

# A Study of Fault Detection Thresholds under Stochastic Conditions Intrinsic to Power Distribution Systems

Dr. Karen N. Miu & Nicholas S. Coleman

Drexel University power.ece.drexel.edu



IEEE PES GM 2016 July 18, 2016





# Outline



- Introduction & Motivation
- Fault Record Database
- Detector Design
  - Discrete Wavelet Transformation
    - Quarter-cycle Feature Generation
  - Support Vector Machines
- Testing and Results







- Intrinsic Distribution System Characteristics
  - Unbalanced phase voltages
  - Uncertain net nodal power injections (loads & sources)
  - Uncontrolled phase angles at fault inception
- Investigate:
  - the sensitivity of wavelet-based fault detection thresholds with respect to injection level & intrinsic phase differences
  - online quarter-cycle detection
- How: Hardware Laboratory Environment
  - Unbalanced utility source voltage
    - Range of configurable, power injections







# Fault Record Database: RDAC

• Reconfigurable Distribution Automation & Control (RDAC)





Fig. 1. Unbalanced multi-phase power flow experiment in RDAC.





## Fault Record Database

551 short-circuit fault events sensed in RDAC laboratory

| Table I. Number of available event records of each type. |                 |        |       |       |                   |  |  |  |
|----------------------------------------------------------|-----------------|--------|-------|-------|-------------------|--|--|--|
|                                                          | Injection Level |        |       |       |                   |  |  |  |
| Fault Type                                               | Light           | Medium | Heavy | Total |                   |  |  |  |
| AG                                                       | 20              | 17     | 20    | 57    | Ì                 |  |  |  |
| BG                                                       | 21              | 22     | 21    | 64    | <b>181 LG</b>     |  |  |  |
| CG                                                       | 20              | 21     | 20    | 61    |                   |  |  |  |
| AB                                                       | 20              | 21     | 20    | 61    |                   |  |  |  |
| BC                                                       | 19              | 20     | 20    | 59    |                   |  |  |  |
| СА                                                       | 22              | 21     | 19    | 62    |                   |  |  |  |
| ABG                                                      | 21              | 21     | 21    | 63    | http://www.second |  |  |  |
| BCG                                                      | 21              | 21     | 20    | 62    |                   |  |  |  |
| CAG                                                      | 21              | 21     | 20    | 62    |                   |  |  |  |
| Total                                                    | 185             | 185    | 181   | 551   |                   |  |  |  |

- Sampled phase voltage waveforms captured for each event
- 60 samples / cycle (15 samples / quarter-cycle)







#### **Detector Design**



- Discrete Wavelet Transform
  - Capture time-localized disturbances in signals
- Power system applications
  - Tap changing, capacitor energization [3]
  - Voltage sag / swell / flicker [4]
  - Fault detection / classification [5]-[8]
- Daubechies-4 (db-4) Wavelet
  - 2<sup>nd</sup> level detail coefficients







SEPE Mereo and

- 16 samples / quarter-cycle
- Filter and down-sample at each level
- (4) 2<sup>nd</sup>-level detail coeff. / feature
- Feature: four-coefficient signal energy

– Sum-of-squares of prev. (4) 2<sup>nd</sup>-level coefficients





#### <sup>1</sup>/<sub>4</sub>-Cycle Feature Example



8





- Generate (1) feature per phase for each training set event
- Use support vector machines to find optimal boundaries between "faulted" and "normal" features in e<sub>p</sub>-space
- Training set: ~70% of fault events from each load level



Fig. 4. Decision boundary training example: LG faults, light injection level, phases considered separately.



#### **Detection Process**

- Testing set events (~30% of database) scanned sample-by-sample
- Faulted phase(s)
  'detected' where a threshold is crossed
- Example: BCG fault
  - Voltage distortion causes
    false alarm on Ph. C prior
    to actual BCG fault



**Fig. 5.** Detection example: false alarm at coefficient k=8.







## Results



Obtained to investigate the impacts of:

- Injection level
  - How does injection level impact the thresholds?
  - Is there a "best" training set to use?
- Intrinsic phase differences
  - How do thresholds vary across the phases?
  - Is it necessary to train phase thresholds separately?







#### **Experiment/Database Characteristics**







**Fig. 6.** Stochastic substation phase voltages (left) and total injection levels (in kW, right) in 551 RDAC studies.







• How does injection level affect thresholds?

Table II. Sample threshold sets (rng seed = 22) when trained using events from each load level set and from a combination of the three load level sets.

| Training Set Load | Learned Thresholds |         |         |  |  |
|-------------------|--------------------|---------|---------|--|--|
| Level             | Phase A            | Phase B | Phase C |  |  |
| Light             | 30.47              | 37.64   | 27.90   |  |  |
| Medium            | 30.65              | 35.14   | 29.30   |  |  |
| Heavy             | 29.98              | 35.04   | 31.35   |  |  |
| Combination       | 31.26              | 31.01   | 33.22   |  |  |

- In this case, different injection levels yield similar thresholds across the phases
- Variation across the phases is apparent









- Is there a best training set?
  - Weaker detection performance observed when using thresholds trained at light injection level

Table III. Average performance across 100 training sets for each combination of<br/>trained threshold sets and testing data load levels.

| Training Set | Testing Set | Avg. Success | Avg. Missed | Avg. Mis-       | Testing Set |
|--------------|-------------|--------------|-------------|-----------------|-------------|
|              |             | Count        | Detections  | classifications | Count       |
| Light        | Light       | 41.64        | 2.46        | 11.90           | 56          |
|              | Medium      | 41.41        | 3.96        | 10.63           | 56          |
|              | Heavy       | 40.75        | 2.51        | 11.74           | 55          |
| Medium       | Light       | 48.18        | 1.38        | 6.44            | 56          |
|              | Medium      | 48.69        | 2.58        | 4.73            | 56          |
|              | Heavy       | 48.60        | 1.56        | 4.84            | 55          |
| Heavy        | Light       | 46.13        | 2.18        | 7.69            | 56          |
|              | Medium      | 45.93        | 3.05        | 7.02            | 56          |
|              | Heavy       | 46.41        | 2.29        | 6.30            | 55          |





Power & Energy Soc

- Table I showed nontrivial between-phase variations in ¼-cycle detection thresholds
  - Variations are small compared to the scale of faulted vs.
    normal features
    Histograms of Normal and Faulted Feature Value
- Little impact on performance with an "average" threshold
  - Combine training data, select median, etc.



15



## Remarks



- Despite intrinsic stochastic properties...
  - Distribution of phase voltages at the substation
  - Distribution of power demand and different injection levels
- ... wavelet-based fault-detection thresholds can work under a variety of operating conditions.
- Optimal (SVM-placed) threshold range is small compared to the range of the feature space
- Observed performance bias against thresholds trained at light injection levels





# Thank you for your attention!



#### **References**

- [1] V. Cecchi; X. Yang; K. Miu; C. Nwankpa; "Instrumentation and Measurement of a Power Distribution System Laboratory for Meter Placement and Network Reconfiguration Studies," *IEEE Trans. Instrum. Meas.*, vol. 56, no. 4, Aug. 2007, pp. 1224-1230.
- [2] X. Yang, S. Carullo, K. N. Miu, C. Nwankpa, "Reconfigurable Distribution Automation and Control Laboratory: Multi-phase, Radial Power Flow Experiment," *IEEE Trans. Power Syst.*, vol. 20, no. 3, Aug. 2005, pp. 1207-1214.
- [3] A. Borghetti, M. Bosetti, M. Di Silvestro, C. A. Nucci and M. Paolone, "Continuous-Wavelet Transform for Fault Location in Distribution Power Networks: Definition of Mother Wavelets Inferred From Fault Originated Transients", *IEEE Trans. Power Syst.*, vol. 23, no. 2, pp. 380-388, May 2008.
- [4] A. Borghetti, M. Bosetti, C. A. Nucci, M. Paolone and A. Abur, "Integrated Use of Time-Frequency Wavelet Decompositions for Fault Location in Distribution Networks: Theory and Experimental Validation", *IEEE Trans. Power Deliv.*, vol. 25, no. 4, pp. 3139-3146, Oct 2010.
- [5] S. M. Brahma, "Fault Location in Power Distribution System with Penetration of Distributed Generation", *IEEE Trans. Power Deliv.*, vol. 26-3, pp. 1545 1553, July 2011.
- [6] S. M. Brahma, A. A. Girgis, "Development of Adaptive Protection Scheme for Distribution Systems with High Penetration of Distributed Generation", *IEEE Trans. Power Deliv.*, vol. 19-1, pp. 56-63, January 2004.
- [7] O. A. S. Youssef, "Combined fuzzy-logic wavelet-based fault classification technique for power system relaying", *IEEE Trans. Power Delivery*, vol. 19, no. 2, pp. 582-589, Apr 2004.
- [8] F. B. Costa, B. A. Souza and N. S. D. Brito, "Real-time classification of transmission line faults based on Maximal Overlap Discrete Wavelet Transform," in 2012 IEEE PES Transmission and Distribution Conference and Exposition, Orlando, FL, May 2012.



