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ABSTRACT

Many forensic algorithms have been developed to determine the
model of an image’s source camera by examining traces left by the
camera’s demosaicing algorithm. An anti-forensic attacker, how-
ever, can falsify these traces by maliciously using existing foren-
sic techniques to estimate one camera’s demosaicing filter, then use
these estimates to re-demosaic an image captured by a different cam-
era. Currently, there is no known defense against this attack, which is
capable of fooling existing camera model identification algorithms.
In this paper, we propose a new method to detect if an image’s source
camera model has been anti-forensically falsified. Our algorithm op-
erates by characterizing the different content-independent local pixel
relationships that are introduced by both authentic demosaicing al-
gorithms and anti-forensic attacks. Experimental results show that
our algorithm can detect an anti-forensic attack with over 99% accu-
racy, is robust to JPEG compression, and can even identify the true
source camera model in certain circumstances.

Index Terms— Source Camera Model Falsification, Anti-
Forensics, Multimedia Forensics, Demosaicing Traces, Geometric
Co-occurrence Patterns

1. INTRODUCTION

Since digital images play critical roles in settings such as news re-
porting, criminal investigations, and juridical proceedings, it is very
important to verify an image’s source. While an image’s metadata
may contain information about its source device, metadata is fre-
quently missing and can easily be modified. As a result, source
camera model identification has become an important topic in the
field of information forensics [1]. A variety of forensic algorithms
have been proposed to idenitify the make and model of an image’s
source camera using traces such as JPEG header information [2] and
sensor noise [3]. Utilizing traces left by an camera’s demosaicing
algorithm, however, remains one of the most popular and successful
approaches [4, 5, 6,7, 8,9, 10, 11, 12].

In some scenarios, an attacker may attempt to falsify the source
camera model of an image. In this paper, we focus on the anti-
forensic falsification of demosaicing traces to acheive this goal. It
is well known that an attacker can maliciously use existing forensic
methods to obtain estimates of a camera’s demosaicing filter, then
use these estimates to re-demosaic an image captured by another
camera [13, 14]. This attack remains the state-of-the-art, and can
effectively falsify a camera’s demosaicing traces and fool existing
camera model identification algorithms.
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Currently, there is no known method of detecting this anti-
forensic attack. Previous work, however, has shown that other
anti-forensic attacks can leave behind their own forensically de-
tectable traces [15, 16, 17, 18, 19]. As a result, it is critical for
forensic investigators to identify indicators that demosaicing traces
have been falsified and search for any remaining traces left by the
camera. In particular, these indicators are likely detectable when
examining cross-color channel pixel dependencies and nonlinear
in-channel pixel relationships that anti-forensic attacks may not be
able to falsify.

In this paper, we propose a new method to detect if an image’s
source camera model has been falsified by anti-forensically attack-
ing its demosaicing traces. Our algorithm operates by characteriz-
ing the different content-independent local pixel relationships that
are introduced by both authentic demosaicing algorithms and anti-
forensic attacks. To do this, we first gather a set of both linear and
nonlinear demosaicing residuals by re-demosaicing the image, then
subtracting each re-demosaiced version from the original image. We
then form co-occurrence matrices from these residuals using a set
of newly designed co-occurrence patterns. These co-occurrence pat-
terns are designed to be both CFA-aware and to capture both inter-
channel and intra-channel relationships that anti-forensic attacks will
have a difficult time falsifying.

In addition, we propose two new protocols for designing and
training an ensemble classifier to detect attacks using these features
based on different amounts of knowledge available to the forensic in-
vestigator. If the investigator has access to all camera models avail-
able to an attacker, we show that our algorithm can both detect an
anti-forensic attack and determine the true source camera model with
99.90% accuracy. If, on the other hand, an attacker captures an im-
age using a camera model unavailable to the investigator then falsi-
fies its source, we show that our algorithm can still successfully de-
tect the attack with 99.29% accuracy. Additionally, we show that we
are still able to detect an attack even if the image is re-compressed.

2. PROBLEM FORMULATION

Forensic Camera Model Identification: Forensic camera model
identification algorithms operate by searching for traces left in an
image by different components of a camera’s image processing
pipeline, i.e. the sequence of physical and algorithmic components
that a digital camera uses to form an image [1]. When a digital cam-
era captures a real scene, light L reflected from an object first passes
through the lens, then through a color filter array (CFA), before
reaching the sensor. The CFA consists of a repeating fixed pattern of
three color components (red, green, and blue). Since most sensors
are only capable of recording one color band of the light at each
pixel location, the CFA only allows one color component to pass
through at each pixel location. Consequently, the sensor records the
light intensity according to the CFA pattern and yields an image S



composed of three partially sampled color channels. Next, the miss-
ing color values in the partially sampled image are filled in through
a process known as demosaicing. After demosaicing, the image
may undergo post-processing operations such as white balancing or
JPEG compression before the final image [ is output by the camera.

Since demosaicing has a significant effect on an image’s visual
quality, most camera manufacturers develop or license proprietary
demosaicing algorithms for use in their digital cameras. As a result,
demosaicing traces are frequently used to identify a the make and
model of an image’s source camera [1].

One common approach involves building a linear parametric
model of a camera’s demosaicing algorithm, estimating the demo-
saicing filter, then using these estimates as features for camera model
identification [4, 5, 7]. The demosaicing filter estimation portion
of these algorithms can be viewed as a mapping ¢(-) from the set
of images Z to the set of all possible demosaicing filters ©, i.e.
¢ : T — ©O. The classifier that uses these estimates as features
to identify a camera model can be viewed as a mapping f : © — T’
where I' is the set of all possible camera models. As a result, the
entire forensic algorithm m can be viewed as the composition of
these two functions such that m(I) = (f o ¢)(I). While sev-
eral successful nonparametric approaches have recently been pro-
posed [6, 9, 10, 11], the parametric approaches described above can
be maliciously used by an attacker to launch a general anti-forensic
attack [13].

Anti-Forensic Camera Model Falsification: In some scenarios, an
attacker may wish to falsify the source of an image. In this paper, we
assume an attacker Alice wants to fool an investigator Bob using an
anti-forensic attack a(-). Her attack is designed to make an image I
taken by camera model ’y(k) appear as it it was taken by camera
model ). To accomplish this attack, Alice will attempt to falsify
the demosaicing traces that Bob will use to identify the model of the
camera that captured the image.

We define the true camera model as the model of the camera that
actually took the image, and the target camera model as the one that
Alice wants [ to appears as if it was taken by. Additionally, we adopt
the notation that I*) denotes an unaltered image whose true camera
model is v®, and I**) denotes an anti-forensically modified image
whose true camera model is 'y(k) and whose target camera model is
~® . To mimic real scenarios, we assume that Bob may only have
access to a subset € of the set of all possible source camera models,
ie. Q C I'. By contrast, Alice may wish to falsify the origin of
images from a camera model that Bob does not have access to (i.e
Alice’s camera model may be in 2°). Since Alice’s goal is to make
Bob believe the falsified traces she inserts, we assume that {2 forms
the set of target camera models.

We assume that camera manufactures keep their demosacing al-
gorithm private, therefore neither Alice nor Bob has the full knowl-
edge of the demosaicing algorithm associated with any v € I". How-
ever, both Alice and Bob can make use of forensic algorithms ¢(-)
to estimate demosaicing traces.

To prepare for her attack, Alice first uses ¢(-) to obtain demo-
saicing filter estimates 6 associated with target camera model (%)

such that 6O — ¢(1(2))' (D

Next, Alice will take an image I*) from true camera model ¥
and re-sample it using a pre-determined CFA pattern such as the
Bayer pattern. Finally, she will re-demosaic the re-sampled im-
age by convolving it with 6. As a result, the anti-forensic attack
a: I x © — T and the corresponding attacked image I®9 are
given by

[0 — a(I(k),é“)) _ g(I(k)) 108 )

where g(-) denotes the CFA sampling operation and * denotes con-
volution.

While this attack has been known for some time, it is currently
the state-of-the-art attack aimed at falsifying demosaicing traces, and
is capable of succesfully fooling camera model identification algo-
rithms [13, 14]. As a result, if Bob uses a forensic algorithm that
relies on demosaicing traces to identify the model of an attacked im-
age | (k)5 source camera, he will incorrectly assume that the image
was taken by camera model fy(z) instead of fy(k).

3. COUNTERMEASURE FOR ANTI-FORENSIC CAMERA
MODEL IDENTIFICATION

Most commercial cameras apply sophisticated demosaicing algo-
rithms to better preserve local textures and ensure color consisten-
cies within small regions. This introduces complex pixel relation-
ships and cross-channel color correlations into demosaiced images.
When Alice falsifies an image using the attack described in Sec-
tion 2, she attempts to remove the pixel correlations left by the true
camera and impose fake demosaicing traces associated with the tar-
get camera. However, this linear attack cannot perfectly reproduce
demosaicing traces, especially the complex nonlinear and potentially
cross-channel color dependencies of the target camera. Additionally,
it is possible that part of the demosaicing information from the true
camera still remains in falsified images.

Our framework is designed to detect an anti-forensic attack by
suppressing an image’s contents and exploiting content-independent
color dependencies. A special focus is placed on nonlinear and
cross-channel color relationships which an attack has difficulty fal-
sifying and are potentially left by the true camera. To accomplish
this, we first re-demosaic the image using a variety of existing de-
mosaicing algorithms as baseline algorithms, then obtain a set of
demosaicing residuals by subtracting the re-demosaiced image from
the original one. This suppresses image contents and allows us to
search for fake traces left by anti-forensics and any remaining traces
left by the true source camera in the residuals.

Demosaicing Residuals: To gather each set of demosaicing residu-
als, we first re-sample the image I using the Bayer pattern to get
an image S composed of three partially sampled color channels.
Next, we re-demosaic S using a baseline demosaicing algorithm.
Let Demospu be the demosaicing operation associated with demo-
saicing algorithm H. The set of demosaicing residuals E can be

obtained using B_T_ DemosH(g). 3)

In our framework, we use seven baseline algorithms to obtain
demosaicing residuals and each of them may assist in exposing a
distinct aspect of color relationships. We use five linear algorithms
including the nearest neighbor, bilinear, bicubic, vertical bilinear and
horizontal bilinear algorithms. The last two are modified versions of
bilinear algorithm only using directly observed colors in one (verti-
cal or horizontal) direction to interpolate missing values. We also
use two nonlinear content-adaptive algorithms alternating projec-
tion [20] and local polynomial approximation [21] to uncover more
complex pixel dependencies which cannot be faked by the attacker
and can tell us valuable information about the true camera models.

Geometric Co-occurrence Patterns: To measure the statistical de-
pendencies among each set of demosaicing residuals, we calculate a
set of co-occurrence matrices. Co-occurrence matrices empirically
approximate the joint probability distribution of these residuals. It is
important, however, to take into account the fact that both a camera
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Fig. 1: Intra-channel geometric patterns for red (left), green (middle) and blue (right) channels.
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Fig. 2: Inter-channel geometric patterns between red and green (left), green and blue (middle) and red and blue (right) channels.

and an anti-forensic attack interpolate color values with respect to a
CFA pattern. Here we propose a new set of co-occurrence patterns to
extract from the demosaicing residuals inherent color dependencies
aligned with the CFA lattice. Each pattern is designed to capture
a specific set of inter-channel or intra-channel dependencies, with
particular emphasis placed on the inter-channel (i.e. cross-channel)
traces that anti-forensic attacks have difficulty falsifying.

Fig. 1 and Fig. 2 show our 3 intra-channel and 8 inter-channel
geometric patterns designed according to the Bayer pattern. Skip-
ping color components directly re-sampled by the CFA pattern,
each pattern is specifically designed to capture either intra-channel
or inter-channel demosaicing correlation among three color com-
ponents (d1,d2,ds). We explicitly enforce the diversity among
geometric patterns to capture fake color relationships imposed by
the attacker and potential remaining demosaicing traces left by the
true camera. For patterns ‘G’, ‘RGhv’,’RB1’,RB2’ and ‘GBhv’, we
average co-occurrences calculated for several possible color sets to
reduce information redundancy caused by location overlapping.

To calculate a co-occurrence matrix for a tuple of color compo-
nents defined by a geometric pattern, we first discretize demosaic-
ing residuals through quantization with step 2 and truncation with
threshold 3. For every repeated CFA lattice throughout the dis-
cretized residuals, we extract the set of three color values at loca-
tions corresponding to d1, d2 and d3. The co-occurrence matrix is
then calculated as the normalized joint-histogram of extracted sets
of color values. After calculating all co-occurrence matrices on each
geometric pattern from each demosaicing residual, we unite them
together as our full feature set for classification.

Falsification Detection Classifiers In reality, Alice and Bob may
have different information available to them while launching and

Table 1: True camera models in our database

Model No. Camera Model Model No. Camera Model
1 Canon PC1234 5 Sansung Galaxy S4
2 Canon Powershot G10 6 iPhone 4s
3 Nikon D7100 7 iPhone 6
4 Samsung Galaxy S3 8 Sony A6000

detecting an attack. This possible information asymmetry can af-
fect the design and training of our falsification detection classifier. In
this paper, we consider two different scenarios. We provide details of
how classes are formed and our classifier is trained under each sce-
nario below, followed by a brief description of how our multi-class
classifier is constructed.

Scenario I - In this scenario, both Bob and Alice have access to
the same set of camera models, i.e. 2 = I'. Here, Bob’s goal is
to both detect an anti-forensic attack and to identify the true camera
model of an attacked image. Under these conditions, our classifier
assigns one ‘authentic’ class for each camera model in I" along with
one ‘falsified’ class for each unique pair of true and target models in
I" x T" (excluding the pairings of identical true and target models).
Bob will create training data for each authentic class by capturing
unaltered images using each camera model in I', and for each fal-
sified class by launching the attack «(-) for one pairing of true and
target camera models. After this, our proposed demosaicing residual
co-occurrence features are extracted from each class, and the multi-
class classifier described below is trained to distinguish between all
possible classes. When examining an image, if the classifier returns
an authentic class label, Bob assumes that no attack has be launched.
If an image is identified as belonging to a falsified class, Bob knows
that the image has been attacked and the image was actually taken
by the true camera model associated with that falsified class.

Scenario I - In this scenario, Alice can capture images using at



Table 2: True camera model identification accuracies for 64 classes
in our database.

Table 3: True camera model identification accuracies for 64 classes
after JPEG compression.

Target Model Target Model
1 2 3 4 5 6 7 8 T 2 3 4 5 6 7 8
I [ 100.00 | 100.00 | 100.00 | 100.00 | 99.80 | 100.00 | 100.00 | 100.00 T [ 100.00 | 99.80 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
= [ 2 [ 100.00 | 100.00 | 100.00 | 99.81 | 100.00 | 100.00 | 99.54 | 100.00 - [ 2 | 100.00 | 100.00 | 100.00 | 99.8T | 99.64 | 99.81 | 99.69 | 100.00
2 [3 [ 100.00 | 100.00 | 100.00 | 99.90 | 100.00 | 100.00 | 100.00 | 100.00 2 [3 [ 100.00 | 99.80 | 99.90 | 100.00 | 100.00 | 100.00 | 100.00 | 99.90
= [4 | 9878 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 = [4 [ 10000 | 99.39 | 100.00 | 100.00 | 100.00 | 99.41 | 100.00 | 99.41
2[5 ] 9982 | 99.60 | 99.82 | 100.00 | 100.00 | 100.00 | 99.82 | 100.00 8 [5] 9982 [ 99.60 | 100.00 | 100.00 | 100.00 | 99.82 | 99.82 | 100.00
& [76 | 100.00 | 100.00 | 100.00 | 99.79 | 100.00 | 100.00 | 100.00 | 100.00 & [6 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
7 [ 100.00 | 100.00 | 99.59 | 99.58 | 99.60 | 100.00 | 100.00 | 99.58 7 [ 100.00 | 99.14 | 100.00 | 99.58 | 100.00 | 100.00 | 100.00 | 100.00
8 | 100.00 | 99.58 | 100.00 | 100.00 | 99.62 | 9958 | 100.00 | 100.00 8 [ 100.00 | 99.79 | 100.00 | 99.79 | 100.00 | 100.00 | 100.00 | 100.00
Table 4: Negative class testing result of falsified images without access to true camera models.
True Model No. 6 7 8
Target Model No. 1 2 3 4 5 2 3 4 5 1 2 3 4 5
% Success Fool (%) * * 2.98 * * * * * * * * * 7.11 * *
© | Negative Class (1) | 99.98 0.41 * 0.10 * 99.57 * 0.08 0.04 * 99.74 0.25 0.04 0.06 *
3 | Negative Class (2) 0.02 97.12 0.08 0.81 0.12 0.34 99.19 0.12 0.21 2.61 0.17 97.56 0.06 0.74 0.15
F‘: Negative Class (3) * * 95.86 4.58 0.46 * 0.04 98.84 0.75 0.20 * * 88.75 3.18 0.06
§ Negative Class (4) * 0.90 | 1.06 | 94.27 | 0.95 0.09 | 0.77 | 095 | 99.00 | 1.54 0.04 | 2.09 | 394 | 9550 | 0.75
= | Negative Class (5) * 1.57 0.02 * 98.74 * * * * 95.65 * 0.84 0.10 0.31 99.04

least one camera model that Bob does not have access to, i.e. {2 C I'.
Here, Bob’s goal is simply to detect an attack, since it is impossible
for him to accurately identify the true camera model of an attacked
image. To detect anti-forensic attacks under this scenario, we pro-
pose a strategy we call negative class testing. Our classifier assigns
one ‘authentic’ class and one ‘negative’ class to each camera model
in Q. Unaltered images from each camera model in 2 are used as
training data for each authentic class. To create training data for a
camera (¥)’s negative class, Bob will use the attack o(-) to falsify
images from all other true models in €2 with the target model *y(k).
This is done to provide the classifier with a diverse set of falsified
data so that it can detect attacks launched from cameras outside of
Q. After this, our proposed demosaicing residual co-occurrence fea-
tures are extracted from each class, and the multi-class classifier de-
scribed below is trained to distinguish between all possible classes.
When examining an image, if the classifier returns an authentic class
label, Bob assumes that no attack has be launched. If an image is
identified as belonging to a negative class, Bob knows that the im-
age has been attacked.

Under both scenarios, our classifier is adapted from the binary
ensemble classifier in [22]. We build our multi-class classifier by
grouping a set of binary classifiers using the all-vs-all strategy [23].
Specifically, we train a different binary ensemble classifier to distin-
guish between every possible pair of classes. We then form a multi-
class classifier by choosing the class with majority of votes from all
binary classifiers as the final decision.

4. EXPERIMENTAL RESULTS

We conducted a series of experiments to fully evaluate our proposed
method. We first captured 300 images using each of the 8 camera
models in Table 1, and then obtained demosaicing filter estimates
associated with each camera model using the improved demosaicing
filter estimation method in [7]. Next we applied the anti-forensic
attack described in Section 2 to each image to falsify its source
camera. Each image was re-demosaiced using the estimated demo-
saicing filters from each of the other seven camera models and saved
as a TIFF. This resulted in 56 falsified classes with unique true and
target camera model pairings. When combined with the authentic
classes of the 8 camera models, our database consisted of 19,200
images from 64 distinct classes. We divided each image into a set
of 512 x 512 pixel blocks. For the purposes of our experiments,

each block is treated as a unique image. Blocks that were too dark
or smooth were removed from the database since it is unlikely that
real images will consist entirely of dark and smooth regions. Our
final dataset consisted of 44,502 blocks from 8 authentic classes and
277,635 blocks from 56 falsified classes.

Attack Detection under Scenario I : In this experiment, we assume
Bob has access to all possible camera models. For each block in our
database, we first obtained demosaicing residuals using Equation 3,
and gathered co-occurrence features using all designed geometric
patterns. Then we randomly chose 90% of blocks from each of the
64 classes to train the classifier. Finally, the trained classifier was
applied to identify the true camera models of the remaining 10% of
blocks. Table 2 shows the percentages of blocks whose true camera
models were correctly identified for all 64 classes in our database.

In Table 2, the numbers in the first row and column denote the
true and target camera models of each class respectively. Entries
on diagonal are identification accuracies for 8 authentic classes. It
shows that our framework can successfully detect anti-forensic at-
tacks and identify the true camera models of attacked images with an
average accuracy of 99.90%. For 47 out of 64 classes, we achieve
100% accuracy on identifying the true camera models for falsified
images. This result demonstrates the ability of our co-occurrence
feature set to effectively capture the traces of anti-forensic attack
and the remaining demosaicing traces left by the true cameras.

Under Scenario I, we further test the robustness of our method
against JPEG compression. We JPEG compressed all blocks in our
database with quality factor 90 and repeated feature extraction and
classifier training/testing following procedures in the first experi-
ment. Table 3 shows the percentages of JPEG-compressed blocks
whose true camera models are correctly identified. The average ac-
curacy for all 64 classes after JPEG compression is 99.91%. This
clearly shows that JPEG post-compression does not influence the
performance of our method.

Attack Detection under Scenario II: To simulate Scenario II, we as-
sume Bob only has access to cameras in Q = {1,2,3,4,5}, while
Alice may falsify images taken by camera 6, 7, 8§ and make them
look as if they are taken by cameras in 2. To create one ‘negative
class’ for each camera in €2, we used demosaicing estimates associ-
ated with it to falsify all images taken by the remaining four cam-
eras . The multi-class ensemble classifier was then trained on five
‘negative classes’ and five authentic classes. Finally, we applied the



trained classifier to detect anti-forensic attack launched by Alice on
the other three unseen camera models.

Table 4 shows our results for anti-forensic attack detection un-
der Scenario II. Numbers in the first and second rows are the true
and corresponding target camera model numbers of image blocks
attacked by Alice. The third row shows the percentages of image
blocks on which our classifier was successfully fooled by the at-
tacker (i.e. identify falsified images as authentically captured by
target models). Numbers in the remaining four rows are percent-
ages of blocks identified as negative classes (bracketed number after
‘Negative Class’ is the corresponding target camera model number
of the negative class). For all 15 falsified camera classes, an average
of 99.29% image blocks were identified as negative classes. That
is, even though we only know the target camera models the attacker
intends to present, we can still successfully detect camera model
falsification by conducting the negative class testing.

5. CONCLUSION

In this paper, we proposed a new algorithm to detect anti-forensic
camera model falsification. Our algorithm operates by character-
izing the different content-independent local pixel relationships
that are introduced by both authentic demosaicing algorithms and
anti-forensic attacks. Our feature set is gathered using both diverse
demosaicing residuals, and newly designed CFA-aware geometric
patterns. In addition, based on different amounts of knowledge
available to the forensic investigator, we proposed two new proto-
cols for constructing and training an ensemble classifier to detect
attacks using our feature set. Experimental results show that our
algorithm can detect an anti-forensic attack with over 99% accuracy,
is robust to JPEG compression, and can even identify the true source
camera model in certain circumstances.
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