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Introduction & Motivation 

• Intrinsic Distribution System Characteristics 

– Unbalanced phase voltages 

– Uncertain net nodal power injections (loads & sources) 

– Uncontrolled phase angles at fault inception 
 

• Investigate: 

–  the sensitivity of wavelet-based fault detection thresholds 
with respect to injection level & intrinsic phase differences 

– online quarter-cycle detection 
 

• How: Hardware Laboratory Environment  

– Unbalanced utility source voltage  

– Range of configurable, power injections 
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Fault Record Database: RDAC  

• Reconfigurable Distribution Automation & Control (RDAC) 
Laboratory @ Drexel [1,2] 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 1. Unbalanced multi-phase power flow experiment in RDAC.  
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Fault Record Database  

• 551 short-circuit fault events sensed in RDAC laboratory 

 
 

 

 

 

 

 

 
 

• Sampled phase voltage waveforms captured for each event 

• 60 samples / cycle (15 samples / quarter-cycle) 

 

Table I. Number of available event records of each type. 

Injection Level 

Fault Type Light Medium Heavy Total 

AG 20 17 20 57 

181 LG BG 21 22 21 64 

CG 20 21 20 61 

AB 20 21 20 61 

181 LL BC 19 20 20 59 

CA 22 21 19 62 

ABG 21 21 21 63 

187 LLG BCG 21 21 20 62 

CAG 21 21 20 62 

Total 185 185 181 551 
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Detector Design 

• Discrete Wavelet Transform 

– Capture time-localized disturbances in signals 

 

• Power system applications  

– Tap changing, capacitor energization [3] 

– Voltage sag / swell / flicker [4] 

– Fault detection / classification [5]-[8] 

 

• Daubechies-4 (db-4) Wavelet 

– 2nd level detail coefficients 
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~¼-Cycle Feature Generation 

• 16 samples / quarter-cycle 

• Filter and down-sample at each level 

• (4) 2nd-level detail coeff. / quarter-cycle 

• Feature: four-coefficient signal energy 

– Sum-of-squares of prev. (4) 2nd-level coefficients 

feature 

60 Hz signal 
16 samples 

0-30 Hz 
8 samples 

15-30 Hz 
4 samples 

High-pass 

Low-pass Fig. 2. Filter bank 
analogy for wavelet 
decomposition. 
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       Fig. 3. ¼-cycle feature generation example. 

¼-Cycle Feature Example 

“Faulted” 

training 

feature: mean 

on-fault 

energy (on 

faulted phase) 

“Normal” training feature: maximum 

pre-fault energy (on normal phases) 

Mean Energy 
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Fig. 4. Decision boundary training example: LG faults, light injection level, phases considered separately. 

Decision Boundary Training 

• Generate (1) feature per phase for each training set event 

• Use support vector machines to find optimal boundaries 
between “faulted” and “normal” features in 𝑒𝑝-space 

• Training set: ~70% of fault events from each load level 
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Detection Process 

• Testing set events (~30% 
of database) scanned 
sample-by-sample 
 

• Faulted phase(s) 
‘detected’ where a 
threshold is crossed 
 

• Example: BCG fault 

– Voltage distortion causes 
false alarm on Ph. C prior 
to actual BCG fault 

       Fig. 5. Detection example: false alarm 
at coefficient k=8. 
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Results 

Obtained to investigate the impacts of: 
 

• Injection level  

– How does injection level impact the thresholds? 

– Is there a “best” training set to use? 

 

• Intrinsic phase differences 

– How do thresholds vary across the phases? 

– Is it necessary to train phase thresholds separately? 
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Fig. 6. Stochastic substation phase voltages (left) and 
total injection levels (in kW, right) in 551 RDAC studies. 

Experiment/Database Characteristics 
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Results: Injection Level 

• How does injection level affect thresholds? 

 

 

 

 

 
 

• In this case, different injection levels yield similar 
thresholds across the phases 

• Variation across the phases is apparent  

 

Table II. Sample threshold sets (rng seed = 22) when trained using events from each 

load level set and from a combination of the three load level sets. 

Training Set Load 

Level 

Learned Thresholds 

Phase A Phase B Phase C 

Light 30.47 37.64 27.90 

Medium 30.65 35.14 29.30 

Heavy 29.98 35.04 31.35 

Combination 31.26 31.01 33.22 
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Results: Injection Level 

• Is there a best training set? 

– Weaker detection performance observed when using 
thresholds trained at light injection level 

 Table III. Average performance across 100 training sets for each combination of 

trained threshold sets and testing data load levels. 

Training Set Testing Set 
Avg. Success 

Count 

Avg. Missed 

Detections 

Avg. Mis-

classifications 

Testing Set 

Count 

Light 

Light 41.64 2.46 11.90 56 

Medium 41.41 3.96 10.63 56 

Heavy 40.75 2.51 11.74 55 

Medium 

Light 48.18 1.38 6.44 56 

Medium 48.69 2.58 4.73 56 

Heavy 48.60 1.56 4.84 55 

Heavy 

Light 46.13 2.18 7.69 56 

Medium 45.93 3.05 7.02 56 

Heavy 46.41 2.29 6.30 55 
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Results: Phase Differences 

• Table I showed nontrivial between-phase variations 
in ¼-cycle detection thresholds 

– Variations are small compared to the scale of faulted vs. 
normal features 

• Little impact on 
performance with 
an “average” 
threshold 

– Combine training 
data, select 
median, etc. 

Histograms of Normal and Faulted Feature Values 

Fig. 7. Distributions of normal & faulted feature 
values vs. range of thresholds. 
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Remarks 

• Despite intrinsic stochastic properties… 

– Distribution of phase voltages at the substation 

– Distribution of power demand and different injection levels 

• … wavelet-based fault-detection thresholds can work 
under a variety of operating conditions. 

• Optimal (SVM-placed) threshold range is small 
compared to the range of the feature space 

• Observed performance bias against thresholds trained 
at light injection levels 
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Thank you for your attention! 
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