ECE SENIOR DESIGN PROJECT 2000-2001 FINAL REPORT

Small Scale Integrated Power System (SSIPS)

Submitted to Dr. D. Niebur and the Senior Design Project Committee of the Electrical and Computer Engineering Department Drexel University

Team Number: ECE-005

Team Members:

Team Member 1 Team Member 2 Team Member 3 Team Member 4 Kevin Iaccio Randy Buzilow Michael Falls Charles Worley (Electrical Engineering) (Electrical Engineering) (Electrical Engineering) (Electrical Engineering)

Submitted in partial fulfillment of the requirements for the Senior Design Project May 9, 2001

Abstract

Currently the US Navy is developing and implementing an Integrated Power System (IPS) for use on board future ships. The purpose of this IPS is to supply a totally autonomous shipboard electric power system that must be both extremely reliable and safe. This power system will supply numerous types of power to the ship for its operation. Different types of AC and DC power that are required include anywhere from 120 to 480 VAC at both 60 and 400Hz, while also providing a DC voltage from 15 to 1000VDC. Because this future system is currently still in the design phase, there are several aspects which have not been explored such as the security, vulnerability, survivability, and controllability of this system.

The goal of our design project is to construct a model and display various power distribution configurations. Using a model of a ship, we have built a Small Scale Integrated Power System (SSIPS) plant that is controlled and monitored by original software written in Visual Basic. This software interfaces with the hardware model/platform via a PCI-1200 National Instruments-Digital Acquisition Card (NI-DAQ) containing digital Inputs/Outputs. In addition, a graphic user interface (GUI) has been created to facilitate the control and monitoring of our system for a novice.

This SSIPS plant resembles the US Navy's future shipboard power system in a scaled down model. Through careful analysis we can explore the critical system performance and various reconfigurations, which are essential to the survivability of the ship and its crew. The ultimate purpose of this project is to fulfill both educational and training needs through the visualization of our Integrated Power System model.

Table of Contents

I. Introduction	1
B. Problem Statement	1 2
II. Statement of WorkA. Method of SolutionB. Constraints of IPS DevelopmentC. Alternative Solutions	3 7 7
III. Project Management Timeline	8
IV. Economic Analysis	9
V. Impact Analysis	9
VI. Future Work	10
VII. Conclusions	11
VIII. References	13
Appendix A: Circuit Diagram	14
Appendix B: Visual Basic Program	15
Appendix C: Visual Basic Code	16
Appendix D: Timeline	17
Appendix E: Financial Break Down	19
Appendix F: Data Sheets	22
Appendix G: ARMED – Senior Design Project	23
Appendix H: Curriculum Vitae	25

List of Figures

List of Ta	ables
9. Load Circuit Diagram	18
8. 5 Volt DC Circuit	17
7. 15 Volt DC Circuit	16
6. 12 Volt DC Circuit	15
5. Time Line	18
4. SSIPS Educational Package	5
3. IPS Building Blocks	4
2. IPS Block Description	4
1. Traditional vs. IPS ship comparison	2

1. Expenses	20
2. Economic Feasibility Analysis	2