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Abstract- Powcr systems involve continuous and discrete com- 
ponents and controls. The modding of ‘hyhrid’ power systems 
using a logical specification to define the transition dynamics of 
the discrete subsystem is descrihed. A cnmputational tool for 
reduction of the logical specification to a set of inequalities is 
discussed. The use of the trdnsformed model in a dynamic pro- 
gramming approach to the design of optimal feedback controls 
is described. Examples are b‘ wen. 

I. INTRODUCTION 

Maintaining power flow to vital loads following component 
failure(s) is a central goal of power system management 
including electric shipboard distribution systems. While the 
dynamics of the final phase of power system failure is now 
well understood, e.g. [ I ] ,  121, [ 3 ] ,  141, the picture is not 
complete because the systcm collapse is usually preceded 
hy a period of discrete cvents nssociatcd with the action of 
various protection systems intended to prevent, or at least 
limit the scope, of any failure. It is an unfortunate fact that 
these systems frequently fail to achieve that goal - and worsc, 
they sometimes amplify the effect of a small disturbance 
into il major outage. In this paper wc seek to dcsign a 
powcr management system that optimizes the discrete actions 
in order to insure continuity of service to the vital loads. 
We describe a modeling approach that captures both the 
discrete and continuous aspects of the power system and show 
how dynamic programming can be applied to derive optimal 
control strategies. New computational tools are summarized 
and examples are given. 

The underlying issue is how to model, analyze and synthe- 
size systems consisting of both complcx nonlinear continuous 
dynamics and discrete event dynamics. A power system’s 
continuous dynamics might include a classical ordinary differ- 
ential equation (ODE) or di~erential-algebraic equation (DAE) 
model of the network with generators and loads and also 
continuous controllers like governors and automatic voltage 
regulators. Uiscrelc event dynamics can be defined by a dis- 
crete finite automaton (DFA) [ 5 ]  that models various discrete 
controllers likc tap-changing transformers, capacitor banks, 
load shedding devices and protection systems [6]. Thus, the 
system can be modcled as a hybrid automaton 171. White thc 
hybrid autotnaton model is a convenient theoretical tool, other 
forms or models are far more convenient for control system 
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design and some other computational purposes. Such models 
include the ’mixcd logical dynamic system’ (MLD) [SI, 161 
or a modified version that wc call the ’mixed integer dynamic 
program’ (MIDP). 

The action of the DFA is most easily understood in terms of 
a transition diagram that describes how specific cvents cause 
transitions from one discrere state (or modc) to another. Thc 
transition diagram is ordinarily translated into a formal set of 
transition equations. In our approach, we model the transition 
diagram by a logical statement (or specification). 

In this paper, we discuss a tool, implcmented in Mathcmat- 
ica , that converts any logical specification into a set of mixed- 
integer formulas (1P formulas). Thus, the transition specifica- 
tion for the automaton is convcrtcd into a set of inequalities 
involving Boolean variables. Our work extends earlier work 
in this area reported in [9]. Many decision problems we 
most naturally formulated in terms of logical specifications, 
but are morc easily solve by mathematical programming. 
Consequently, the idea of reducing logical spccifications into 
IP formulas has along history, see for example [ IO] .  

The IP formulas arc used in computing the optimal control 
strategy. Our approach derivcs a feedback policy based on 
finite horizon dynamic programming. We implement the re- 
sulting control policy either as a receding horizon or periodic 
controller as appropriate. To do the computations efficiently, 
wc need to exploit the special structure of the power system 
decision problem. 

In the dynamic programming approach, working backward 
in time, at each state i t  is necessary to carry out a minimization 
process involving continuous and integer (binary) variables to 
obtain the optimal control. A computational mcthod has been 
implementcd in Mnthemarica, which provides several tools 
for working with mixed variablcs. The problcms of interest 
have considerable special structurc that can bc exploi ted. 
For example, we have many inequality constraints which 
implies that we should employ a constraint drivcn procedure. 
Moreover, most of the constraints are linear in binary variables. 
Accordingly, a specialized and novel oprimization procedure 
was built around the Mnrhetnntica function Reduce. 

The dcsign of optimal controls for hybrid systems is cur- 
rently a problem of great interest. At least three approaches 
to optimal control dcsign have been considered: Bellman’s 
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Principle of optimality and dynamic programming [ I  I], the 
Pontryagin maximum principle [ 121. and mixed intcgcr math- 
ematical programming [ X I .  Each of these have advantagcs and 
disadvantages. The principle of optimality is quite general 
and applies directly to hybrid systenis. In addition, unlike the 
other two approaches, dynamic programming leads directly 
to a feedback (or closed loop) controller as opposed to an 
open loop controller. These IWO considerations make dynamic 
programming a very compelling tool even though i t  suffers the 
'curse of dimensionality'. This last fact represents a challenge 
for large systems that can sometimes be addressed by exploit- 
ing the special structure of specific problems. Applications of 
dynamic programming to hybrid systems include 1131, 1141, 
[ I  11. 

In Section I1 wc provide a specific definition of the problems 
considered herein. Section I11 describes the main concern of 
this paper, namely the reduction of a logical spccitication for 
the discrete subsystem to a set of inequalities. The goal of this 
research is to use this formulation of the hybrid power system 
model to design optimal controllers. How this is accomplishcd 
is described in Section IV. Examples are given in Section V. 
The examples include a power conditioning system, a DC-DC 
boost converter, and a powcr management system. In each 
one of these examples we describe the model emphasizing 
the hybrid automaLon and illustrating the conversion of the 
logical specification to IP formulas. In the case of the power 
conditioning system we also describe the setup and solution 
of the optimal control problem. 

[I. PROKLEM DEFINETION 

A. Modeling 
The class of hybrid systems to be considered is defined 

as follows. Thc systcm operates in one of na modes denoted 
q1! .  . . ?qm. We refer to the set of modes Q = {SI,. . . ? q.,} as 
the discrete state space. The discrete time dynamical equation 
describing operation in mode qi is 

Zk+l = fqi (Q, 111;) , i = I , .  . . !711 ( 1 )  

R" is the system continuous state and 
'U f U R"' is the continuous control. Transitions can occur 
only between certain modes. The set of admissible transitions 
is E 2 Q x Q. It is convenient to view the mode transition 
system as a graph with elements of thc sct Q being the 
nodes and the elements of E being the edges. We assume that 
transitions are instantaneous and tnke place at the beginning 
of a time interval. So, if a system transitions from mode 41 
to qr! at time X: we would write q ( k )  = q l , q ( k t )  = q2 .  We 
do not consider 'impulsive' events [ 1 I]. In other words, the 
continuous state trajectories are continuous through the event, 
i.e., x ( k )  = z ( k + ) .  

Transitions arc triggered by external evenrs and gunrds. We 
denote the finitc set of events E. It is  convenient to partition thc 
events into two types; those that are controllable (they can be 
assigned a value by the controllcr), and those that are not. The 
latter are exogenous and occur spontancously. Such an event 

where :c E X 

might he specified by nature like a component failure, or a 
highcr Icvcl operator who decides to change an operational 
mode. We will use the symhols s to reprcscnt controllable 
events and p to represent uncontrollable events. Thus, C = 
S x P where .s E S and p E P. An example is given below in 
Figure I .  A guard is a subset of the continuous statu space X 
that enables a transition. A transition enahlcd hy a guard might 
represent ;I protection device. Not all transitions have guards 
and some transitions might require simultaneous satisfaction of 
a guard and the occurrence of an cvcnt. The guard assignment 
function is G : E + 2". 

We consider each discrete state label, 4 E Q, and each 
event, CT E E, to he logical variables that take the values True 
or False. Guards also arc specified as logical conditions. In 
this way the transition system can bc defined by a logical 
specification (formula) C. 

In summary, a hybrid control system is composed of: 

1 )  Q, discrete space, 
2) X, continuous state space, 
3) E ,  set of transitions, 
4) C, event set, 
5 )  G, guard assignment l'unction, 
6) C, logical specilication, 
7) F ,  family of controlled vector fields. 

Emmple 2. I (Three mode system.): Consider the simple 
three mode hybrid system shown in Figure 1. Each mode, 
q1!q), q 3 ,  is characterized by continuous dynamics :ck+1 = 

f,& ( Z k ! U k ) ,  i = 1,2!3.  
Discrete transitions are associated with the events repre- 

sented by logical variables p ,  sl, .Q, s:$, i.e, C = { p ,  SI:  s2, sg}. 
For example, if the system is in mode q1 and s1 evaluatcs to 
True, then a mode transition occurs in which the mode changes 
from ql to q2. In this example, WG use two different symbols 
.F and p to denote transition variables to underscore the fact 
that some transitions are controllable and others not so. 

Fig. I. Three mode hybrid system with controllable and uncontrollable 
events. 

In our formulation the transition system behavior is defined 
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by the logical specification: 

L=eoact l$( l ,{q i  (t),'p~(t),y:i ( t ) } ) A  
eziictly (1. { a  ( L + )  , q 2  (/,+),m ( t + ) } )  A 

((ri ( t )  A S I  * q a  (t')) A ( q ~  ( t )  A p * q~ (t")) A 
(qi ( t )  A-(.Ci V p )  * (11 (t ' ))  A 

(qz ( t )  A 5'2 3 (11 ( t+))  A ( q 2  (t) A 1.92 * 92 ( t+) A 

(2) 
Let US dissect this specification. The first and second lines 
exprcss the fact that the systcm can only be in one discrete 
state before thc transition (at time t )  and alter the Lransition (at 
limc t + ) .  The next two lines describes all possible transitions 
from state (11. Similarly, the last two lines characterize all 
possible transitions from states (12 and 8 3 ,  respectively. 

For computational purposes it is useful to associate with 
each Iogical variahle, say N. a Boolean variable or indicator 
function, ;S,,, such that S, assumes the values I or 0 corre- 
sponding respectively to CY being True or False. It is convenient 
to define the discrete state vector 8, = [S,, , . . . ,hq7, , ] ,  the 
control event vector 6, - - PSI, .  . . ! 6, ,,,. .], and the exogcnous 

event vector dp = bpi,.. .,& ,,,,, 1. Precisely one of the 
elements of 6, will be unity and all others will be zero. 

Notice that with the introduction of the Boolean variables 
we can replace the set of dynamical equations (I)  with the 
single relation 

((13 (1 )  AS:{ 3 q 2  (t')) A ((13 ( t )  A ~ . % 3  +- <I:< ( t  1 ) )  

z ( k  + 1) = f (x ( k )  ,d, (k) ,U ( k ) )  
= d,, fm (. (k) , 'U. (k l )  + 

" ' + ~ , z , , f , , r A  (. ( I ; )  7 ( A : ) )  
(3) 

B. The Control problem 

We assume that the system is observed in operation over 
some finite time horizon T that is divided into N discrete 
time intervals of equal length. A control policy is a sequence 
of functions 

T =  {kLO(~O:~qO)r/~l (~176q1)>..-~[LN-l ( ~ N - l > ~ q g ( N - - l ) ) }  

such that 
[ u ~ .  d,sk] = pX- (Q, d q k )  

Thus, ,LL~ generates the continuous control and the discrete 
control 6n- that are to he applied at time X: ,  based on the state 
( z k , h q k )  observed at time k. 

Consider the set of rn-tuples {O, 1)"'. Let Am denote the 
subset or elemcnts 6 E {Cl, 1)"' that satisfy 61 +. . . + iiTn = 1. 
Denote by ll the set of sequcnccs of functions pk : X x A,, + 

U x {0, l}ms that are piecewise continuous on X. 
Now, given the initial state ( x 0 : 6 ~ ~ 0 )  the problem is to find 

a policy, T* E l3, that minimizes the cost functional 

Notice that i f  a receding horizon optimal control is desired, 
once the optimal policy is determined, we need only implc- 
ment the state feedback control 

111. LOGICAL SPECIFICATION TO IP FORMULAS 

Before procccding to the solution of the optimal control 
problem we transform the logical specification C into a set 
of inequalities involving integer (in fact, Boolean) variables 
and possibly real variables, so-called IP-fwmrdas. The idea of 
formulating optimization problems using logical constraints 
and then convcrting thcm to IP formulas has  a long history 
[IO]. The formulation of complex decision problcms oftcn 
involves specifications and constraints that are most easily 
stated in terms of logical statements. McKinnon and Williams 
in 1151 proposed an approach that allowed the inclusion of 
such constraints in conventional optimization methods. They 
suggested a sequence of transformations that brings a logical 
specification into a set of 1P-formulas. This approach has been 
refined and generalized in recent years. In [9], [ 161 the authors 
present a systematic algorithm for transforming logic formulas 
into, IP formulas. Moreover, they implement thcir algorithm in 
Morheinnrica. We have modified and extended these methods 
in order to obtain simpler and more compact IP formulas. 

This concept was more rccently used as a mcans to incorpo- 
rate qudilative information in process control and monitoring 
[17], and was morc generally introduced into the study of 
hybrid systems in [a]. Both or thcsc investigations incorporate 
the method within a model predictive control framework. 

For systems o i  cvcn modcst complexity the number of 
incqualities required can be quite large, so that automation of 
this process is essential. Thc basic function is GenIP which 
takes as two arguments, the specification and a list of variables. 
either propositional variables or bounded real or integer vuri- 
ables. The latter are specified in the form a 5 2 5 b. GenIP 
performs a series of wansformalions and simplifications and 
returns the IF Ibrmulas. A typical usage would look like: 

Dejiiiifion 2.2 (Optimal Feedback Control Problem): For 
each :CO E X,6,0 E A,,, determine the control policy x* E I2 
that minimizes the cost (4) subject to the constraints (1) and 
(21, i.e., 

Notice that propositional variables are replaced by Boolean 
indicator functions, e.g., ql  is replaced by d,, and new 
auxiliary variables may be introduced, in this case d7. 

Example 3.3 (Three Mode System, Revisited): Consider 
JP (%b) I .JT (:ro,&o) v7T E rt the logical specification (2). It converts to the set o l  

57 



IP-formulas: 

1 - sql - 6,. - 6'83 2 0, 1 - 8,,, - 6,, - 6,. 5 0 
1 - d q f  -6 + -": 2 U, 1 - 6  + - 6  + - 6  + 5 n 

[ I  2 QI 112 % 
t - 6, - + hq,+ 2 0 

1 - dQ, + sq: - d,, 2 0 
6, - d,, + sgt + a,l 2 0 
I - &q2 + "4;t + 6s, 1 0 
-6q2 + Jq,$ + 6,, 2 0 

1 - dq, 4- "g,t + dS3 2 0 
-aq3 + "Q + as3 2 0 

0 5 6.; I I, 0 I 6q$ I 1 
O l S , i l ,  0 < d q 1 5 l ,  I ) < d q 2 i [ ,  O I 6 , , I 1  

O ) < + l l ,  
Q 5 d,, 5 1, 0 5 6,, 5 1: 0 5 5,, 5 1 

(6) 
It i s  relatively easy to interpret this list. The two inequalities on 
the first line express the fact the system is in a single discrete 
spite prior lo the transition and the second row expresscs 
a similar condition after the transition. The last three rows 
simply declare that the integer. variables can only take the 
values 0 or 1. 

In  the specification (2), the transition event p is treated as 
an exogenous event. In other words. the trigger for transition 
is completely external to the system. Suppose, however, that 
the event is associated with a guard. so that the trigger is the 
entry of the state into a specified region of the continuous state 
spacc. To illustrate how this works, suppose that one of the 
state variables is a hounded real variable -2 5 z1 5 2.  Let the 
guard be the condition :cl > 1. The new system specification 
simply requires that we replace the logical variable y by 
(z1 > 1). Thus, ( 2 )  is replaced by 

'I1 

l = e x u c t l y ( l , ( p i  ( t ) , q z ( t ) , q 3 ( t ) ] ) A  
erac(,l:q (1. (41 f+) , q 2  (t+) , 43  ( t+)})  A 

(91 ( t )  P, si * qz t t')) (41 (t) A (E > 1)  * ~3 (t ' ))  A 
(si ( t )  A ~ ( $ 1  V ( X  > 1 ) )  3 (11 ( t+ ) )  A 

( q 2  ( t )  A sz + 41 (t') A q 2  t )  A 1 s ~  * (12 (t') A 

(7) 
Conversion to IF'-formulas leads to (6) without the three 
inequalities involving dp plus the following additional inequal- 
ities: 

3 - 4d4 + 2 > 0 

(93 ( t )  A s:3 +- q 2  (t I ( (  )) A (YS ( t )  A TSQ * ¶a (t 1 )) 

d3 - b,, f aqf L 0 
d4 - + dpt  -t- 69, 1 0 (8) 

-2 + d3 + z 5 0 
- 2 2 x 5 2 ,  O < d 3 < Z r  O < d a s l  

Notice that io [his reduction two new auxiliary Boolean 
variables &,$4 are introduced and the real variable z1 also 
appears in thc formulas. 

If all of the guards are linear (set boundaries are composed 
of linear segments), then the Ip formulas are system of linear 
constriinfs involving the Boolean variabIes dq, 6,+, d,, dp, re- 
spectively, the discrete state before transition, the discrete st& 
after transition, the controllable events, the exogenous events. 
They also involve a set of auxiliary Boolean variables, d ,  intro- 
duced during the transformation process, and the continuous 
state variablcs, IC. The generil form is 

EF,~,+ f E& C Eo + E I X  + E?dq + + E46, (9) 

wherc the matrices have appropriaw dimensions. As we will 
sce in  examples below, with : I : ,  hq, h,, ;ill given these incquali- 
ties typically provide a unique solution for the unknowns hq+ 
and d. The system evolution is described by the closed system 
of equations (9) and (3). 

If thc functions f , J i  appcaring in (3) are all linear, i t  may be 
useful to follow the suggcstion in [ X I  and replacc (3) by the 
following simple linear equation 

Z k + l  = ;(E (10) 

Wherc 21; is an auxiliary vector 01' real variables defined by 
a con.junction of the logical slatcments of the form qi + I = 
f q h  (x:u), If this is done, then (9) is replace by 

E56,,++E(jd+E;.z 4 Eo+EI :Gt~E . rdp+El id ; ,+E~c~~  (1 1) 

In this case, the system is described by (IO) and ( I  I). 

IV. CONSTRUCTING THE OPTIMAL SOLUT~ON 

The optimal cost is 

J* ( 2 0 ,  6,o) = niin J, (zo, firlo) 

and the optimal policy K* is onc that satistics 

7rrEIl 

J,* ( 2 o , f & o )  5 *I, (zo: &I) v7r E n 
Now we are in a position to apply Bellman's principle of 
op timali t y : 

Principle of optimality: suppose X*  = { p ; ,  . . . , p ~ - ~ }  
is an optimal control poIicy. Then the sub-policy T: = 
{pl,. . . , ,u;-~}, 1 <_ i <_ N - I is optimal with respect 
to the cost function 

Let us denote the optimal cost 01' the trajectory beginning 
at z,, hqi as .IA* ( : z t , dq i ) .  It follows from the principle of 
optimality that 

Equation (12> provides a mechanism for backward recursive 
solution of the optimization problem. To begin the backward 
recursion, we need to solve [he single stage problem with i = 
N :  

J&-1 ( 2 N - L 1 f i q ( N - I ) )  = 
mi11 {m-i ( Z N - L , ~ , ( N - I ) , ~ ~ ~ N - I )  + JI; ( Z N ! ~ ~ N ) }  

( 1 3  
The end point x ~ , ( r * ~  i s  free, so we begin at a general 

P N - 1  

terminal point 

J G - 1  (",dq(N-l)) = 
mill {SN-1 (5N-l~fiq{N-I),~N-I) + g N  ( z N 1 6 q N ) )  = 

O N - 1  

O N - 1  
mill { g N -  1 ( : E N -  1, hqqjN- 11, PN- 1 )  + QN ( f ~ -  I ,  fiq+(iv- 1 ) )  } 

(14) 
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Once the pair l ~ k - , ~  is obtained, we compute 
.Th-.i from 

&--2 ( w - 2 ,  S r l ( N - - 2 ) )  = 
inin {g,v-2 ( 3 : N - 2 , 5 ~ - - 2 ,  P N - - ~ )  + .J$-L (fjv-2, S , , + ( N - - Z ) ) }  

(15) 
P I ! - 2  

Continuing in this way we obtain 

Jl;-L ( X N - i A p - a , )  = 
,,j,, g N - i  ( ~ N - - i ? ~ q ( N - - r ) ! ~ N - z )  (16) 

VN-i  { + . G - i - t ,  ( f N - L , f i q f ( N - l )  I >  
for 2 5 i 5 N ,  

The process now is straightforward. Wc need to solve 
( I  6 )  recursively backward, for i = 2 , .  . . , N after initializing 
with (13). We begin by constructing a discrete grid on the 
continuous state space. The discrete space is denoted x. At 
each iteration, working backwards, thc optimal control and 
the optimal cost are cvnluated discrete points in Q x X. To 
continue with the next stage we need to set up an interpolation 
function to cover all points in Q x X. 

In order to structure an cfficient optimization process we 
exploit the fact that the system is highly constrained and 
almost all of the constraints arc linear in Boolean variables. 
The basic approach is as follows: 

Identify the binary and real variables and separate the 
inequalities into binary and real scts, hinary equations 
contain only hinary variables, real equations can contain 
both binary and real variables. 
Use the Mathematica function Reduce to obtain all 
feasible solutions of the binary inequalities; a list of 
possible solutions of pairs (hq+;d).  Reduce is B very 
efficient solver, especially when the inequalities are 
linear although i t  is  not limitcd to linear inequalities. 
In general, if thcre are N binary variables then there 
are ZN combinations that need to be evaluated if one 
were to attempt to optimize by enumeration. But the 
feasible combinations arc almost certainly much fewer. 
In the simple example below, there are 8 variables or 256 
combinations, hut only 8 are kasible: Reduce identifies 
these very rapidly. 
Use Reduce to solve the real inequalities for the real 
variables for every feasible combination of binary vari- 
ahles. Many of these combinations of binary variables 
will not admit feasible real variables, so they can be 
dropped. The remaining combinations typically produce 
unique values for the real variables. 
Enumerate the values of the cost for each feasible pair 
of binary and real variables and select the minimum. 

V. APPLICATIONS 
Power electronic devices are ideal candidates for the appli- 

cation of the new concepts and tools of hybrid control theory. 
We will consider two different applications. First, ;I power 
conditioning system of a type often used to isolate devices. 
likc motors that have large, short period power requirements. 
from a primary power source that has limited power supply 
capability. It is a simple, transparent and useful application. 

Sonicwhat more complex is a DC-DC converter. This devicc 
has attracted the interest of many investigators, including 
thc rcccnt work [181, [19], [20], [21], and can provide a 
comparative look at different control formulations. Finally, we 
consider a simple power management system, emphasizing the 
approach to problem formulation. 

A. Power Corrdirioning Systems 

A power conditioning system is shown in Figurc 2. Its 
purpose i s  to insure that the current demand on the DC source 
is limited even though the load current may be quite large 
for short periods of  time. The problem is the design of thc 
switching strategy. 

Fig. 2. A simple power conditioning syslciri 

I )  Modelhg: A hybrid automaton model of the systcm . 
without a specified control strategy is shown in Figure 3 where 
y is the capacitor charge. In this open loop configuration, 
the events are no1 enabled by a guard, but by an externally 
generatcd event - the switch. Thc proposition .s denotes 'the 
switch is closed'. 

Fig. 3. Hybrid nutomaton for the power coiidilioning system. 

The specification for the hybrid automaton in  Figure 3 is 

L: = ((fi CEl (12) A (q: @ 9:) A 

(ai A 1.s (I:) A (qi A s a:) A (17) 
( q 2  A =+ q:) A (QZ A 1 s  * 4;) 

The corresponding IP formulas are: 
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In  discrete time form, the dynamics of the system can be 
written as 

) qk+1 = dq, ( e - g q k  -E 1 - e - m  (CE - X C I L , ~ )  
A’ 1 

+dq2 (rlk - 
(19) 

For specificity in later calculations take E = 1: C = 1, R = 1, 
and At = 0.05 

qk+1 61 (0.95’12gl; + .0488 (1 - i ~ ) )  + dz (qr; - 0.0521,) 
(20) 

We can simplify this equation by introducing a ncw variable 
z defined by the spccilication 

(21) 
((IT + 2 = 0.9512 qk + .0488 (1 - i ~ ) )  

A ((I$ + z = (li; - 0 . 0 5 . i ~ )  

This allows us to write 

qk+1 = z  (22) 

The current i drawn from the source is defined by the 
specification 

(qf 3 i = - q +  1)  A (q$* i = 0) (23) 

By adjoining (22j and (23)  to (17) with bounds on the real 
variables i, q, z 

-1 5 i 5 l , O < q <  2 , - - 1 < 2  1 3  

Then, in addition to (IS), we obtain 
d3 - 6  + 2 0 
d 4 - 6 + > 0  

-1+d!2+Sp: 2 0  
z - di + i 1 0 

1 - 2d3 + i  + q 2 0 
3 - 3dz - q + 2 2 0 

2.9024 - 2.95l2cl4 - 0.955129 4- z 2 0 
-1 f d l  + i  5 0 

-3 + 2d3 + i + q 5 0 
-3 + 3 d 2  - q - 2 5 0 

0 5 d l  5 l , o  5 da 5 l , o  5 dJ 5 1,0 5 (r, 5 1 
-1 5 i 5 1,--1< z 5 3 ,0  5 y 5 2 

91 

91 

(24) 

-3 + 2.9512d4 - 0.9512q + Z 5 0 

2) Optimal Control: The optimization problcm is formu- 
lated as follows. We consider the operation of the system 
over ;I lime period of 0.5 scc ( I O  time steps, At = 0.05). 
Generally, the resistance R is very small so i t  is expected that 
for reasonable deviations of capacitor bank voltage from the 
nominal value E, currents from the DC supply will be large 
when switch is closed. The goal of the controller is to open and 
close the switch to achieve capacitor resupply, whilc insuring 
a reasonable average current (about 1 amp, in this case) over 
the specified time period. 

To accomplish this we specify a cost function 

with N = 10. Notice that the cost trades a terminal cost that 
penalizes any deviation of capacitor bank charge (equivalently, 

voltage) from its nominal value against an accumulatcd charge 
current cost. Thc current cost is subjected to a time depcndcnt 
weighting. The weighting function adds Hcxibility and is use- 
ful in this example. Using the weighting function guarantees 
the switch is closed for some time (however short), whilc 
insuring a limitcd average current. IJsing the lot’& power rather 
than a more common quadratic implies, that currents less than 
l / ( k  + 1) are penalized very little, while currents grcater than 
l / ( k  + 1) are very costly. 

The optimal control is obtained by minimizing thc cost 
J in (25) subject to the dynamical constraints (22) and 
the inequality constraints (I 81, (24). The result is a discrete 
controller in which the switch is open or closed depending on 
the value of capacitor charge and time on the interval t t [0,1]. 
The control is lo he applied periodically. Figure (4) shows a 
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Fig. 4. Two cycles of a periodic switching controller. The switch is  open in 
the black regions, cluscd in the w h k  

typical result (corresponding 10 the case of zero load current, 
i~ = 0). The black region corresponds to an open switch, 
and the white to a closed switch. Two cycles of the periodic 
control is shown. 

Note that the result is similar to a pulse width modulated 
control in which the duty cycle varies with the capacitor 
charge. 

B. DC-DC Converter 
The DC-DC boost converter to he considered is shown in 

Figure 5. Thcre are four possible switch-diode arrangements: 
switch open and diode conducting, switch open and diodc non- 
conducting, switch closed and diode nonconducting, switch 
closed and diode conducting. It is common to assume that (1 2 
0. This is justified by the fact that the only way it is is possible 
to have q < 0 would be to initialize the capacitor this way. If 
this assumption is made, thcn the last operating condition can 
be discardcd. Another common assumption is that the inductor 
current is always positive i > 0, which would eliminate the 
third arrangement. However, it is certainly possible to have 
i = 0 for a nontrivial time period. For example, suppose 
the switch is opened after the capacitor voltage reaches a 
value significantly above E. Then the inductor current will 
begin decreasing and could reach i = 0 before the capacitor 
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Fig. 5 .  The hybrid nutomatm model of the DC-DC coiivcner. 

current drops below E ,  at which time thc diodc would becomc 
nonconducting whilc the voltage continues to drop. Thus, we 
consider the thrce mode model shown in Figure 6, as in [Ix] .  
Thc logical specification i s  

Swltch dmed 
Drrde' nonmndudng 

rcconfigure the system to maintain a mnximum level of 
functionality. As ;1 simple illustrative example, suppose a fault 
occurs that results in the isolation of bus 5 ,  so that the post 
fault systems reduces to that shown in Figure 8. Now a second 
fault uccurs that removes half of the transmission capacity 
between busses 2 and 3 .  All numkrs are 'per unit' with the 
following base valucs: 

Fig. 7 The benchmark exninple derived from the notional DII(X) IPS. 
Fig. 6. 

= o -  l . 4 p . a .  

V, = j l ) .X333 

P, = 0 - 3.tip.u. 

E E  [II.?] P,, =ll-3.6p.rl. 
Q, =I) - 1 .JJp.lr. ~- 

Y? -fl..3147+~16.398?' 

Fig. 8. The system following il fault that results in disconnection of hus S. 

The network model is a classical model generated nutomat- 
i d l y  in Mathematica. Let bi, i = 1 , 2 , 3  denote the angles at 
bus 1,2,3, respectively. Choose bus 1 as a reference and define 
02 = 62 ~ 61: 83 = ds - 61 . Thcn the network equations are 

o = P> - b l 2 1 / ~ ~  sin82 - y22Vi2 - g z s K ~ 3  cos(8a - 0 3 )  

O =  P s - g 3 3 v ;  - g > 3 ~ V ~ c 0 s ( B a - 8 . ; ) - b a ~ V ~ l / 3 s i n ( B 2 - 8 : ~ )  

-623V2V3 cos (82 - 83) - $!3v2v3 sin (82  - 03) 
0 = Q 3  - b33V; - b231/?V3 cos (8, - 03) - g23V2 V, sin (0, - €5) 

-623V~V3 sin (82 - e,) 
0 = Q2 -b i zV iV2c0~8z  - bzzV.,' 

In addition, we have 

A = -Pm, Q:! = 0 
A = -PL,  Q3 = -QL 
VI = E 

Thc load is actually an aggregate of many different types of 
loads including motors, lighting and heating. The power con- 
sumption depends on the applied voItage. When B disturbance 
occurs various controllers take action that tends to rcstore the 
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power consumption. The following model is used for the load. 

fj = -0 ~ 2 u  7’ 
Pr, = (1 ~ ?]L) Po (1 + $ + 2 u )  
czf, = (1 - 7 L )  Qo (1 + : + 2 4  

where ‘ r j ~  is the load shcdding rraction. The load shed frac- 
tion changes in  accordance with thc cvolution of the hybrid 
automaton shown in Figure 9. 

Fig. 9. Diagnin showing the load shedding transition logic. There are two 
sets of circuit bwakcn. SI, s2 are logical statement:, that thc first or second 
scts, respectively, we closed. From lvad shed level U, het 1 can be opened to 
and [he sysrrtn transiiions to load hhed level I from which the =cond xet of 
breakers can be opened to drop additional load. 

The specification for the hybrid automaton is 

L = emctly(1, { 4 l ( t ) ? q Z ( t ) : a ( t ) } ) A  
, q 2  ( t + )  , qs ( t + ) }  A 

(nz ( t )  A l s z  * 93 t 
A (@ ( l )  A si * 41 ( ( t  +I];* 

( C ~ L  (t) A .si * qi (“)) A (42 (t) A s2 * FA ( t + ) )  A 
(g2 ( t )  A  SI * Pa ( t ’ ) )  A (g3 ( t )  A -rsz * Y3 ( t + ) )  

The IF formulas are 

1 - 6qI - 6,, - 6q3 2 0, - 1  + b,, + 6,, + bq, 2 0 
1 - hq+ - 6 + - 6 + 2 0, - 1 + 6,: + 6,: +6,$ I O  

1 - 5,, + bqf - 6s, 2 0 ,  1 - 6,, + ”; - 6 Y ,  2 0 
1 - 6,, + 6 + - ay, 2 0 ,  1 - s,, + Jq$ ~ 6., 2 0 

-bql +6,: + 68, 2 0, -6q2 +a,$ +6Y, 2 0 
-hq2 + dq$ + 6,, 2 0, - f i q 3  +as; +a,, 2 0 

0 I 6 , +  I l , o  5 6  + 5 1 , O l  aqt 5 I 
lo 5 bSl 5 l , o  gs2 5 1 

1 42 93 

q2 

5 1 , 0 < d q 2  5 1,056,, 5 1 
% 

VI. CONCLUSIONS 

We have described an approach to modeling power systems 
ils hybrid dynamical systems that include continuous (ODE or 
DAE) and discrete (FSA) subsystems. The essential feature of 
the model is a characterization of the discrete subsystem in 
terms of a set of IP formulas. The application of this model to 
the design of optimal feedback control systems using dynamic 
programming has also been described. Computational tools 
for performing the translation of the logical specification to 
Ip formulas and for solving a limited form of the dynamic 
programming problem have been assembled in Mathematics. 
Examptcs have been given. 
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