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ABSTRACT

Deep learning techniques have become popular for performing cam-
era model identification. To expose weaknesses in these methods,
we propose a new anti-forensic framework that utilizes a genera-
tive adversarial network (GAN) to falsify an image’s source camera
model. Our proposed attack uses the generator trained in the GAN
to produce an image that can fool a CNN-based camera model iden-
tification classifier. Moreover, our proposed attack will only intro-
duce a minimal amount of distortion to the falsified image that is not
perceptible to human eyes. By conducting experiments on a large
amount of data, we show that the proposed attack can successfully
fool a state-of-art camera model identification CNN classifier with
98% probability and maintain high image quality.

Index Terms— Generative adversarial network, Anti-forensics,
Camera model identification, Convolutional neural networks

1. INTRODUCTION

Determining the model and manufacturer of an image’s source cam-
era is an important task in multimedia forensics [1]. In many situa-
tions such as criminal investigations and news reporting, the integrity
and origin of images may be put into question. Many forensic tech-
niques have been developed to perform camera model identification
using traces left by an image’s source camera model, such as JPEG
header information [2], sensor noise statistics [3, 4], and demosaic-
ing strategy [5, 6, 7, 8, 9]. In recent years, data-driven methods, par-
ticularly deep learning, have been gaining its popularity for forensic
tasks [10, 11, 12, 13, 14, 15, 16].

Research has shown, however, that a malicious attacker may
launch an anti-forensic attack against existing forensic detectors [17,
18, 19, 20, 21, 22]. Therefore, studying anti-forensics can help re-
searchers and investigators be aware of weaknesses in existing foren-
sic detectors [23, 24, 25, 26, 27, 28].

One approach to anti-forensically falsify an image’s source cam-
era model is to use forensic algorithms to obtain demosaicing esti-
mates of the target camera model, then use the estimates to redemo-
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saic the image captured by another camera model. However, this at-
tack can be detected by forensic algorithms that utilize more generic
and sophisticated information [29]. Recently, forensic researchers
have started to explore more complex approaches to counter deep
learning based detectors [30, 31].

Generative adversarial networks (GANs) are a deep learning
framework first used in the machine learning and computer vision
communities to generate data that can statistically mimic the dis-
tribution of training data [32]. The methodology of GANs is to
alternatively train two individual deep neural networks, a generator
and a discriminator, in a competing fashion. While the discrimi-
nator gets better at distinguishing the real data from the generated
data, the generator aims to fool the discriminator by minimizing the
difference between the real and generated data. GANs have been
used to produce visually realistic images in many computer vision
techniques [33, 34, 35]. This raises many important forensic ques-
tions. If GANs can be used to generate visually realistic images, can
they be used to generated forensically realistic images? A GAN has
recently been proposed that can anti-forensically hide traces left by
median filtering [31]. Can new anti-forensic GANs be built to attack
other forensic tasks such as camera model identification?

In this paper, we propose a new anti-forensic framework aimed
to fool CNN-based camera model identification classifiers. Our pro-
posed attack utilizes a GAN to falsify the forensic information of an
image’s source camera model and only introduces visually imper-
ceptible distortion to the falsified images. The proposed framework,
MISLGAN, is named after our group, the Multimedia Information
and Security Laboratory (MISL). To construct our attack, we design
and train our GAN architecture specially for forensic purposes, and
then we use the trained generator to falsify the forensic traces in an
input image. The GAN’s loss function is formulated to ensure visual
quality of the attacked image and force the generator to learn cam-
era model specific traces by incorporating feedback from a camera
model identification classifier. We conduct a series of experiments to
demonstrate the effectiveness of our proposed attack. The falsified
images can successfully fool a CNN-based camera model identifica-
tion classifier with approximately 98% probability. The mean SSIM
and PSNR between the original images and the falsified images are
above 0.97 and 43dB.

2. PROBLEM FORMULATION

The overall goal of our anti-forensic attack for camera model iden-
tification is to falsify the forensic traces left by an image’s source
camera model, such that the attacked image can fool the investiga-
tor’s camera model identification classifier. To build a successful at-
tack, the attacked images should look realistic and contain no visible
artifacts, i.e. the anti-forensic attack should not change image con-
tents and can only introduce an acceptable amount of distortion to
images. Since CNN-based camera model identification techniques



Fig. 1: Proposed Framework: MISLGAN

have achieved highly reliable and stable performance on large scale
databases [10, 14, 36] recently, we focus on building targeted attack
for CNN-based camera model identification classifiers. Our anti-
forensic attack takes in a target camera model and an image origi-
nally captured by any source camera model as inputs, and produces
an output image by modifying its forensic traces to match the target
camera model. The output image of our attack has the same contents
as original image but will be classified by the investigator’s CNN
classifier as originating from the target camera model.

We assume that the forensic investigator will first build and train
a CNN-based camera model identification classifier, then use the
trained CNN classifier to perform camera model identification. The
investigator will only be presented with an image itself and will not
know a priori whether the image is attacked or not. If the image is
attacked, the attacker will keep the original image private and only
show the final attacked image to the investigator. To launch the cam-
era model attack, we assume the attacker has access to the investiga-
tor’s classifier or can build an equivalent copy of the investigator’s
classifier. In case a data-driven attack is needed for the investigator’s
CNN-based classifier, the attacker can also collect a large image set
to build and train the anti-forensic attack. We introduce how we
construct our proposed attack in the next section.

3. PROPOSED FRAMEWORK

3.1. Overview

To construct our attack, we propose a new framework that utilizes a
generative adversarial network to build a generator G(·) to produce
falsified images which can mimic the forensic statistics of a target
camera model, and our attack will leave no artifacts that are percep-
tible to human eyes. The proposed framework, MISLGAN, is named
after our group, Multimedia Information and Security Laboratory.

Generative adversarial networks (GANs) are a deep learning
framework that have been widely used in computer vision to pro-
duce visually realistic images. A GAN consists of two major com-
ponents, discriminator D and generator G. Assuming real images I
have distribution I ∼ pr(I) and generated images I ′ have distribu-
tion I ′ ∼ pg(I

′), the two deep networks are trained in a competing
fashion using (1):

min
G

max
D

EI∼pr(I)[logD(I)] + EI′∼pg(I′)[log(1−D(I ′))] (1)

where E represents the operation of calculating expected value, until
they reach an equilibrium such that the generated data can mimic
statistical distribution of the real data [32].

The overview of MISLGAN is shown in Fig. 1. It consists of
three components: generator, discriminator, and a pre-trained CNN-
based camera model classifier. By incorporating the pre-trained
CNN-based camera model identification classifier into the GAN, the
generator is forced to reproduce the forensic traces of the target cam-
era model. Moreover, we formulate the loss function fully described
in Sec. 3.3 to ensure that the falsified images have acceptable visual

Fig. 2: Architecture of the generator

Fig. 3: Left: ConvBlock, Right: Feature map reduction

quality and fool investigator’s camera model identification CNN
classifier.

3.2. Architecture of proposed framework

We now describe the details of the three networks in the proposed
MISLGAN.

Generator: The architecture of the generator is shown in Fig. 2.
It consists of one synthetic color filter array (CFA) block, two Con-
vBlocks made of several convolutional layers, activation functions
and 1× 1 convolutional layers arranged in a common structure, and
one feature map reduction block made of convolutional layers and
activation function to combine high dimensional feature map into
one color image or image patch.

Demosaicing trace are one very important forensic trace that
many algorithms used to perform camera model identification [6, 5,
6, 7, 8, 9]. While CNN-based camera model identification classifier
can learn more generic forensic traces of a camera model, anecdo-
tally these traces still contain demosaicing traces [14]. Therefore, by
using the synthetic CFA block, we can first remove the demosaic-
ing traces left by the image’s original capturing model, and force the
generator to redemosaic the image such that demosaicing traces are
ensured to be falsified. In this paper, we used the Bayer pattern.

Besides demosaicing traces, the generator should also be able to
induce more sophisticated and complex forensic traces that the deep
learning based classifier used for performing camera model identi-
fication. The ConvBlocks are design to redemosaic an image and
reconstruct other forensic statistics of the target camera model. The
architecture of a ConvBlock is shown in Fig. 3. It consists of a con-
volutional layer with N , 3× 3 filters and stride 1 followed by ReLU
activation, then another convolutional layer withN , 3×3 filters and
stride 1 followed by ReLU activation, then a 1×1 convolutional layer
followed by ReLU activation. By using the 1×1 convolutional layer,
our generator is capable of learning the correlations between feature
maps and thus produce more forensically realistic traces. In prac-
tice, our generator usesN = 64 ConvBlock followed by aN = 128
ConvBlock.

Since the second ConvBlock outputs a large number of feature
maps, to combine 128 feature maps to a 3 color-layer image, we
design the feature map reduction block shown as in Fig. 3. It consists
of a convolutional layer with 3, 3× 3 filters and stride 1 followed by
ReLU activation function. We use ReLU as the activation function
for the generator is because experimentally we found that it yields
the best performance.

Discriminator: The discriminator is designed to differentiate be-
tween real and generated images (i.e. attacked images). It is built
into the GAN to strengthen the quality of the generator’s output.



The discriminator architecture in the proposed framework is a vari-
ant of the camera model identification CNN proposed by Bayar and
Stamm in [14, 37]. This CNN architecture is specifically designed
for forensic tasks. It consists of a constrained convolutional layer
to learn low level forensic feature extractors, followed by 4 stan-
dard convolutional layers with batch normalization and hyperbolic
tangent activation, then followed by 3 fully connected layers. Due
to space limitations, we refer the readers to [14, 37] for a complete
description of the CNN architecture.

The key modification made to the CNN architecture for our dis-
criminator is we replace the last fully connected layer with a single
neuron followed by sigmoid activation. When training the discrim-
inator, the last neuron activation corresponds to the probability that
the input image is real (i.e 1 if the image is real, 0 if the image is
generated).

Pre-trained CNN-based camera model identification classifier:
This can be any CNN-based camera model identification classifier.
In this paper, we use the CNN architecture proposed by Bayar and
Stamm [14, 37], due to its stable and successful performance for
camera model identification. We modified the depth of filters in the
input layer of their CNN architecture to accommodate color instead
of grayscale images.

3.3. Generator loss

For our generator to be successful, it must both fool a camera model
identification CNN and introduce minimum distortion into the im-
age. As a result, we define the generator’s loss function LG as

LG = αLp + βLc + γLa, (2)
where Lp represents the perceptional loss between the original im-
age and its falsified copy, Lc represents the classification loss due
to fooling the camera model identification CNN classifier, La repre-
sents the adversarial loss due to fooling the discriminator, andα, β, γ
are the weights for each loss term.

Since the attack should leave no perceptual artifacts, we model
the perceptual loss using the mean absolute difference between the
original image and its falsified copy. For an original image I of
size w × h, the absolute difference between I and its corresponding
falsified copy is computed as

Lp =
1

w × h

w∑
i=1

h∑
j=1

| Ii,j −G(I)i,j |, (3)

where G(·) denotes output of the generator and the subscript i, j
represents the pixel location in the image.

The classification loss is designed to measure the difference be-
tween the camera model identification classifier’s output for the fal-
sified image and the ideal output for the target camera model. Let
C(·) represent the softmax output of the classifier. For image I , the
classifier’s output for its falsified copy is C(G(I)). For a particular
target camera model, the ideal softmax output t is a vector with a 1
at the location of target class and 0’s elsewhere. The classification
loss Lc is quantified as the cross entropy between t and C(G(I)),
and it can be calculated by

Lc = −
m∑

k=1

tk log (C(G(I))k) , (4)

where m is the number of camera models that the camera model
identification classifier is train to differentiate.

While the perceptual loss and the classification loss result in
visually and forensically plausible falsified images, they may have
some limitation in reconstructing complex statistics between real and
generated data. Hence, we incorporate adversarial loss for the pur-
pose of fooling a discriminator. It is expressed as

La = log(1−D(G(I))), (5)
where D(·) denotes the output of the discriminator.

3.4. Deploying MISLGAN

To falsify an image that was originally captured by camera model A
and make it look as if it was captured by camera model B, we first
train the proposed framework using target camera model B. After
training, we discard the camera model identification CNN and the
discriminator. Next we divide the full-size color image into smaller
patches and use the generator to attack each patch individually. The
patches are then grouped together to form the full-size attacked im-
age. We note that if the attacker possesses enough computational
resources, the entire image can be attacked at once.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

To train and evaluate our proposed GAN, we created two different
databases of images. Database I was built from images in the pub-
licly available Dresden Image Database [38]. We randomly gener-
ated 932,400 non-overlapping color image patches of size 256×256
from 18 camera models shown in Table 1. We then divided all
patches into 900,000 patches for training, 16,200 patches for vali-
dation and 16,200 patches for testing. We ensured that training, val-
idation and testing patches came from separate full-size images and
each model contributed equally in this database. For Database II,
we first created 318,000 non-overlapping patches of size 256× 256
from 10 camera models shown in Table 2. These patches were cre-
ated from full-size images that we captured using the camera models
listed in Table 2. We divided the patches into 300,000 patches for
training, 9,000 for validation and 9,000 for testing. Again, no train-
ing, testing or validation patches came from the same full-size image
and each model contributed equally.

Table 1: Camera Model and Identification Accuracy of Database I
ID Camera Model Acc. (%) ID Camera Model Acc. (%)
1 Kodak M1063 99.56 10 Sony DSC-H50 81.11
2 Canon Ixus70 99.44 11 Rolli RCP-7325XS 97.67
3 Casio EX-Z150 98.89 12 Samsung NV15 99.44
4 Fujifilm FinePixJ50 99.67 13 Panasonic DMC-FZ50 99.67
5 Praktica DCZ5.9 99.56 14 Sony DSC-W170 80.22
6 Ricoh GX100 98.89 15 Sony DSC-T77 99.67
7 Nikon CoolPixS710 100 16 Pentax OptioA40 99.67
8 Nikon D200 100 17 Olympus mju-1050SW 99.44
9 Samsung L74wide 99.67 18 Nikon D70 99.11

Table 2: Camera Model and Identification Accuracy of Database II
ID Camera Model Acc. (%) ID Camera Model Acc. (%)
1 Canon EOS SL1 96.89 6 Motorola Droid Maxx 96.00
2 Canon Powershot S100 99.11 7 Nikon D7100 97.56
3 iPhone 4S 98.89 8 Samsung Galaxy S4 99.89
4 iPhone 6S 95.11 9 Sony A6000 98.56
5 LG G3 97.22 10 Sony NEX-5TL 95.44

Next, we trained the CNN classifier proposed by Bayar &
Stamm [14] with the same parameters used in [14] to perform
camera model identification on each database. The camera model
identification accuracies achieved on each database are reported in
the last column of Table 1 and Table 2. The CNN classifier achieved
an average camera model identification of 97.31% on Database I
and 97.47% on Database II, which is consistent with results reported
in the original publication [14].

Given the trained CNN classifier, we used our proposed MISL-
GAN framework to create generators targeted at 5 randomly chosen
camera models in each database. For Database I, we created gener-
ators to target camera models 1, 5, 9, 13 and 17. For Database II,
we created generators to target models 1, 4, 6, 8 and 10. To build
all 10 generators with different targets, we trained MISLGAN using
Tensorflow’s default Adam optimizer with a learning rate of 10−4



Table 3: MISLGAN evaluation on Database I
Seen Unseen

Target m-PSNR 1 m-SSIM 2 SAR 3(%) m-PSNR 1 m-SSIM2 SAR 3(%)
1 43.4916 0.9842 99.25 43.0004 0.9847 98.94
5 43.5857 0.9815 99.43 43.0854 0.9827 98.32
9 43.7658 0.9860 99.04 43.4468 0.9870 92.00

13 44.8767 0.9866 99.30 44.5755 0.9884 98.78
17 42.9282 0.9840 97.91 42.7480 0.9860 98.16

Table 4: MISLGAN evaluation on Database II
Seen Unseen

Target m-PSNR 1 m-SSIM2 SAR 3(%) m-PSNR 1 m-SSIM 2 SAR3(%)
1 45.9622 0.9904 96.19 44.7714 0.9877 96.12
4 42.4920 0.9831 98.60 45.9622 0.9704 98.52
6 44.3386 0.9878 98.33 43.1272 0.9842 99.20
8 44.4763 0.9876 99.10 43.3912 0.9849 99.20

10 45.9931 0.9924 97.13 44.4994 0.9892 96.98

for both generator and discriminator. The generator was trained with
batch size 30 and weights α = 1, γ = 1, β = 1. The batch size for
discriminator is 60 (30 generated patches and 30 corresponding orig-
inal patches). We stopped training when loss on validation patches
reached an acceptable level.

4.2. Experiment 1

In this experiment, we evaluated the ability of our generators trained
in MISLGAN to launch a camera model falsification attack using
images from camera models used to train the GAN, i.e. the gener-
ators have seen other images from the same camera models in the
training data. For each database, we fed the testing patches into all
5 trained generators to create attacked patches targeted on differ-
ent camera models. This yielded a total number of 81,000 attacked
patches for Database I and 45,000 attacked patches for Database II.
We then used the CNN classifier to identify the source camera model
of each of the attacked patches. We report the successful attack rate
(SAR) as the percentage of attacked patches whose camera models
are identified as the target model by the CNN classifier. We also
computed the PSNR and SSIM between the attacked patches and
original patches to measure the distortion introduced by the attack.
We averaged the PSNR and SSIM of all attacked patches generated
by each generator, and reported the experimental results on Database
I and Database II in the left portion of Table 3 and Table 4 respec-
tively.

For all 5 different target models in each database, our attack can
achieve an average successful attack rate of 98.99% on Database I
and an average successful attack rate of 97.87% on Database II. The
attack rates are comparable with the average camera model identifi-
cation accuracies achieved by the CNN classifier on Database I and
Database II. We can see that our attacked patches have very high
PSNR and SSIM compared to their original patches. This shows
that our attack introduces very small distortion to attacked patches
and maintains high image quality. Fig. 4 shows an example of an
attacked image (bottom) and an original image (top). The original
image was captured by a Canon EOS SL1. It was attacked patch
by patch using a generator with a target model of an iPhone 6S.
We stitched all attacked patches together to generate the full-size at-
tacked image. The attacked image looks perceptually realistic and it
is difficult to visually differentiate the attacked image from the orig-
inal one, even in a zoomed view. This experiment demonstrates that
our proposed MISLGAN can perform successful targeted camera
model falsification with both a high attack rate and high visual qual-
ity.

1,2 m-PSNR and m-SSIM are mean PSNR and SSIM calculated using
testing data for this database.

3 SAR is short for successful attack rate. It is the percentage of attacked
images that are classified as the target camera model by the camera model
identification CNN.

Fig. 4: An attack example. Top left: original full-size image cap-
tured by Canon EOS SL1. Bottom left: attacked full-size image
with target model iPhone 6S. Middle: zoomed view of 256 × 256
patch marked in read box in full-size image. Right: zoomed view of
25× 25 patch marked in read box in 256× 256 patch.

4.3. Experiment 2

In this experiment, we evaluate the generalizability of our attack
using image patches whose camera models have never been used
or seen when training MISLGAN. Specifically, we randomly chose
5,000, 256 × 256 patches from 5 new camera models: Motorola
X, HTC One, iPhone 6, Sony NEX-7 and Samsung Galaxy Note 4.
Each model contributed 1,000 patches. We then followed the same
procedure described in Experiment 1 to attack image patches from
this unseen dataset using all trained generators. This yielded an-
other 25,000 attacked patches for each database. The source camera
model of each patch was identified using the trained CNN classifier
associated with the corresponding database. Again, we report aver-
age PSNR, average SSIM and successful attack rate for each target
model in the right part of Table 3 and Table 4.

We obtained an average successful attack rate of 97.24% for 5
target models on Database I and an average successful attack rate
of 98.00% for 5 target models on Database II. For each of the 10
generators targeted on different models from our two databases, the
average PSNR of all generated patches was at least 42.7840 and the
average SSIM is above 0.9704. On both databases, the evaluation
results on image patches from unseen camera models are consistent
with results from seen camera models in Experiment 1. These results
show that our proposed MISLGAN trained on a particular database
can attack images from camera models outside the database with a
high successful attack rate and high image quality. This experiment
demonstrates the generalizability of our MISLGAN, which is critical
for an attack to be applied in real-world scenarios.

5. CONCLUSION

In this paper, we proposed a new anti-forensic framework against
CNN-based camera model identification classifiers. Our proposed
attack uses a generative adversarial network to construct a genera-
tor that is designed to introduce forensic information from a target
camera model into the falsified images. Moreover, we formulated
a loss function to ensure the generator can produce attacked images
that successfully fool the CNN classifier and maintain high visual
quality.
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