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Abstract: The construction of models for power systems that 
allows for the simulation and analysis of power system 
involving discrete events is described. The models are useful 
for simulation as well as design of optimal power management 
systems that involve system reconfiguration and load 
shedding. 

I.  INTRODUCTION 
The capability to dynamically reconfigure future naval 
integrated electric power system is central to the Navy’s 
vision of the future combat ships. The objective of our project 
is to design, implement and evaluate (in a real time 
simulation environment) a Shipboard Power System 
Management system that will prevent loss of power at critical 
buses when damage conditions are encountered. This system 
will include intelligent discrete actions, such as load 
shedding, and will provide voltage security during battle 
conditions. The approach that we propose will optimally shed 
load, activate an uninterruptible power supply following the 
occurrence of disruptive events, switch vital load feeder and 
shift power supply distribution between generators as 
necessary. 

Our approach is based on a new paradigm for the design of 
optimal control systems for hybrid systems, i.e., systems 
composed of continuous dynamics and discrete events. 
Discrete events may involve external disturbances, the 
discrete action of protection devices or control systems. The 
essence of the idea is that discrete acting subsystems are 
naturally associated with a set of logical conditions or logical 
specifications and the continuous system dynamics are usually 
described by differential or differential-algebraic equations. 
The key in our approach is to symbolically transform the 
logical specification that describes the discrete subsystem to a 
set of inequalities in integer-valued variables. These set of 
inequalities are called integer programming formulas, or 
simply IP formulas. The logic to IP package that we have 
developed in Mathematica is very general and comprehensive 
[1]. We devised a dynamic programming algorithm tailored to 
hybrid systems that solves dynamic optimization problems 
involving both binary (logical) and real variables [2].  

We have established the feasibility of our approach in a 3-
bus power systems example equipped with an Uninterruptible 
Power Supply (UPS). In this paper we consider a full version 
of the Integrated Powers System. 

Our model of the Integrated Power System is a modification 
of the model described in [3, 4]. The system is composed of  
two generators feeding two induction motors through 
transmission lines. Vital loads as well as non-vital loads are 
connected to the various buses. The vital loads can be supplied 

from either the port or the starboard side. The model is 
equipped with a UPS that can supply power to the vital loads 
when needed. One abstracted configuration of the network is 
shown in  Figure 1. 

II.  PROBLEM DEFINITION 
In this section we define the objectives of a power  
management system (PMS) in the context of a Navy all 
electric integrated  power system. Typical PMS functionality 
includes 

1. Restart from blackout – A blackout is the complete 
disconnection of all generators 
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Figure 1  Notional DD(X) distribution system abstraction. 
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2. Operational mode – Each operational mode has 
specific minimal requirements 

3. Generation Start/Stop 
4. Propulsion commanded power changes 
5. Load shedding 

Various faults scenarios are examined 
- Line faults, characterized by full or partial reduction 

of the associated admittance. 
- Loss of a single generator. 

A.  Reconfiguration Strategies: 
Discrete states corresponding to admissible reconfigurations 
can now be defined and system models developed for each 
discrete state. In addition, a transition structure can be defined 
that expresses allowable transitions between the discrete 
states. While it is always possible to allow transitions from 
every discrete state to every other discrete state, the 
specification of a transition structure has many benefits. The 
specification allows us to impose constraints on the 
reconfiguration process and to eliminate unsuitable transitions 
at the outset. 

The severity of the failure obviously requires that both 
motors be dropped to 50% or that motor 1 is dropped 
completely. It is preferable that both motors remain in 
operation so the first transition is clearly to a state with both 
motors at 50%. Figure 2 shows one possible transition 
specification. 
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Figure 2. Discrete state transition diagram illustrates 
admissible discrete actions. Note the use of ‘super state’ to 
simplify diagram. 

III.  SIMULATION APPROACH 
The dynamics of the generator and motor are written in terms 
of a differential-algebraic equation. Dynamics are also 
included for the battery model. These are symbolically 
discretized as we will describe below. A hybrid system of the 
integrated power systems with a UPS has been formulated. 

The system can be assembled with the Mathematica package 
ProPac as a SIMULINK model ready for simulation in 
MATLAB/SIMULINK/Stateflow.  

In our concept of a modeling and design toolbox, we need 
models for control design, simulation, and for analysis, such 
as load flow or voltage stability. The models are associated 
with a common symbolic representation. These models can be 
assembled in a block diagram environment using standard 
components selected from a library. Each component will 
have at least two forms; a symbolic model and a SIMULINK 
S-Function, automatically created from the symbolic model. 
Our ProPac software has functions that create optimized C-
code mex functions that compile into the required S-functions. 
Currently, we have classical network models (with any 
number of PV, PQ and generator buses) and various types of 
machine models.  

The simulation block diagrams comprise a control panel 
and a state feedback controller connecting the power plant. 
The state feedback controller strategy for the mode switching 
of the power system is obtained off-line through Mixed 
Integer Dynamic Programming. It is computed in form of a 
lookup table that presents a mapping from combinations of 
predefined modes, events, generator angle, slip conditions and 
battery state to required switching actions. Scopes are 
provided for viewing the performance variables such as the 
internal voltage E, regulated voltage V, the state of charge of 
the battery σ as well as mode switching. Dividing the 
simulation in this manner allows the user complete control 
over the system behavior independent of the controller. It 
allows the inclusion of multi mode behavior and one sided 
limits as necessary. Additionally, this presentation facilitates 
the hardware-in-the-loop verification experimentation using 
SIMULINK’s Real-time Workshop. We are currently 
implementing the software tools to translate the hybrid 
controller as a block in SIMULINK. Further simulation results 
will be established once the optimal state feedback switching 
control strategy is available as a lookup table. 

IV.  DYNAMICS DESCRIBED BY DIFFERENTIAL-ALGEBRAIC 
EQUATIONS 

Differential-Algebraic-Equations (DAEs) [5] form the 
essential mathematical model for power systems. So it is not 
surprising that a great deal of attention has been paid to the 
development of computational methods for solving them. 
Nevertheless, computing trajectories remains problematic and 
analysts often need to experiment with a variety of methods 
and parameters before obtaining satisfactory results. When the 
system involves switching or mode transitions the difficulty is 
magnified many times, and, to this date, very little thought has 
been given to hybrid systems with continuous dynamics  
described by DAEs. 
 In previous work, specifically [2], we were able to solve the 
algebraic equations (the network equations) using quantifier 
elimination methods. However, this is only feasible in the case 
of very small networks or systems with special structure. For 
more complex systems we need to compute approximate 
solutions, possibly using numerical computations. 

In our situation we need compute discrete time trajectories 
for hybrid-DAE systems, both forward in time (for the control 
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problem) and backward in time (for the estimation problem). 
The distinguishing feature of hybrid systems vis-à-vis systems 
with only continuous dynamics is that not all of the dependent 
variables need be continuous in time. Ordinarily, there will be 
discontinuities at time of discrete state transitions. In the 
following paragraphs we describe a discrete time model for 
the forward case. The backward model is obtained in a similar 
way.  

A.  Problem Definition 
Consider the semi-explicit Differential-Algebraic-Equation 
(DAE) 

 
( )
( )

, ,

0 , ,

x f x y u

g x y u

=

=
 (1) 

where time t R+∈ , mu R∈  is an external input, the state is 
composed of ,n px R y R∈ ∈  and the functions 

: , :n p m m n p m pf R R g R R+ + + +→ →   define the evolution of the 
state. We will assume that the control ( )u t  is piecewise 

continuous and the state ( )x t  is continuous. Our goal is to 
show that under appropriate conditions the system (1) can be 
approximately described by a discrete time system 
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Where ˆ ˆ,k kx y  are approximations to ( ) ( ),k kx t y t , 
respectively. 

B.  Differential Algebraic Equations – Hybrid Case 
We will derive a discrete time representation where 

, 0,1,2,kt k h k= = …  and 0h >  is the time increment. It is 
assumed that ( ) ku t u= , a constant, for 1[ , )k kt t t +∈ . A basic 
assumption is that mode changes can occur only at the time 
instants, kt . In other words, for the interval 1[ , )k kt t t +∈  we the 
system is described by 

 ( ) ( )

( ) ( )
, ,

0 , ,
k

k

i t

i t

x f x y u
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=
 (3) 

Where modei I∈ , the mode index set. If we disallow resets 
during mode transitions, then it is reasonable to assume that 

( )x t  is continuous.  On the other hand, ( )y t  cannot be 
expected to be continuous across a mode transition. This 
implies that at each discrete time instant kt  it is necessary to 

compute ( )k ky y t+ +=  from 

 ( ) ( )( ) ( ) ( )0 , , , ,
k kk k k k k ki t i tg x y u t g x y u+ + += =  

We will drop the subscript ( )ki t which is to be understood in 

the following expressions. Thus, ky+  is obtained from: 

 ( )0 , ,k k kg x y u+=  (4) 
Now, we use a backward difference formula, in particular the 
trapezoidal formula, to obtain from (1): 
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With 1, ,k k kx y u+
+  known, it is necessary to solve (5) for 

1 1,k kx y+ + . To do this Taylor expand ( )1 1, ,k k kf x y u+ +  and 

( )1 1, ,k k kg x y u+ +  about an initial estimate 0 0
1 1,k kx y+ +  to obtain 
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By neglecting higher order terms, these equations can be 
approximately solved for the unknowns 1 1,k kx y+ +  using the 
linear equations: 
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 (6) 
The approximation can be improved by replacing the initial 
values with the solution of (6), 0

1 1k kx x+ +← , 0
1 1k ky y+ +←  and 

resolving (6). Continuing recursively in this way is, of course, 
the Newton-Raphson method for finding solutions of (5). 
If h  is small and ( )x t  continuous, it is common to take 

0 0
1 1,k k k kx x y y+

+ += = , so that (6) becomes 
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(7) 

Note that if a mode transition takes place at kt  into a mode 
requiring a state reset to say *x , then we would take 0 *

1kx x+ = . 
In summary the discrete time model is given by (4) and (6) or 
(7). Notice that by making appropriate correspondences, the 
model (4) and  (7) does take the form of (2).  

Ordinarily, the model is integrated by solving (4) for ky+  
using a Newton-Raphson method, with termination dependent 
on an error check, or simply a fixed number of iterations. The 
latter is typical for DAE solvers. Then the linear Equation (7) 
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is solved for 1 1,k kx y+ + . If we choose to implement the 
computations in the most flexible manner, we should permit 
solution of (4) with any specified number of iterations, 1n  and 
then 1 1,k kx y+ +  should be obtained from (6) with any specified 
number of iterations, 2n . 
 
Algorithm 1: 
Given , ,k k kx y u  and 1 2,n n  and , , ; , ,x y x yf f f g g g  
Determine 1 1,k kx y+ +  

1. Compute  ky+  from ( ), , 0k k kg x y u+ =  using 1n  

iterations of Newton’s method, starting with  ky  

a. ( ) ( )( )1Newton , , , , , , , ,k k y k k kg x y u g x y u y y n+  

2. Compute 1 1,k kx y+ +  from 
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=
 

using 2n  iterations of Newton’s method starting with 
,k kx y+   

a. Define ( ),z x y= ,  

( ) ( ) ( )( ) ( )( )1
2 , , , , , , ,k k k k k kF z x x h f x y u f x y u g x y u+= − − +  

and   

( ) ( )
( ) ( )

, , , ,
2 2

, , , ,

x k y k
z

x k y k

h hI f x y u f x y u
F

g x y u g x y u

 − − =  
  

 

b. ( ) ( ) ( ) ( )( )2Newton , , , , , , , , , ,k z k k kF x y u F x y u x y x y n
 

The idea is that for any given power system in the form of (1) 
we will automatically create code for implementing (4) and (6)
, with 1 2,n n  as parameters. The computational routines will be 
targeted for numerical computation in Mathematica and 
Simulink. We developed Mathematica code to implement the 
following functions. 
Function Newton:  

( ) ( )( )0Newton , , , ,xF x F x x x n  

Given: function  ( )F x , Jacobian ( )xF x , initial estimate 0x  
and number of iterations n  

1. set 0Ix x= , 1k =  

2. While k n≤  

a. solve for x , ( ) ( ) ( ) 0I x I IF x F x x x+ − =  (use 
Mathematica function Solve) 

b. set Ix x=  

c. set 1k k= +  
Function DAEDiscrete: 

( )0 0 1 2DAEDiscrete , , , , , , , , ,f g x y x y u n n h  
1. Given: 

a. Functions ,f g  

b. Argument lists 0 0, , , ,x y u x y  

c. Iteration integers 1 2,n n  

d. Time increment h  

2. Implement Algorithm 1 to compute ( ),F z u  such 
that 

 ( ) ( )1 ˆ ˆ, , ,i k k k k kz F z u z x y+ = =  (8) 

C.  Utilization 
If 0 0, ,x y u  are symbols, then (8) gives us the discrete time 
approximation suggested in (2). This is the primary intent of 
this model. Ordinarily, we take h  small and expect that a 
relatively small number of iterations, i.e., 1 2,n n  are small. 
Once F  is computed, it can be simplified using standard 
Mathematica functions. In view of the expected complexity of 
the expressions, it may also be desirable to truncate them, 
retaining only low orders of the small parameter h . 

V.  EXAMPLE 
Consider the system shown in Figure 1. In the event of a 
failure of generator 2 the system has the structure shown in 
Figure 3. The system may be configured in three different 
ways: 1) as shown, 2) with the vital load (dashed box) fed 
from bus 6 instead of 3, or with the vital load disconnected 
from the network and fed from the battery. 
 

~ -

 
Figure 3. System following loss of Generator 2. 

 
We need only model the system shown as the other cases 
follow easily. 
 Notice that all of the loads other than the vital load are 
constant admittance loads. This includes the motors, each of 
which can be considered a constant admittance load with a 
slowly varying parameter (slip). The vital load is fed from a 
bus (bus 3 in Figure 3) through a converter which we consider 
to power factor corrected. Thus, the load appears to the AC 
side as constant power with unity power factor. Consequently, 
the system can be reduced to the three bus network as shown 
in Figure 4. In fact the generator terminal bus is retained only 
because it is voltage controlled. 
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 The reduced bus admittance matrix is 

 
11 21

21 22 22 23 23

23 23 33 33

0

0
R

ib ib
Y ib g ib g ib
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− 
 = − − + 
 + − − 

 (9) 

where 

 11 21 23 33

23 33

1.5, 1.5556
0, 0.0556

b b b b
g g

= = = =
= =

 (10) 

and 
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= −
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Where 1 1,c d  and 2 2,c d  are functions of the motor slips 4s  
and 5s , respectively. 
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23 23g jb+
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Figure 4. Reduced network obtained by eliminating 
internal buses. 

The reduced network equations are comprised of the real and 
reactive equations for buses 2 and 3: 
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The slip equations are 

 

( )

( )

2
4 4 4

4 2
4

2
5 5 5

5 2
5

0.25 11 0.7
4 0.0625 0.15625

0.25 11 0.7
4 0.0625 0.15625

s s V
s

s

s s V
s

s

 −
= − + 

 −
= − + 

 (13) 

with ( )4 4 1 2 1 2 2, , ,V f c c d d V=  and ( )5 5 1 2 1 2 2, , ,V f c c d d V= . 
Equations (13) are the differential equations and equations 
(12) the algebraic equations. This semi-explicit DAE has state 

1 2,s s  and dependant variables 2 3 2 23, , ,V V θ θ . The function 
DAEDiscrete can now be applied. 

VI.  CONCLUSIONS 
Modern power system management problems require the 
ability to address the interaction of complex nonlinear 
dynamics and discrete events. We have described an approach 
to building models of power systems that involve classical 
semi-explicit power system dynamics along with discrete 
events. These models are intended to be used for building 
simulations in SIMULINK with Stateflow, where the latter is 
used to represent the finite state machine that characterizes the 
discrete event dynamics. These same models can also be used 
to design optimal power system management strategies along 
the lines described in [1, 2]. 
 The basic idea is to convert the semi-explicit DAE that 
characterizes the power system continuous dynamics to a 
system of discrete time difference equations that propagates 
the state and other dependent variables forward in time in a 
way that allows for the occurrence discrete transitions at any 
discrete time step.  
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