown in Table 2, the average accuracy for 9 classes
is 97.56%. For all filters except Filter 4 (‘Mono’) and Filter 5
(‘Noir’), we can achieve over 99% identification accuracies. This
result demonstrates that our framework can effectively extract color



Table 2: Confusion matrix of iPhone 6S filters using our desinged
feature set.

True Filter
1 2 3 4 5 6 7 8 9

Pr
ed

ic
te

d
Fi

lte
r

1 99.39 0.12 0.33 * * * * * 0.50

2 0.12 99.31 * * * 0.12 * * 0.12

3 * * 99.67 * * * * * *

4 * 0.46 * 90.45 8.69 * * 0.95 *

5 * * * 5.39 91.31 * * * *

6 * * * * * 99.88 * * 0.37

7 * * * * * * 100.00 * *

8 * * * 4.16 * * * 99.05 *

9 0.49 0.12 * * * * * * 99.00

Table 3: Confusion matrix of iPhone 6S filters using rich model for
color images (SCRMQ1).

True Filter
1 2 3 4 5 6 7 8 9

Pr
ed

ic
te

d
Fi

lte
r

1 98.91 * 0.17 * * * 0.12 * 1.25

2 * 100.00 * * * 0.12 * * 0.50

3 * * 98.83 * * * 0.12 * 0.25

4 * * * 85.80 12.73 * * 2.86 *

5 * * * 10.04 86.29 * * * *

6 * * * * * 99.75 * * 0.37

7 * * * * * * 99.76 * 0.12

8 * * * 4.16 0.98 * * 97.14 *

9 1.09 * 1.00 * * 0.12 * * 97.50

Table 4: Confusion matrix of filters from Fotor.
True Filter

Bright Mini Pitts- Straight

Spot Oven None burgh Ink

Pr
ed

ic
te

d
Fi

lte
r Bright Spot 100.00 0.15 * * *

Mini Oven * 99.70 * * *

None * * 99.55 * *

Pittsburgh * 0.15 * 100.00 *

Straight Ink * * 0.45 * 100.00

correlation information from filtered images and accurately detect
different filters. We note that for ‘Mono’ and ‘Noir’ with relative
lower accuracies, most misclassification actually corresponds to
confusion between themselves. Fig. 5 shows a comparison between
‘Tonal’, ‘Mono’ and ‘Noir’ of the same scene. We can see that
they all produce similar grayscale images, which contain less color
correlation information for reliable classification. Especially for
‘Mono’ and ‘Noir’, their output images are much darker. This also
explains why we want to pre-select informative blocks with relative
high quality.

Since rich model for color images (SCRMQ1) [16] has become
a state-of-the-art method to universally identify different image ma-
nipulations. We conducted a supplementary experiment to compare
the performance of our method with SCRMQ1. We extracted the
SCRMQ1 feature for all pre-selected blocks in our database and re-
peated the same training and testing procedure as the previous ex-
periment. The testing result of SCRMQ1 is shown in Table 3.

We can see that the average identification accuracy for SCRMQ1
is 96.00% which is lower than 97.56% achieved by our framework.
Additionally, we obtain higher accuracies for almost all image
classes except Filter 2 (‘Chrome’), for which our accuracy is slightly
lower than SCRMQ1 (0.69%). For filters ‘Mono’ and ‘Noir’ which
are found to be more challenging to differentiate, our method per-
forms much better than SCRMQ1 (roughly 5% improvement). This
comparison demonstrates the advantage of our framework over rich
model for color images on filter identification. In terms of exposing
and extracting color correlations in filtered images, interpolation
residuals from demosaicing algorithms and diverse geometric pat-
terns can do a better job than high-pass filters used by rich model.

4.2. Testing on Filters Provided by Third-party Software

To verify that our co-occurrence features don’t learn camera model-
specific demosaicing information as well as test robustness of our
framework against JPEG compression, we built a new database us-
ing 6 different camera models. We collected 300 full-size images
from Canon PC1234, iPhone 6S, Nikon D7100, Samsung Galaxy
Note 4, Samsung Galaxy S5 and Sony A6000. Each model con-
tributed roughly 50 images. We chose an online software Fotor [17]
to filter collected images. Fotor provides a large number of filters and

Fig. 5: A comparison between filters ‘Tonal’ (left), ‘Mono’ (middle)
and ‘Noir’ (right).

we selected four filters, ‘Bright Spot’, ‘Mini Oven’, ‘Pittsburgh’ and
‘Straight Ink’, under its ‘Classic’ category. When filtering images,
we chose the ‘High’ option for JPEG quality. That is, the filtered
images were JPEG compressed again. JPEGsnoop showed that the
approximate quality factor is 100 which is relative high, but JPEG
compression is essentially lossy even with high quality factor. There-
fore, we ended up with a new database consisting of 1500 full-size
images in 5 classes (plus the unfiltered class) with diverse source
cameras and post-JPEG compression applied.

Next, we pre-processed all full-size images of this database in
the same way as the first experiment and obtain a total number of
33,275 blocks with acceptable quality. We extracted features for all
blocks and trained a multi-class ensemble classifier using 90% of
blocks which were randomly chosen. The testing result for remain-
ing 10% of blocks is shown in Table 4.

On the second database, our method achieved an average accu-
racy of 99.85%. We can successfully detect different image filters
with at least 99.55% accuracy. Since the images of this database
come from a variety of camera models, this result demonstrates the
generalization ability of our method to identify image filters un-
der realistic scenarios. Additionally, since all filtered images were
JPEG compressed again after filtering, this result also shows that
our method is robust to JPEG compression with relative high quality
factors.

5. CONCLUSION

In this paper, we investigate the problem of filter identification and
propose a novel framework to effectively capture the color corre-
lation traces left by image filters conditioned on the latent CFA
structure. We first expose a diverse set of color correlations by
re-interpolating images using various demosaicing algorithms, and
design a set of geometric patterns to extract both intra-channel and
inter-channel color correlations from interpolation residuals. Exper-
iments on filters from both cameras and third-party software show
that our method can accurately identify a wide range of filters with
possible post-JPEG compression applied.
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