
 

 

 

 

On the Potential of MAX phases for Nuclear Applications 

 

A Thesis 

 Submitted to the Faculty 

Of 

Drexel University 

By 

Darin Joseph Tallman 

In partial fulfillment of the  

requirements for the degree 

of 

Doctor of Philosophy 

June 2015 

 



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion.

  
All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

ProQuest 3728860

Published by ProQuest LLC (2015).  Copyright of the Dissertation is held by the Author.

ProQuest Number:  3728860



 

 

 

 

 

 

 

 

 

 

 

 

©2015 

Darin J. Tallman 

All Rights Reserved. 

 

 

 

 

 

 

 

 

 

 

  



 ii
 

Dedications 

This thesis is dedicated to my parents for instilling in me a yearning for knowledge and 

understanding, which drove me to pursue my interests in science and materials engineering.  

I also dedicate this work to my soon-to-be wife Erin, for had she not provided me with 

endless love and support, and not to mention countless hours of proofreading, I would 

never have been able to accomplish this feat.    



 iii
 

Acknowledgements 

There are so many people to thank for allowing me to complete this work, and I am very 

glad to have the opportunity to express my gratitude. 

Most importantly, an immense thank you to my thesis advisor, Prof. Michel W. Barsoum.  I 

truly appreciate all of the support and encouragement you have given me over these few 

long years as we struggled with exploring irradiation of materials together.  Thanks for the 

discussions we had, many of which were aided by a pint or two, to try and understand how 

irradiation was affecting our MAX phases, You have given me many opportunities to grow 

and learn in my academic career, and have always shown your respect and confidence in me 

to get the job done, as I was forging my own path for most of my projects.  Thank you for 

your guidance over the years, and the freedom to make my own mistakes to better learn 

from them. Cheers. 

I am also indebted to my collaborators at Savannah River National Laboratory and Idaho 

National Laboratory, two fantastic teams of researchers with incredible capability for 

handling irradiation work.  A big thank you goes to Liz Hoffman for being a vital committee 

member, as well as leading the research efforts at SRNL.  I also must thank Brenda Garcia-

Diaz for continuing the research of MAX phases at SRNL and for keeping work on track 

even through all the red tape.  Also, thanks to Robert Sindelar for the intriguing discussions 

and aid with direction of the projects.  I would also like to thank the experimental staff who 

assisted me in all facets of my work at SRNL, Mike Tosten, Avery Reddick, Greg Creech, 

Dave Missimer, Michael Martinez and many others.  I am also thankful to Liz for offering 

me two summer internships during my PhD career to work at SRNL in preparation for the 

irradiation work.  Many thanks to Jose Cortes for letting me stay in his spare bedroom 

during my trips there. 



 iv
 

A huge thank you goes out to Joanna Taylor and her team at the Center for Advanced 

Energy Studies at Idaho National Laboratory, including Jatu Burns, Dr. Yaquiao Wu, Kristi 

Moser-McIntire, and Bryan Forsmann, for wonderful assistance with performing radiological 

experiments and training for FIB/TEM work on my irradiated samples.  I would also like to 

sincerely thank my good friend Dr. Lingfeng He for his expert assistance with TEM 

investigations of the MAX phases.  I am proud to call him my friend and I look forward to 

many future collaborations.  A major thank you goes to Collin Knight, Karen Wright, and 

Brandon Miller of the Materials and Fuels Complex at INL for their excellent assistance with 

radiological sample handling and preparation. Without them, I would never have been able 

to explore my samples after irradiation.  I also wish to thank Jeff Benson and Jim Cole of 

INL for their leadership and guidance with conducting the PIE work at INL over the last 

few years. 

I would also like to thank the rest of my committee members. Prof. Roger Doherty, your 

time and discussions have been invaluable for understanding how the MAX phases work, 

and how to make sense of the defects we observed.  Prof. Antonios Kontsos, you always 

kept me grounded, and looking at the bigger picture, and for that I thank you, and feel my 

thesis is stronger due to your influences and suggestions.  Prof. Garritt Tucker, your 

enthusiasm and immense interest for my research results were very welcome, and I am very 

hopeful for amazing experiments to come as a result of our collaborative efforts.  Prof. 

Steven May, I am grateful for your guidance and encouragement throughout thesis work 

I am deeply obliged to the incredible, accomplished, amiable, and supportive members of 

the MAX phase research group.  I would not have wanted to work with any other research 

group.  Our group has been a family to me, more close in friendship than I ever expected in 

a work environment.  Everyone has been so helpful and encouraging, always willing to assist 

at a moment’s notice for everyone’s research.  Prof. Barsoum chose his students well, 



 v
 

picking the brightest, friendliest crew, with top notch character and humility.  Many thanks 

to all current and past members whom I’ve been fortunate enough to share time with in the 

MAX phase group: Dr. Babak Anasori, Dr. Nina J. Lane, Dr. Michael Naugib, Dr. 

Mohamed Shamma, Dr. Ivy Yang, Dr. Jian Yang, Limei Pan, Dr. Chunfeng Hu, Dr. Chao 

Li, John Lloyd, Ismail Albayrak, Charles B. Spencer, Jr., Joseph Halim, Mike Ghidiu, Grady 

Bentzel, Justin Griggs, Sankalp Kota, Derya Kapusuz, and Matthias Agne- you have all kept 

me sane and focused, and have made Drexel a wonderful place to work. 

Dr. El’ad Caspi, I am thankful that I got to know you during your time here at Drexel, and I 

am very grateful for your guidance and knowledge in teaching me the ways of Rietveld 

refinement.  I am glad we were able to collaborate on this work, and working with you has 

been an honor. 

Thanks to the amazing faculty in the Materials Science and Engineering department at 

Drexel University.  I appreciate the support and advice of Prof. Caroline Schauer, Prof. 

Antonis Zavaliangos, Dr. Richard Knight, and Prof. Michelle Marcolongo.  A huge thank 

you goes to the amazing MSE staff, especially Sarit Kunz, Keiko Nakazawa, Yenneeka Long, 

Dorilona Rose, and Leslie Anastasio, for working countless miracles in scheduling and 

stipend disbursement and for encouraging such a great work environment in our small 

department.  

A sincere thank you goes out to my incredible friends at Drexel, many of whom have 

become dear friends and colleagues, especially Katie Van Aken, Dr. Jake McDonough, Dr. 

Kristy A. Jost, and Matthew Hartshorne.  May our paths cross again, and your lives be full of 

amazing science and discovery. 

Of course, I am forever grateful to my family.  Without the love and support of my parents, 

I would not be the man I am today.  You always encouraged me to reach higher and explore 

the unknown, and I owe my passion for science to you.  My brothers and sister have taught 



 vi
 

me to be humble, and to enjoy all facets of life, not letting my work overtake my existence.  I 

am ceaselessly thankful for your support, encouragement, and unconditional love. 

And thank you, the reader, for taking time to peruse this thesis. Perhaps you might take 

some tidbit of knowledge from my work, and for that I am thankful for the opportunity to 

share it with you. 

Darin Joseph Tallman 
September 2015 



Table of Contents 

Dedications ............................................................................................................................................ ii 

Acknowledgements .............................................................................................................................. iii 

Table of Tables ..................................................................................................................................... xi 

Table of Figures ................................................................................................................................. xiii 

Abstract ............................................................................................................................................... xxi 

1. Introduction .................................................................................................................................. 1 

1.1. Overview .............................................................................................................................. 1 

1.2. Scope .................................................................................................................................... 4 

1.3. Outline .................................................................................................................................. 6 

2. Literature Review ......................................................................................................................... 8 

2.1. Nuclear Reactor Technologies ......................................................................................... 8 

2.2. Irradiation Effects in Reactor Materials ........................................................................ 12 

2.3. MAX Phases ...................................................................................................................... 19 

2.4. Conclusions ....................................................................................................................... 27 

3. Materials and Methods .............................................................................................................. 29 

3.1. MAX Phase Fabrication .................................................................................................. 29 

3.2. Metallography .................................................................................................................... 36 

3.3. X-ray Diffraction .............................................................................................................. 39 

3.4. Neutron Irradiation Experiments .................................................................................. 40 

3.5. Transmission Electron Microscopy ............................................................................... 49 



 viii
 

3.6. Room Temperature Resistivity of Irradiated MAX phases ....................................... 53 

3.7. Thermal Diffusivity, Non-irradiated .............................................................................. 54 

3.8. Diffusion Bonding, Non-irradiated ............................................................................... 54 

3.9. Helium Permeability ......................................................................................................... 56 

4. Irradiated Structures and Phase Stability ................................................................................ 59 

4.1. Diffraction Origins and Theory ..................................................................................... 60 

4.2. X-ray Diffraction Results: MITR Samples ................................................................... 65 

4.3. Theoretical Defective Structures .................................................................................... 81 

4.4. Conclusions ....................................................................................................................... 88 

5. Irradiation Induced Defects ..................................................................................................... 90 

5.1. Transmission Electron Microscopy, TEM ................................................................... 90 

5.2. TEM Results: MITR Samples ......................................................................................... 91 

5.3. TEM Results: ATR Samples ......................................................................................... 102 

5.4. Comparison with Ion Irradiation Studies ................................................................... 105 

5.5. Benefits of the A-layer in MAX Phase Structure ...................................................... 106 

5.6. Conclusions ..................................................................................................................... 107 

6. Effect of Irradiation on Properties ....................................................................................... 110 

6.1. Macroscopic Structure Post-irradiation ...................................................................... 110 

6.2. Room Temperature Electrical Resistivity of Irradiated MAX Phases ................... 114 

6.3. Thermal Conductivity of the MAX Phases ................................................................ 119 

6.4. Nanoindentation: Mechanical Properties of Ti3SiC2 and Ti2AlC ........................... 123 

6.5. Neutron Activation ........................................................................................................ 129 



 ix
 

6.6. Conclusions ..................................................................................................................... 131 

7. Interaction with Reactor Components ................................................................................. 133 

7.1. Reactivity with Zircaloy-4 Fuel Cladding .................................................................... 133 

7.2. Helium Permeability ....................................................................................................... 149 

7.3. Conclusions ..................................................................................................................... 155 

8. General conclusions and perspectives .................................................................................. 157 

8.1. Principle Discoveries ...................................................................................................... 157 

8.2. Future Work .................................................................................................................... 162 

References .......................................................................................................................................... 165 

A1 A Critical Review of the Oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air ............... 176 

A1.1 Introduction..................................................................................................................... 177 

A1.2 Literature Survey ............................................................................................................. 177 

A1.2.1 Ti2AlC ...................................................................................................................... 179 

A1.2.2 Ti3AlC2 .................................................................................................................... 180 

A1.2.3 Cr2AlC ..................................................................................................................... 180 

A1.3 Parabolic, Cubic or Power law Kinetics ...................................................................... 182 

A1.3.1 Ti2AlC and Ti3AlC2 ............................................................................................... 183 

A1.3.2 Crack Healing ......................................................................................................... 189 

A1.3.3 Cr2AlC ..................................................................................................................... 192 

A1.3.4 Implications of the presence of Cr7C3 layer after the oxidation of Cr2AlC . 195 

A1.4 Comparison to FeCrAl alloys ....................................................................................... 197 

A1.5 Modelling of the Oxidation Kinetics ........................................................................... 198 



 x
 

A1.6 Summary and Conclusions ............................................................................................ 200 

Acknowledgements ...................................................................................................................... 201 

A2 Tensile Creep of Ti2AlC in Air in the 1000-1150 °C Temperature Range ................ 202 

A2.1 Manuscript ....................................................................................................................... 203 

8.3. Acknowledgments .......................................................................................................... 212 

Vita ...................................................................................................................................................... 213 

Education ....................................................................................................................................... 213 

Research and Collaborative Projects ......................................................................................... 213 

Honors and Awards ..................................................................................................................... 213 

Presentations ................................................................................................................................. 213 

Publications ................................................................................................................................... 213 

 

  



 xi
 

Table of Tables 

Table 3.1 Metallographic procedure used for polishing MAX phases within this thesis. ....... 37 

Table 3.2 Irradiation temperature and dose designators. ............................................................. 42 

Table 3.3 Irradiation condition labels for each reactor experiment. ........................................... 42 

Table 3.4 Irradiation exposure parameters for the MITR experiments. .................................... 43 

Table 3.5 Nominal irradiation exposure parameters for the ATR experiments ....................... 45 

Table 3.6 Focus ion beam milling procedure for MAX phase thin foils for TEM observation.

................................................................................................................................................................ 50 

Table 4.1 Irradiation-induced structural and compositional changes in MITR irradiated MAX 

phases. ................................................................................................................................................... 75 

Table 6.1 Room temperature resistivity of MAX Phases before and after MITR irradiations.

.............................................................................................................................................................. 115 

Table 6.2 Thermal conductivity ࢎ࢚ࣄ of various MAX phases as measured by laser flash 

analysis. ............................................................................................................................................... 120 

Table 6.3 Calculated thermal 	ࢋࣄ from RT 	ૉ using the Wiedmann-Franz law. .................... 123 

Table 6.4 Young’s modulus and hardness as determined from Berkovich nanoindentation*.

.............................................................................................................................................................. 127 

Table 7.1 Summary of phase compositions and their thicknesses, in μm, across the 

Ti3SiC2/Zr-4 diffusion couples - starting with Ti3SiC2 - as a function of time and 

temperature. The last column lists the total thickness of the reaction layer and is the one 

plotted in Fig. 7.6. ............................................................................................................................. 138 

Table 7.2 Summary of phase compositions and their thicknesses, in μm, across the 

Ti2AlC/Zr-4 diffusion couples – starting with Ti2AlC – as a function of time and 

temperature. The last column lists the total thickness of the reaction layer and is the one 

plotted in Fig. 7.6. ............................................................................................................................. 142 



 xii
 

Table 7.3 Permeability of Ti2AlC, Ti3AlC2 and Ti3SiC2 at 850°C and 950°C.......................... 153 

Table 7.4 Equivalent Darcy’s permeability coefficient of Ti2AlC, Ti3AlC2 and Ti3SiC2 at 

850°C and 950°C. ............................................................................................................................. 153 

Table A1.1 Summary of kc (kg3m-6s-1) values for the oxidation of Ti2AlC, Ti3AlC2 and 

Cr2AlC. ................................................................................................................................................ 188 



 xiii
 

Table of Figures 

Figure 2.1 Outlet temperatures and expected production processes for the proposed Gen IV 

reactor designs. ...................................................................................................................................... 9 

Figure 2.2 TRISO fuel particle cross section showing layers of PyC and SiC for UO2 fuel 

kernel containment. ............................................................................................................................ 10 

Figure 2.3 Difference in damage morphology, displacement efficiency, and average recoil 

energy for 1 MeV particles of different type incident on nickel [16]. ......................................... 13 

Figure 2.4 Schematic of neutron knock-on damage in a crystalline solid. ................................. 13 

Figure 2.5 Formation of a dislocation loop. ................................................................................... 15 

Figure 2.6 Summary of the microstructural development in cubic SiC during neutron and 

self ion irradiation. The resultant defect types depend upon irradiation dose, as well as 

temperature [14]. ................................................................................................................................. 17 

Figure 2.7 a) Optical SEM micrograph of a SiC/Pd diffusion couple annealed at 1000°C for 

10 hours ................................................................................................................................................ 19 

Figure 2.8 Unit cells of a) M2AX, b) M3AX2, and c) M4AX3 phases reproduced from Ref. 

[25]. ........................................................................................................................................................ 20 

Figure 2.9 Elements of the periodic table known to react to form the various MAX phases.

................................................................................................................................................................ 21 

Figure 3.1. a) Uniaxial hot press, HP, used to produce MAX phase samples and, b) graphite 

dies used for producing MAX same. ............................................................................................... 30 

Figure 3.2 Hot pressed blank of Ti3SiC2, with miniature tensile bars machined from a similar 

blank. ..................................................................................................................................................... 33 

Figure 3.3 Sample geometries for MITR and ATR irradiation studies. ..................................... 33 

Figure 3.4 Representative optical micrographs of a) Ti2AlC , b) Ti3AlC2 , c) Ti2AlN, d) FG-

Ti3SiC2, and e) CG-Ti3SiC2 microstructures after etching with a solution of hydrofluoric acid, 



 xiv
 

nitric acid, and water. The MAX phase samples were fully dense and predominately single 

phase, with randomly aligned plate like grains, which are vibrantly colored after etching. TiC 

appears as bright white grains, denoted by white arrows. ............................................................ 38 

Figure 3.5 Normalized flux per unit lethargy of typical PWR and of in-core sample assembly, 

ICSA, configurations of a) ICSA thimble with aluminum dummy element (standard), b) 

3mm H2O annulus introduced outside ICSA thimble. Note that the MAX phase irradiation 

took place with an approximately 1-mm water gap with the spectrum corresponding to curve 

(a). Flux per unit lethargy is equal to the flux divided by the natural log of the total energy 

range of the neutrons. ........................................................................................................................ 43 

Figure 3.6 Representative capsule locations in the ATR loading positions. .............................. 46 

Figure 3.7 Specimen loading configuration for the ATR irradiation capsules. Samples of each 

type were arranged in stainless steel holders and loaded vertically into the capsule tube. ...... 47 

Figure 3.8 Fixture configurations for tensile (top), TEM (middle) and resistivity (bottom) 

samples ................................................................................................................................................. 48 

Figure 3.9 a) Quanta 3D FEG focused ion beam used to prepare TEM foils and b) FEI 

TF30-FEG STwin STEM used to characterize the pristine and irradiated samples. ............... 51 

Figure 3.10 Schematic representation of the different diffraction conditions used in 

diffraction-contrast imaging: a) 2-beam dynamical, b) 2-beam kinematical, and c) weak-beam. 

In each case the Ewald sphere is sketched on the left-hand side, and a schematic diffraction 

pattern (DP) showing the position of the relevant Kikuchi lines on the right-hand side. The 

curvature of the Ewald sphere is exaggerated for clarity. The open circle represents the 

objective aperture [76]. ....................................................................................................................... 52 

Figure 3.11 Schematic of the diffusion couple loading assembly that was in turn placed in the 

hot press. .............................................................................................................................................. 55 

Figure 3.12 a) Small furnace and b) sample chamber used for permeability testing. ............... 57 

Figure 4.1 Schematic of Bragg's law. ............................................................................................... 62 



 xv
 

Figure 4.2 Rietveld analysis of XRD pattern of FG-Ti3SiC2. ....................................................... 67 

Figure 4.3 Rietveld analysis of XRD data of CG-Ti3SiC2. ........................................................... 69 

Figure 4.4 Rietveld analysis of XRD patterns of Ti3AlC2. ........................................................... 71 

Figure 4.5 Rietveld analysis of XRD patterns of Ti2AlC. ............................................................. 73 

Figure 4.6 Rietveld analysis of XRD pattern of Ti2AlN. .............................................................. 76 

Figure 4.7 Rietveld analysis of XRD patterns of M-D2-T2 samples of FG-Ti3SiC2 and 

Ti2AlC ................................................................................................................................................... 77 

Figure 4.8 Lattice parameters of MAX phases as a function of irradiation temperature. ....... 80 

Figure 4.9 Possible interstitial sites in the M3AX2 structure include A: Ipri, B: Ihex, C: Itet, and 

D: Ioct [79]. ............................................................................................................................................ 82 

Figure 4.10 Schematic of the lowest energy C interstitial arrangement showing the nearest 

neighbor bonds to the Si atoms within the basal layer and to the Ti atoms in the z-direction 

[82]. ........................................................................................................................................................ 84 

Figure 4.11 (૚૙૚૙) view of M3AX2 structure a) pristine, b) after irradiation at low 

temperatures (350 °C), and c) after irradiation at higher (700 °C) temperatures. Region I 

shows coherent interstitial loops; region II shows M atom antisite layers. Combinations of 

the two types of defects in a single layer are also possible. The unit cell is shown by the 

dotted line in a. .................................................................................................................................... 86 

Figure 5.1 Representative TEM micrographs of unirradiated FG-Ti3SiC2 and Ti2AlC. ......... 92 

Figure 5.2 Representative brightfield TEM micrographs of FG-Ti3SiC2 after T2 irradiations.

................................................................................................................................................................ 93 

Figure 5.3 Representative brightfield TEM micrographs of Ti2AlC after T2 irradiations. ..... 95 

Figure 5.4 Representative brightfield TEM micrographs of FG-Ti3SiC2 irradiated to M-D1-

T4 ........................................................................................................................................................... 96 

Figure 5.5 Representative TEM micrographs of Ti2AlC irradiated to M-D1-T4. .................... 98 

Figure 5.6 TEM microraphs detailing stacking faults in FG-Ti3SiC2 and Ti2AlC .................. 100 



 xvi
 

Figure 5.7 a) Brightfield TEM micrograph of a grain boundary found in FG-Ti3SiC2:M-D1-

T4. The jagged features imply irradiation induced growth has occurred along the a-direction. 

b) Representative TEM micrograph of preexisting TiC particle found in the FG-Ti3SiC2:M-

D1-T2 sample showing extensive microstructural damage compared to the relatively clean 

surrounding Ti3SiC2 matrix. Representative TEM micrograph of Al2O3 impurity particles 

observed in Ti2AlC samples irradiated to, c) M-D1-T2 and, d) M-D2-T2. Density of 

irradiation induced defects is larger in (d) than in (c) and in both cases, significantly higher 

than the defects in the surroundingTi2AlC. .................................................................................. 101 

Figure 5.8 Brightfield TEM micrographs of Ti3SiC2 irradiated at ATR at T3 ........................ 103 

Figure 5.9 TEM micrographs of Ti3SiC2:A-D5-T3 ..................................................................... 105 

Figure 6.1 SEM micrographs of FG-Ti3SiC2 a) pristine, and irradiated to, b) M-D1-T2, c) M-

D1-T4, and d) M-D2-T2, and Ti2AlC e) pristine, and irradiated to f) M-D1-T2, g) M-D1-T4, 

and h) M-D2-T2. ............................................................................................................................... 112 

Figure 6.2 a) Composite TEM micrographs of the Ti2AlC lift-out irradiated to M-D1-T2. 113 

Figure 6.3 RT resistivity as a function of irradiation temperature for M-D1 samples........... 116 

Figure 6.4 RT resistivity as a function of irradiation dose of M-T2 samples. ......................... 118 

Figure 6.5 Thermal conductivities of various MAX phases as a function of temperature. .. 121 

Figure 6.6 Schematic illustration of indentation load-displacement data [104, 105]. ............. 124 

Figure 6.7 Typical load-displacement curves of indentations in FG-Ti3SiC2:M-D1-T4 to 

various depths. ................................................................................................................................... 127 

Figure 6.8 Effect of irradiation temperature on nanoindentation hardness of FG-Ti3SiC2 and 

Ti2AlC. ................................................................................................................................................ 128 

Figure 7.1 Typical backscattered electron SEM micrographs of Ti3SiC2/Zr-4 diffusion 

couples ................................................................................................................................................ 137 

Figure 7.2 Typical backscattered electron SEM micrographs of Ti2AlC /Zr-4 diffusion 

couples ................................................................................................................................................ 140 



 xvii
 

Figure 7.3 Typical composition profiles determined by EDX line scans of the Ti3SiC2/Zr-4 

interfaces............................................................................................................................................. 144 

Figure 7.4 Typical composition profiles determined by EDX line scans of the Ti2AlC /Zr-4 

interfaces............................................................................................................................................. 145 

Figure 7.5 Typical backscattered electron SEM micrographs of etched diffusion couples .. 146 

Figure 7.6 Total diffusion distance (x) vs. t½ for diffusion couples .......................................... 147 

Figure 7.7 Apparent diffusivity, k’, of He in Ti3SiC2, Ti3AlC2, and Ti2AlC compared to 

Alumina [128]. ................................................................................................................................... 154 

Figure A1.1 a) Oxidation of the Tin+1AlXn phases results in the formation of a rutile based 

solid solution with approximate chemistry of (Ti1-yAly)O2-y/2 , where y § 0.05 and alumina, 

Al2O3. b) At longer times, kinetic demixing results in the formation of layers of TiO2, Al2O3 

and pores [39]. c) SEM micrograph of Ti2AlC oxidized in air at 1200 °C for 2873 h showing 

a § 21 μm thick, coherent and fully dense Al2O3 layer which conforms to the corners of the 

sample. ................................................................................................................................................ 178 

Figure A1.2 SEM micrograph of a) cross-sectioned Cr2AlC sample oxidized at 1200 °C. The 

outer layer is a Cr-containing Al2O3 and the inner layer is Cr7C3; b) of sample oxidized at 

1100 °C for 35 h clearly showing Cr2O3 nodules (Gupta, unpublished results). This is the 

only MAX phase to show the formation of a carbide layer beneath the oxide layers formed 

during oxidation. ............................................................................................................................... 181 

Figure A1.3 a) Replotted results from the 2003 Wang and Zhou papers on the oxidation of 

Ti3AlC2 and Ti2AlC [41, 42] showing a linear fit when (ƅw/A)3 is plotted vs. t. Least squares 

fit of the 1300 °C plot results in an R2 value of 0.998, compared to 0.98 for the parabolic fit 

reported in the original articles. The compounds and graphs are color coded for clarity. b) 

Oxide scale thickness (x) versus time for Ti2AlC held at 1200 °C for >2800 h. A power fit of 

the results shown yields a time exponent of 0.36, viz. cubic kinetics. Dashed line shows the 

¨x based on a parabolic rate constant fitted to the first 100 h of oxidation. .......................... 184 



 xviii
 

Figure A1.4 a) Magnitude of compressive residual stress within the Al2O3 scale determined 

from luminescence-shifts as a function of time of isothermal oxidation at 1000, 1200 and 

1400 °C [132]. The residual stresses are compressive, a function of time and temperature, 

and of the order of 500 MPa which is considered low [132]. b) Oxidation kinetics of Ti2AlC 

are compared with other more established/commercial oxidation resistant alloys. Note that 

if the very first oxidation cycle is omitted from the Ti2AlC results, its oxidation kinetics are 

comparable to PM2000 [132]. ......................................................................................................... 186 

Figure A1.5 After oxidation at 1100 °C in air for 2 h, crack healing of Ti3AlC2 is seen via 

SEM micrographs a) showing the formation of primarily -Al2O3, as well as some rutile 

TiO2; Energy dispersive x-ray spectroscopy (EDS) element maps of the crack region show 

concentrations of b) Ti, c) Al, and d) O as the alumina forms in the crack. A schematic of 

the process is shown in e [45]. ........................................................................................................ 190 

Figure A1.6 Images of fracture and crack-healing in Ti2AlC; (a) Crack path after four cycles 

of healing at 1200 °C for 2 h, and subsequent fracture. (b) Crack path after seven cycles of 

healing, and subsequent fracture. The red arrows indicate the location of remnant crack 

parts. (c) OM image of a crack fractured eight times before annealing in air at 1200 °C for 

100 h showing the complete filling of the crack. (d) Enlarged OM image taken from (c). Two 

opposite fracture surfaces were covered by the same Al2O3 layer (black) and the gap between 

the two surfaces was fully filled by a mixture of Al2O3 (black) and TiO2 (white particles). (e) 

SEM image of the healed-damage zone obtained using electron backscatter diffraction [125].

.............................................................................................................................................................. 192 

Figure A1.7 a) Re-plots of the results of Lin et al. [136] together with two power fits (solid 

lines), assuming cubic kinetics (dotted lines) and the parabolic rate constants reported by Lin 

et al. (dashed lines) are shown. Cubic power fits result in time exponents of 0.34 and 0.25 for 

1200 °C and 1300 °C, respectively. b) The same exercise in a) - carried out on data by Lee et 

al. [139] -results in power fits shown by the solid lines with time exponent values of 0.24, 



 xix
 

0.46 and 0.18 at 700 °C, 800 °C and 1000 °C, respectively. With the possible exception of 

800 °C, the oxidation kinetics of Cr2AlC are certainly not parabolic, and in most cases even 

better than cubic. ............................................................................................................................... 193 

Figure A1.8 Arrhenian plot of cubic rate constants for Al2O3-forming MAX phases, Ti2AlC, 

Ti3AlC2 and Cr2AlC listed in Table A1.1. ...................................................................................... 195 

Figure A1.9 SEM micrographs of the fracture surface of Ti2AlC after a) 25 h and b) 2873 h 

at 1200 °C in air. The oxide scale is seen to increase in grain size linearly towards the MAX 

phase interface. .................................................................................................................................. 198 

Figure A1.10 a) Oxide scale grain coarsening kinetics plotted with a power law fit. b) A least 

squares fit of dm vs. t results in a straight line, where the intercept is equal to dom. At  0.93 

μm, do is sufficiently small to assume that at long times it can be ignored in Eq. A1.19 [155].

.............................................................................................................................................................. 200 

Figure A2.1 a) OM micrographs of as-received microstructure are compared to b) SEM 

micrographs of the grip section post creep, showing minimal difference in grain size. c) plots 

the effect of time, t, and  on the minimum tensile strains, min, at 1050 °C for step loads of. 

Inset in Fig. 1c shows a typical strain vs. time plot for a sample that was loaded to a load 

corresponding to a stress of 30 MPa at 1050 °C. ........................................................................ 207 

Figure A2.2 a) Ln-ln plot of ࢔࢏࢓ࢿ vs. stress as a function of T; b) Arrhenius plots of min. 

strain rate as a function of stress; c) Ln–ln plot of min. strain rate vs. stress assuming Q of 

362 kJ/mol for Ti2AlC compared to Ti3SiC2 [56, 164]. Results of bilinear regression as a 

function of stress and temperature are shown as lines in each plot, the slopes of which reveal 

Q, n and Ƴ for the creep power law (Eq. A2.2)............................................................................ 208 

Figure A2.3 Composite OM micrographs showing cross-sections of step loaded Ti2AlC at a) 

1100°C loaded at 10-20-30 MPa for 55h to a final strain of 27% and b) 1150°C loaded at 5-

10-15-20 MPa for 86h to a final strain of 26%. Samples do not exhibit necking, and insets 

show the formation of protective Al2O3 for each sample. ......................................................... 209 



 xx
 

Figure A2.4 SEM micrograph of, a) fracture surface of Ti2AlC sample held at 1100 °C and 

30 MPa for 3 h to a final strain of 16%. The distinctive layered structure can be seen, as well 

as stepped grain boundaries. Kinks (referred by black arrows) are readily apparent at the 

fracture surface. Ruptured grains stick out of the fracture plane. A difference in grain size 

between b) grip section and c) fracture surface can be seen. ..................................................... 211 

  



 xxi
 

Abstract 

 

On the Potential of MAX Phases for Nuclear Applications 

Darin J. Tallman 

Advisor: Michel W. Barsoum, PhD 
 
 
 
 

Materials within nuclear reactors experience some of the harshest environments 

currently known to man, including long term operation in extreme temperatures, corrosive 

media, and fast neutron fluences with up to 100 displacements per atom, dpa. In order to 

improve the efficiency and safety of current and future reactors, new materials are required 

to meet these harsh demands. The Mn+1AXn phases, a growing family of ternary nano-

layered ceramics, possess a desirable combination of metallic and ceramic properties. They 

are composed of an early transition metal (M), a group 13-16 element (A), and carbon 

and/or nitrogen (X). The MAX phases are being proposed for use in such extreme 

environments because of their unique combination of high fracture toughness values and 

thermal conductivities, machinability, oxidation resistance, and ion irradiation damage 

tolerance. Previous ion irradiation studies have shown that Ti3SiC2 and Ti3AlC2 resist 

irradiation damage, maintaining crystallinity up to 50 dpa.  

The aim of this work was to explore the effect of neutron irradiation, up to 9 dpa 

and at temperatures of 100 to 1000 °C, on select MAX phases for the first time. The MAX 

phases Ti3SiC2, Ti3AlC2, Ti2AlC, and Ti2AlN were synthesized, and irradiated in test reactors 

that simulate in-pile conditions of nuclear reactors. X-ray diffraction, XRD, pattern 

refinements of samples revealed a distortion of the crystal lattice after low temperature 

irradiation, which was not observed after high temperature irradiations. Additionally, the 

XRD results indicated that Ti3AlC2 and Ti2AlN dissociated after relatively low neutron 

doses. This led us to focus on Ti3SiC2 and Ti2AlC.  
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For the first time, dislocation loops were observed in Ti3SiC2 and Ti2AlC as a result 

of neutron irradiation. At 1 × 1023 loops/m3, the loop density in Ti2AlC after irradiation to 

0.1 dpa at 700°C was 1.5 orders of magnitude greater than that observed in Ti3SiC2, at 3 × 

1021 loops/m3. The Ti2AlC composition appeared more prone to microcracking that 

Ti3SiC2. Additionally, exceptionally large denuded zones, up to 1 Ƭm in width after 9 dpa 

irradiations at 500 °C, were observed in Ti3SiC2, indicating that point defects readily diffuse 

to the grain boundaries. Denuded zones of this width, to our knowledge, have never been 

observed. In comparison, TiC impurity particles were highly damaged with various 

dislocation loops and defect clusters after irradiation. It is thus apparent that the A-layer, 

interleaved between MX blocks in the MAX phase nanolayered structure, readily 

accommodates and/or annihilates point defects, providing significant irradiation damage 

tolerance.  

Comparison of defect densities, post-irradiation microstructure, and electrical 

resistivity showed Ti3SiC2 to have the highest irradiation tolerance. Diffusion bonding of 

MAX phases to Zircaloy-4 was studied in the 1100 to 1300 °C temperature range.  The out 

diffusion of the A-group element into Zircaloy-4 formed Zr-intermetallic compounds that 

were roughly an order of magnitude thicker in Ti2AlC than Ti3SiC2. Helium permeability 

results suggest that the MAX phases behave similarly to other sintered ceramics. Based on 

the totality of our results, Ti3SiC2 remains a promising candidate for high temperature 

nuclear applications, and warrants future exploration. This work provides the foundation for 

understanding the response of the MAX phases to neutron irradiation, and can now be used 

to finely tune ion irradiation studies to accurately simulate reactor conditions.  
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1. Introduction 

 

The impetus for the research and analysis included in this thesis was to explore new fuel 

cladding and structural materials for aging or future nuclear reactors.  The priority for fuel 

cladding applications is the ability to withstand extreme environments during normal 

operation and accident conditions.  With this in mind, this thesis investigates the MAX 

phases, a family of thermodynamically stable nanolaminated ceramics, for their potential use 

in fission reactors.  This chapter introduces the main topics covered within and provides a 

summary of the scope of this work.  Additionally, an outline of how the chapters are 

structured is provided. 

 

1.1. Overview 

 

The world population, currently around 7 billion, is expected to grow to 10 billion people by 

2050.  To meet the ever increasing demand for energy required for fostering quality of life 

and socio-economic opportunity, access to affordable, sustainable power is necessary in the 

immediate future.  Increasing energy production by way of the historically dominant sources, 

e.g. oil, coal, natural gas, is not a forward-thinking option due to the adverse environmental 

effects associated with fossil fuel consumption.  In order to mitigate long-term consequences 

due to global climate change, a shift away from the world’s current energy production mix 

toward cleaner and more efficient energy is undeniably essential.  Nuclear energy, which 

produces no greenhouse gases, has the potential to take the burden off the fossil fuel crisis 

while other sustainable energy technologies continue to be refined.   
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In order for nuclear power to become a prevalent energy source worldwide, improvements 

in reactor designs are necessary.  As of 2015, over 400 nuclear power reactors are operating 

in 31 countries, with a combined output over 380 GWe.  In 2014, 11% of the world’s 

electricity was produced by these nuclear plants. As existing reactors age, they are being 

granted license renewals extending their original 25-40 year lifetimes for an additional 20 

years of operation.  While the aged reactors comply with regulation requirements for 

extension, the reactor designs are of the older generation III, Gen III, type, i.e. light water 

reactors, LWR, with outlet temperatures around 300 °C.  Several nations have come 

together, in the International Forum for Nuclear Power (IFNP), to create a roadmap for 

designing and implementing next generation nuclear power plants.  The generation IV, Gen 

IV, reactors are designed to have improved burnup potential, increased energy efficiency, 

operate at higher temperatures, and feature inherent safety protocols in the event of 

accidents. 

In addition to developing new reactor designs, advancements in materials are needed to 

improve the safety factor of fuel cladding incurrent reactors.  This is been a subject of study.  

Efforts are being made to address safety and security failings in the current fleet of LWR in 

commission throughout the world.  Loss-of-cooling accident, LOCA, conditions present 

severe challenges for materials development, requiring high temperature stability, oxidation 

resistance, and radiation tolerance. 

Materials innovation is similarly required to meet the demands proposed for Gen IV 

reactors. The most demanding applications in the nuclear system include the fuel matrix and 

cladding materials.  Here, being installed in direct contact with uranium fuels, materials must 

withstand temperatures in excess of 1000 °C,  constant contact with corrosive coolant 

media, and a fast flux irradiation at high fluences (> 100 dpa) throughout the lifetime of the 

fuel rod.  As the operating temperatures and irradiation dose increase with emerging designs, 
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conventional steels and metals are unable to adequately perform in high temperature 

applications.  Ceramics, notably silicon carbide, have been investigated for decades in 

anticipation of the potential they have for these applications.  Extensive work has explored 

the neutron irradiation response in these materials, the robustness of which is highly 

dependent on processing and purity.  While SiC is able to withstand very high temperatures, 

it remains brittle at high temperatures and is prone to oxidation in the event of an accident.  

Coolant loss could lead to exposure to high temperature steam or oxygen in the atmosphere.  

As development of next generation reactors progresses, materials selection for these extreme 

applications becomes the focus of major research investigations.  

This thesis explores a family of materials, known as the MAX phases, that has shown 

potential for nuclear applications.  These materials, numbering over 60 compositions, share a 

nanolaminated hexagonal crystal structure composed of MX ceramic blocks interleaved with 

pure metal A-layers.  These materials demonstrate an extraordinary combination of 

properties, both metallic and ceramic in nature.  The combination of thermal conductivity, 

high fracture toughness, high stiffness, and high temperature stability with good oxidation 

resistance, while also being lightweight, high damping, and readily machinable, make these 

materials ideal candidates for nuclear reactor applications.  

In recent years, irradiation studies using heavy ions have shown that several MAX phases 

possess irradiation damage tolerance.  However, while ion studies provide a sufficient 

preliminary glimpse into the material behavior, neutron irradiation is required to fully 

comprehend the nature of the radiation response in these materials.  Neutron irradiation 

impacts material properties over a large scale, from atomic level point defects, to 

macroscopic structural changes and mechanical behavior.  Thankfully, a wide range of 

experimental tools is available to evaluate the effect of neutron irradiation on material 

properties.  Rietveld refinement of x-ray diffraction, XRD, experiments provide atomic, 
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lattice, and compositional information, while transmission electron microscopy, TEM, and 

scanning electron microscopy, SEM, are used to image irradiation induced defects within the 

microstructure.  Additional experiments to probe electrical and thermal conductivity, along 

with nanoindentation are all assessed as a function of irradiation dose to ascertain the effect 

of irradiation on specific properties.   

In this thesis, these experimental tools are utilized to investigate, for the first time, the 

neutron irradiation of the MAX phases to develop a knowledge base of neutron response for 

potential use in nuclear applications.  

 

1.2. Scope 

 

XRD pattern refinements and TEM investigations are the majority contributors of 

experimental results in this exploration of irradiation defects and defect structure in neutron-

irradiated MAX phases.  Analysis of the XRD patterns using Rietveld refinement provides 

information about the lattice structure, atomic positions, and microstrain which describes 

disorder and distortion induced by neutrons.  Refinement is completed by comparing 

experimental results with a theoretical pattern generated from predicted phases and 

structures.  Compositional changes due to irradiation can be evaluated.  TEM investigations, 

including various tilting experiments, selected area electron diffraction, SAED, and 

brightfield and darkfield imaging are conducted to understand the size, density, nature and 

location of specific irradiation induced defects.  SEM is used visualize the macroscopic 

changes in the irradiated materials.  Irradiation induced changes in electrical resistivity, 

thermal conductivity, hardness, and modulus were correlated to the defects revealed by TEM 

and XRD experiments.  Diffusion bonding of several MAX phases with Zircaloy-4 was used 
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to ascertain the chemical compatibility with the fuel cladding material for use in current 

reactor designs.  Additionally, as helium, He, generation from decay products leads to void 

formation, as well as He being a potential coolant gas for several Gen IV designs, the He 

permeability in several MAX phases was evaluated at high temperatures. 

Using previously reported density functional theory, DFT, calculations for point defects in 

the MAX phases, in combination with the irradiation results herein, models for the defective 

lattice structures that accommodate irradiation defects are proposed.   

Counter to DFT predictions, the results herein suggest that Ti3SiC2 possesses greater 

irradiation damage resistance compared with Ti2AlC.  It is proposed that irradiation at low 

temperatures results in interacting point defects, which lead to a distorted lattice by 

increasing the bond lengths in the c-direction, and reduce them in the a-direction.  At higher 

temperatures, point defects are seen to agglomerate into coherent dislocation loops that, as 

confirmed by TEM, lie within the basal planes.  It is postulated that the resultant interstitial 

and substitutional defects form dislocation loops between the A-layer and closest M-layer in 

the MAX phase structure.  Ti3SiC2 exhibits large denuded zones, ~300 nm wide, at doses as 

low as 0.1dpa at 700 °C.  Ti2AlC exhibits detrimental microcracking, observed extensively 

after low temperature irradiations, that leads to degradation in electrical conductivity 

structural stability.  Similar results have not been previously reported in literature, and this 

work presents a new perspective on how the MAX phases accommodate irradiation defects.  

In totality, Ti3SiC2 remains a potential candidate for further study.  
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1.3. Outline 

 

This thesis is divided into two main parts, with additional sections in the appendices: 

Part I (Chapters 2-3) includes background on nuclear reactor designs and fundamentals of 

particle irradiation, an overview of the MAX phases and their properties that show promise 

for nuclear applications.  Additionally, the experimental methods are described, including 

sample fabrication, experimental set-up, and data analysis. 

Part II (Chapters 4-8) provides and discusses the results and major findings obtained by me 

and my collaborators, most of which have been published in Refs [1-7]: 

 Chapter 4 presents the theory of Rietveld refinement of XRD patterns, and includes 

results from XRD of pristine and irradiated Ti3SiC2, Ti3AlC2, Ti2AlC, and Ti2AlN.  

Also presented are proposed irradiated lattice structure that were developed to 

explain the results observed after low and high temperature irradiation. 

 Chapter 5 focuses on irradiation induced defects, as investigated by TEM 

experiments, including black spots, dislocation loops, and defects within stacking 

faults and impurity phase particles.  The nature of the dislocation loops in Ti3SiC2 

and Ti2AlC are discussed.  

 Chapter 6 explores the effect of neutron irradiation on physical and mechanical 

properties of MAX phases, including electrical resistivity, thermal conductivity, 

hardness, modulus and radioactivity. 

 Chapter 7 presents results on the interaction of MAX phases with certain reactor 

components.  Diffusion bonding of Ti3SiC2 and Ti2AlC with Zircaloy-4 is studied in 

an effort to determine the efficacy of using MAX phases as a fuel cladding barrier 

coating in existing nuclear reactor designs.  The permeability of He in Ti3SiC2, 
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Ti3AlC2, and TiAlC is explored as it both a fission gas product and a potential Gen 

IV coolant medium. 

 Chapter 8 summarizes the principal findings of this work and discusses future 

directions for going beyond the research in this thesis. 

Appendices A and B provide additional results and experimentation that lie outside of the 

scope of this thesis, published in Refs [4, 5]: 

 Appendix A explores a critical review of high temperature and long term oxidation 

of Al-containing MAX phases, and how the presence of Al is critical in providing 

extraordinary oxidation resistance. 

 Appendix B presents results on the high temperature creep of Tin+1AlCn (n=1,2). 
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2. Literature Review 

 

The following chapter provides relevant information about nuclear reactors, the MAX 

phases, and their applicability for use in reactor designs.  A general overview of requirements 

for next generation nuclear reactors is presented, followed by the fundamentals of irradiation 

interaction with materials.  An overview of the MAX phases is then summarized, specifically 

detailing the properties which make these ceramics advantageous candidates for existing and 

future reactor applications.  Finally, a literature review of recent irradiation studies of the 

MAX phases and theoretical modelling is presented. 

 

2.1. Nuclear Reactor Technologies 

 

In order to meet the growing demands for future power consumption, nuclear energy might 

be relied upon to generate a larger share of the world’s electricity.  Current reactors are aging, 

many of the oldest nearing 40 years in use.  New reactor designs are being developed to 

incorporate higher operating temperatures, passive safety features, and improved energy 

efficiency with the ability to burnup minor actinides and other fissionable material that is 

disposed of as waste material in existing reactors.  Future Gen IV nuclear reactors will 

require materials that safely function at conditions beyond those of current nuclear plants.  

New plant designs are incorporating higher temperature coolants, resulting in higher power 

generation efficiency [8-11].  Materials in these environments must be able to withstand 

extreme temperatures, elevated irradiation doses, and resist chemical attack from corrosive 

coolants. 
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2.1.1. Next Generation Reactors 

The six leading reactor designs under consideration in the GEN IV study are the Very High 

Temperature Reactor (VHTR), the Lead-cooled Fast Reactor (LFR), the Sodium-cooled Fast 

Reactor (SFR), the Molten Salt-cooled Reactor (MSR), the Gas-cooled Fast Reactor (GFR), 

and the Super Critical Water-cooled Reactor (SCWR) [8, 10].  These designs meet the criteria 

for Gen IV reactors: efficiency, sustainability, passive safety, high temperature process heat, 

and technical feasibility.  However, the performance demands for materials in each of these 

reactors are extreme, and few materials available at present can meet the challenge.  Gen IV 

reactors will operate at sustained temperatures of 500 – 1000°C, depending on the reactor 

type (Figure 2.1).  They are designed to generate fast neutrons with neutron energies > 0.1 

MeV compared to the 1 eV thermal neutrons in current light water reactors (LWR) [10].  

Future reactors will be able to fission a larger range of fuel materials, and ultimately be more 

efficient in removing minor actinides from the waste products by burning them during the 

fuel cycle. 

 

 

Figure 2.1 Outlet temperatures and expected production processes for the proposed Gen IV reactor 
designs. 

 

To improve the efficiency of the Gen IV reactors, new fuel designs have been developed.  

Currently, tri-structural-isotropic, commonly referred to as TRISO, fuel pellets are being 
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considered for the VHTR and GFR designs (Figure 2.2).  These fuel assemblies consist of 

small UO2 kernels surrounded by several layers of pyrolytic carbon, PyC, and chemical vapor 

deposition, CVD, SiC cladding [8, 12, 13]:  

 Porous PyC buffer layer to allow volume for gas evolution and kernel swelling. 

 Inner, dense PyC layer to retain fission gases and act as diffusion barrier for metallic 

fission products 

 Dense CVD SiC as the primary fission product barrier and structural load-bearing 

layer  

 Outer, dense PyC to contain fission gases and provide compressive stress on SiC 

during irradiation due to shrinkage.  

 

 

Figure 2.2 TRISO fuel particle cross section showing layers of PyC and SiC for UO2 fuel kernel 
containment. 

 

TRISO fuel pellets made of SiC are able to reach temperatures of 1600°C before failure, and 

have been shown to provide containment of fission products [12, 14].  A drawback to SiC is 

that it is a brittle ceramic, even at higher temperatures.  This causes concern in regard to 
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loss-of-coolant accident (LOCA) conditions, where elevated temperatures and core impacts 

can lead to fuel cladding failure.  Additionally, SiC is vulnerable to palladium attack and silver 

diffusion, two reaction products that can form in sufficient quantities over the lifetime of 

fuel assemblies to lead to cladding degradation through interaction. 

2.1.2. Material Requirements for Gen IV Reactors 

Robust materials are critical to meet evolving reactor and fuel designs, which require 

materials to function in extreme environments of elevated temperatures, corrosive media, 

and high radiation fluences over an expected lifetime of greater than 60 years [11, 15].  

Possibly the most crucial component of the reactor is the fuel cladding.  The fuel cladding 

must be able to contain the fuel and radioactive fission products while simultaneously 

transferring the intense nuclear heat generated by fuel to the coolant.  Cladding material 

candidates must possess optimal thermal conductivity, corrosion resistance, compatibility 

with fuel compositions, and ease of manufacturing.  Fuel components must reliably operate 

for several years in their high dose environment, likely reaching >100 dpa, while regularly 

exposed to high temperatures and mechanical stresses.   

Select next generation reactor models are designed to use exotic coolants, such as molten 

sodium, molten Pb-Bi eutectic, or high temperature helium, He.  As higher melting point 

coolant media, these allow for increased process temperatures, improving the efficiency of 

the reactors.  New fuel cladding materials will need to demonstrate chemical compatibility 

with these various coolants.  To that end, the He permeability of select MAX phases is 

discussed in Chapter 7. 
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2.2. Irradiation Effects in Reactor Materials 

 

As part of this thesis, structural defects induced by neutron irradiation were studied.  The 

following fundamentals are relevant to understanding how neutrons interact with atoms in a 

crystal lattice.  This section presents the fundamentals of particle irradiation, and how 

radiation damage occurs and evolves within material systems. 

 

2.2.1. Irradiation Fundamentals  

Irradiation of materials can lead to significant material damage and distortion.  Regardless of 

the type of irradiating particle, possible interactions include: no interaction, scattering, 

ionization of lattice members, or knock-on damage.  The depth of damage varies based on 

the type of irradiation particles, such as electrons, heavy ions, or neutrons.  Neutrons result 

in the largest interaction volume (Figure 2.3).  Experiments in this thesis illustrate the effect 

of knock-on damage caused by neutron irradiation from nuclear fuels.  Knock-on damage is 

caused when a high energy particle impacts the nucleus of a lattice atom.  The energy 

transferred is sufficient to remove this atom from its site, sending it pummeling through the 

surrounding atoms.  The displaced primary knock-on atom, PKA, can travel several unit 

cells before losing enough energy to stop.  Each subsequently impacted atom is deemed a 

secondary knock-on atom, SKA.  The procession of collisions is known as a cascade event 

(Figure 2.4), where many atoms are displaced from their lattice positions, generating 

numerous interstitial and vacancy point defects, also known as Frenkel pairs.  
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Figure 2.3 Difference in damage morphology, displacement efficiency, and average recoil energy for 1 
MeV particles of different type incident on nickel [16]. 

 

The cascade is also accompanied by a thermal spike, due to the large amount of heat 

generated by the friction of the collisions.  With this localized heating, the majority of the 

Frenkel pairs formed during the cascade event recombine and annihilate, leaving a few 

surviving point defects [17].  Over time, with continuous bombardment of irradiation, the 

surviving point defects accumulate, resulting in irradiation damage. 

 

 

Figure 2.4 Schematic of neutron knock-on damage in a crystalline solid.  
The primary knock-on atom further displaces subsequent atoms from their lattice positions, resulting in 
a depleted zone surrounded by various point defects. After a short time (~ps), localized thermal 
annealing from the friction of displaced atoms results in the recovery of these defects, leaving only a few 
Frenkel pairs in the lattice after relaxation. [17]. 
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The Kinchin-Pease model was developed to calculate the rate of atomic displacement due to 

irradiation damage.  Taking the energy of the neutron to be En, a specific threshold energy is 

required in order to permanently displace an atom from its lattice, known as the 

displacement energy, Ed, with a value of ~ 25eV.  An atom will only become displaced and 

become a primary knock-on atom, PKA, when the energy transferred, T, is greater than Ed.  

This model assumes that the cascade event caused by subsequent PKA collisions is a 

sequence of two-body elastic collisions, and ignores energy loss to the lattice.  If the flux, ߶ሺܧ௡ሻ, of neutrons with energy En is the number of neutrons impacting a unit area per 

second, then the rate of atomic displacements, R, is given by [17]: 

 ܴ ൌ #ௗ௜௦௣௟௔௖௘௠௘௡௧௦௖௠య௦ ൌ ܰ ׬ ௡ா೘ೌೣா೘೔೙ܧ௡ሻ݀ܧ௡ሻ߶ሺܧௗሺߪ , (1)

where N is the number density of target atoms, ܧ௠௜௡ is the minimum energy of the neutron, ܧ௠௔௫ is the maximum, and ߪௗሺܧ௡ሻ is the energy dependent displacement cross-section, 

given by [17]: 

௡ሻܧௗሺߪ  ൌ ׬ ሺܶሻ݀ܶ೘்ೌೣ்೘೔೙ߥ௡ሻܧሺߪ . (2)

௠ܶ௜௡ and ௠ܶ௔௫ are the minimum and maximum energy transferred to the lattice atom, 

respectively, ߪሺܧ௡ሻ is the collision cross-section of a neutron of energy En that results in a 

transfer of energy T to the struck atom, and ߥሺܶሻ is the number of displacements per 

primary knock-on atom.  Dividing R by N gives the rate of displacements per atom, dpa/s.  

Knowing the length irradiation exposure, the total dpa dose level can be determined.  These 

equations work equally well with other irradiation particles, allow for comparison of 

irradiation results through calculating respective dpa.  
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2.2.2. Effect of Irradiation on Materials 

The types of defects that form due to irradiation depend on the irradiation temperature and 

fluence dose.  As previously mentioned, point defects form after the initial cascade events.  

The density of point defects increases as a function of dose, due to the increased frequency 

of cascade events.  Additionally, as interstitial mobility is generally higher than vacancy 

mobility, interstitials tend to separate from vacancies and the defects that do not recombine 

tend to agglomerate with like species.  At lower irradiation temperatures, these defects 

coalesce locally to form defect clusters, also called black spots as observed in TEM.  These 

defect clusters lead to the degradation of material properties, discussed in detail in the 

following sections [17].  With increasing irradiation temperature, interstitials and vacancies 

become more mobile, leading to a higher recombination rate after cascade events, and less 

residual damage.  Defect sinks, such as grain boundaries and free surfaces, attract point 

defects from within grains, resulting in denuded zones adjacent to the sinks. 

Defect clusters tend to coarsen with further annealing and irradiation.  Depending on the 

nature of the defect cluster, a platelet of interstitials or vacancies can collect and collapse into 

a dislocation loop (Figure 2.5) [18].  Irradiation-induced dislocation loops impede dislocation 

motion and result in reduced ductility, increased hardness, and embrittlement. 

 

 

Figure 2.5 Formation of a dislocation loop. 
a) Schematic of a crystal with non-equilibrium vacancy concentration. b) Vacancies collect on a close-
packed plane and c) collapse forming an edge dislocation. d) Schematic of a loop formed by a platelet of 
self-interstitial atoms [18]. 
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Dislocation loops form coherently within the lattice, and can grow by (i) Ostwald Ripening 

by diffusion of point defects between loops and (ii) by addition of additional point defects 

generated by continued irradiation.  At further increased irradiation temperatures, the 

increased mobility of vacancies leads to the formation of voids and bubbles.  Structural 

materials exposed to irradiation face several threats to material performance, including 

radiation hardening and embrittlement, phase instabilities, irradiation creep, volumetric 

swelling from void formation, and high temperature helium embrittlement [11]. 

SiC is a leading candidate for Gen IV fuel cladding applications, and as such, it is important 

for comparison to consider the effect of irradiation on this material.  Below 150 °C, at doses 

as low as 0.01 dpa, SiC experiences significant swelling and amorphization due to irradiation 

damage.  Above that critical temperature, the Si and C defect mobilities increase, allowing 

for recombination of defects and structural recovery.  The effect of irradiation temperature 

and fluence on defect types observed in SiC reveals several distinct defect regimes Figure 

2.6. 

 



 17
 

 

Figure 2.6 Summary of the microstructural development in cubic SiC during neutron and self ion 
irradiation. The resultant defect types depend upon irradiation dose, as well as temperature [14]. 

 

At fluences between 0.1 and 10 dpa, below 1000 °C, black spots and defect clusters 

dominate.  Dislocation loops are more common above 1000 °C, as defect clusters coarsen 

and form interstitial and vacancy loop structures.  Thermal annealing of irradiated samples 

results in fewer but larger loops, as they coalesce and grow.  At irradiation at temperatures 

above 1200 °C and fluences of >10 dpa, vacancy diffusion takes over, leading to the 

formation of voids within the microstructure.  Voids negatively affect the material properties 

by causing embrittlement due to dislocation pinning, decreasing thermal and electrical 

conductivity due to an increase in scattering.  They also cause swelling. In addition, radiation 

can induce amorphization, which will reduce conductivity.  A major drawback for SiC is its 

reduction in thermal conductivity under irradiation, which significantly impacts its ability to 

draw heat energy away from the fuel pellets [14].  Point defects scatter electrical and phonon 

transport, reducing electrical and thermal conductivity in irradiated samples. 
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2.2.3. Chemical Compatibility with Reactor Components 

In addition to irradiation damage, materials within the reactor core can interact negatively 

with surrounding coolants, fuel materials, and fission products.  In current LWRs, the 

coolant is high pressure or boiling water operating at ~300°C and 7-15 MPa pressures.  In 

comparison, the Gen IV reactors will use a coolants such as molten sodium, lead-bismuth, 

molten salts, and high temperature helium, He, gas to achieve operating temperatures of 

500-1000°C.  Molten lead-bismuth and sodium can be quite corrosive, depending on levels 

of dissolved oxygen [8, 19].  

Fuel interaction with the cladding is also significant, as the fuel itself swells during the fuel 

cycle.  Conventional cladding, such as HT-9 and Zircaloy-4 for LWR fuel rods, behaves 

poorly under uranium diffusion conditions [20, 21].  A diffusion barrier is necessary to 

prevent local diffusion and cracking of the fuel cladding.   

Fission products are also a major concern and fuel cladding must be able to contain large 

internal pressures generated by swelling fuel, and the release of fission gases [15].  Known 

issues with TRISO fuel operations include de-bonding [14], cracking in the SiC layer during 

fuel swelling [22], and Pd attack [12, 23, 24].  SiC used in TRISO fuel pellets reacts negatively 

with palladium, a commonly generated fission product [12, 23, 24].  Palladium readily forms 

PdSi2 from the surrounding SiC, causing the formation of microcracks and ultimately leading 

to containment failure for the fuel particles (Figure 2.7) [12, 23, 24].   
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Figure 2.7 a) Optical SEM micrograph of a SiC/Pd diffusion couple annealed at 1000°C for 10 hours 
showing the significant SiC degradation that occurs in the presence of Pd, with b) higher magnification 
of region in the white box [24]. 

 

2.3. MAX Phases 

 

This section describes the MAX phases, including their origins, structure, and notable 

material properties that make them potential candidates for fuel cladding and structural 

components for nuclear reactors. 

 

2.3.1. Structure and Discovery  

The Mn+1AXn, or MAX, phases are a class of layered, machinable, ternary carbides and/or 

nitrides where n = 1, 2, or 3, M is an early transition metal, A is an A-group (groups 13-16) 

element, and X is C and/or N.  Common to each structure of various n values, near-close-

packed M layers are interleaved with layers of pure group-A element with the X atoms filling 
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all octahedral sites between the M atoms (Figure 2.8a–c).  The MX layer is composed of 

edge sharing M6X octahedra with a structure identical to that of rock salt [25].  The number 

of M layers separating A layers in each structure is dependent on the value of n; two layers in 

M2AX, three in M3AX2, etc.  The nanolaminated structures of these MAX phases give rise to 

the unique combination of metallic and ceramic properties that make them such remarkable 

materials. 

 

Figure 2.8 Unit cells of a) M2AX, b) M3AX2, and c) M4AX3 phases reproduced from Ref. [25]. 
The c parameters are depicted by vertical dashed lines. dx denotes the thickness, from atom center to 
atom center, of the Mn+1Xn layers; da that of the A layers. Also shown are the various z heights for M and 
C atoms. 

 

The MAX phases were first discovered in the 1960s by Nowotny and his group. He 

reviewed the syntheses of a large number of carbides and nitrides, a group of which were 

known then as the Hägg phases, which possessed the M2AX structure [26].  For nearly 40 

years, there were few published works exploring phase pure compositions that would later 
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become known as the MAX phases.  However, in 1996, Barsoum et al. fabricated fully dense, 

single phase Ti3SiC2 samples via reactive hot pressing, becoming the first group to 

characterize the phase in bulk form, revealing the combination of properties this family 

possesses [27].  In the recent decades, over 60 phases have been identified, which have been 

the subject of extensive research efforts, as they have suggested great potential in a wide 

range of applications.  These phases represent a new class of solids described as 

thermodynamically stable nanolaminates, and the remarkable properties they display are due 

to their layered structure. 

 

 

Figure 2.9 Elements of the periodic table known to react to form the various MAX phases. 

 

2.3.2. Ideal Properties for Irradiation Environments 

MAX phases are considered in this work for their potential suitability for the demanding 

performance needed in nuclear environments.  Applications might include use as structural 

elements, fuel matrix components, or fuel cladding and coating material with anticipated 

superlative performance due to their high temperature capabilities, high damage tolerance, 
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chemical resistance, and versatile manufacturing techniques [25, 28-33].  The MAX phases 

exhibit a unique combination of properties, both metallic and ceramic in nature.  For 

example, some of them exhibit relatively high fracture toughness values (8-12 MPa¥m) and 

are elastically stiff like their binary carbide and nitride counterparts, and yet they are readily 

machinable, lightweight, and relatively soft [25, 28-33].  The MAX phases also undergo 

plastic-to-brittle transitions at high temperatures, and the materials can withstand high 

compressive stresses at room temperatures, RT [28, 33].   

MAX phases also have elevated temperature characteristics that can provide significant 

benefits for new fuel and reactor designs. The following is a list of MAX phase attributes 

that are of particular interest in mitigating fuel design issues and improving fuel performance 

and reliability: 

Tailored Composition Choices for Individual Applications 

Properties can be tailored to the application by the choice of specific elements as 

components in a MAX phase.  For example, for thermal reactor neutron economy, a low 

absorption cross section MAX phase, mainly composed of zirconium, silicon, and carbon, 

could be used.  This would have a neutron absorption cross-section of about 60% of 

standard Zircaloy-4 on a per volume basis.  Another example, for a diffusion barrier to 

prevent fuel cladding chemical interaction with the fuel, the MAX phase can be based on 

vanadium which has shown resistance to fuel diffusion [21].  

Thermal Conductivity at High Temperatures 

For nuclear fuel, the ability to transfer heat energy from the fuel pellet into the coolant is a 

prime consideration both for normal and accident operations.  Degradation of thermal 

conductivity with exposure can be a performance margin concern.  Since MAX phases have 

a semi-metallic crystal structure, it is expected to resist conductivity degradation with 
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irradiation and retain the desired higher levels of thermal conductivity better than SiC.  A 

high conductivity will result in a cooler fuel centerline operation which extrapolates to higher 

fuel burn-up capability. 

Elevated Temperature Transient (LOCA Type) Resistance 

With the Gen III fuels being operated at increased burn-up levels, the issues with high 

temperature transient responses are becoming more critical.  The current metallic cladding 

alloys are challenged with the high temperature exposure to retain adequate ductility and a 

coolable fuel configuration at the transient temperatures of around 1200 ºC, experienced 

during a loss of coolant accident, LOCA [34-36].  MAX phases have characteristics that 

provide a significant temperature resistance margin to eliminate these concerns.  Based on 

the high resistance to oxidation of some MAX phase compounds at temperatures near 1300 

ºC [4, 37-48], it is likely that a MAX phase, such as Ti3SiC2 or Ti2AlC, chosen for fuel 

cladding would be able to resist the transient temperature without significant degradation.  

Another related issue is the hydriding effects in the metal cladding during oxidation and the 

resultant effects on clad ductility [34-36, 49].  With increased oxidation resistance of MAX 

phases, it is expected that hydrogen generation issue would be significantly reduced 

compared to the current Zirconium alloys 

Hermetically Sealable 

For applications involving fuel cladding, it is of prime importance that the cladding be 

sealable to retain the fission products generated in the fuel and to prevent fuel-coolant 

contact and interaction.  The current metal alloy claddings are weldable and provide a 

reliable barrier between the coolant and the fuel pellets.  Ceramic based cladding designs 

such as SiC have a significant challenge to develop a productionized clad sealing system.  

Unlike most ceramics, MAX phases have the ability to be induction heated and have shown 

the ability to bond with a variety of materials [6, 50-54].  Induction heating of a MAX phase 
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carbide tube and end plug has the potential to provide the needed hermetic seal with a 

process amenable for use in a commercial production line.  The ability to form a bonded 

joint with induction heating is also an advantage in structural component applications. 

Machinability 

MAX phase compounds can be machined using conventional techniques, as simple as a 

hacksaw.  This characteristic provides a significant advantage for applications as high 

temperature fuel structural support components, which might require complex shapes.  

Ductility 

Another desirable characteristic of the MAX phase is that some ductility exists at the high 

transient temperatures [5, 30, 55-59].  This characteristic offers advantages, for example, as a 

fuel pellet coating that will accommodate fuel swelling without cracking.  Compared to SiC, 

the MAX phases could provide strain margins and improved toughness for protection 

against clad breaches and cracks during the transient.   

Dimensional Stability 

Dimensional stability, when discussed in terms of nuclear fuels, primarily refers to the 

absence of significant dimensional distortions of the material in the presence of a high 

radiation flux, in addition to the normal thermal expansion distortions.  While it is necessary 

to obtain irradiation data on specific MAX phases, initial evaluations using ion irradiation 

tests indicate that MAX phases should retain good dimensional stability under high 

temperature irradiation. Regarding dimensional changes with elevated temperatures, MAX 

phases have thermal expansion coefficients, TEC, ranging from §5-15 x 10-6/K, about twice 

that of SiC. For some applications higher TECs may have an advantage in accommodating 

swelling strains during operation, and for bonding to other fuel cladding materials. 
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It is the combination of the above properties that have garnered attention for the MAX 

phases’ possible use in reactor applications, both in current and next generation designs.  As 

interest in these materials for nuclear applications has grown over the past several years, 

irradiation studies have explored the effect of heavy ion and helium irradiation on several 

MAX phase compositions.  Initial irradiation studies are discussed below. 

2.3.3. Ion Irradiation Studies 

Many recent studies have explored the damage tolerance and amorphization resistance of 

several MAX phases irradiated with heavy ions [22, 60-69].  In 2009, Nappé et al. explored 

the effect of 90 MeV Xe ions on Ti3SiC2, showing surface layer amorphization of the Ti3SiC2 

and impurity phases, as well as, selective grain boundary sputtering due to nuclear 

interactions [60].  Liu et al. characterized Al-doped Ti3SiC2, irradiated to a maximum dose of 

3.25 dpa with high energy Kr and Xe ions, via X-ray diffraction, XRD, and nanoindentation 

showing an expansion of the c-lattice parameter, c-LP, and irradiation induced hardness 

increase that could be annealed out at 800 °C [64, 65].  They also reported the possible 

existence of a Ƣ-Ti3SiC2 phase to explain the presence of new peaks found in the post-

irradiated XRD patterns [65].   

Soon after, Le Flem et al. reported on selected area electron diffraction, SAED, patterns 

using transmission electron microscopy, TEM, of Ti3(Si,Al)C2 irradiated with 92 MeV Xe 

ions up to 6.67 dpa, which further confirmed this MAX phases' resistance to amorphization 

[66].  With increasing dose, diffraction peaks were found to disappear due to lattice 

disturbances.  In 2010, Bugnet et al. explored the effect of 100 keV Ar2+ ion irradiation on 

multilayered (Ti,Al)N/Ti2AlNx nitrogen-deficient thin films, reporting that the multilayered 

structure was preserved up to a dose of 12 dpa, likely due to nitrogen vacancies acting as 

sinks for interstitial point defects [69]. 
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Along the same lines, Whittle et al. reported that Ti3AlC2 and Ti3SiC2 possess very high 

resistance to amorphization, even up to 25 dpa, irradiated with 1 MeV Kr2+ and 1 MeV Xe2+ 

[22].  Nappé et al. reported that nuclear collisions with 4 MeV Au ions, up to a dose of 4.3 

dpa, resulted in a 2.2% swelling in Ti3SiC2 [61].  Also in 2011, Nappé et al. investigated the 

structural changes of Ti3SiC2 under a variety of ions and energies, concluding that Ti3SiC2 is 

not sensitive to electrical interactions, and confirmed that nuclear collisions lead to an 

increase in c-LP and a decrease in the a lattice parameter, a-LP, and a concomitant increase 

in lattice microstrains [63].  In 2012, Zhang et al. reported that a TiC and/or 3C-SiC (cubic Ƣ) 

nanocrystalline phase formed under 2 MeV I2+ irradiation of Ti3SiC2, though the material did 

not fully decompose, even up to 10.3 dpa [68].  In 2013, Le Flem reported on a saturation in 

irradiation damage at 3.2 dpa via hardness measurements and cell volume expansion due to 

defect formation under 92 MeV Xe ions in Ti3SiC2 [67].  

It is important to note, that in contrast to neutrons, which pass through the bulk, the 

penetration depth of heavy ion and helium, He, irradiation is limited to the surface, and He 

atoms tend to accumulate and form bubbles inside the material after momentum transfer.  

This has been illustrated by Xiao et al. via ab initio methods, showing the He most 

energetically favors Al-site interstitials in Ti3AlC2 [70].  More recently, Wang et al. irradiated 

Ti3AlC2 samples with 50 keV He ions with fluences ranging from 8 × 1016 cm-2 to 1 × 1018 

cm-2, resulting in the formation of spherical He bubbles, string-like bubbles and faulting 

zones [71].  Grazing incidence XRD analysis and SAED confirmed significant structural 

disorder without amorphization, even up to 52 dpa.  

Patel et al. irradiated Ti3AlC2 samples with 200 keV He ions to a maximum dose of 5.5 dpa at 

500 °C, and showed, by careful analysis of XRD patterns, that the Ti3AlC2 structure was 

maintained, but with an increased c-LP and a decreased a-LP, together with a highly 

disordered Al layer [3].  If He bubbles exist, they were < 1 nm in diameter and did not 
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agglomerate as observed by Wang et al. at RT [71].  Very recently, Yang et al. reported on the 

structural transitions of Ti3AlC2 irradiated with 50 keV He ions over a wide fluence range.  

While no amorphization was detected up to 31 dpa, antisite defects readily destroyed the 

nanolamellar Ti3AlC2 structure, and a transition to Ƣ-Ti3AlC2 was observed above 2.61 dpa.   

In addition to heavy ion and He irradiation studies, Hoffman et al. have shown that neutron 

activation of Ti3SiC2, Ti3AlC2, and Ti2AlC compare well to SiC and are three orders of 

magnitude lower than Inconel alloy 617.  SiC and Inconel 617 are two candidate materials 

for use in next generation reactors [2]. 

The general conclusions from these irradiation studies are that the MAX phases show 

tolerance to irradiation damage and amorphization, remaining crystalline even up to 52 dpa.  

Additionally, in all cases the irradiation resulted in an expansion in the c-lattice parameter, 

and a reduction in the a-lattice parameter, along with increased microstrains.  Further, 

disruption of the layered MAX phase structure has been observed as well as the formation 

of a Ƣ-MAX phase polymorph after irradiation.  In none of the ion irradiation studies to date 

has there been any mention or evidence of irradiation-induced dislocation loops.  Also 

lacking from literature are any reports of neutron irradiation of MAX phases. 

2.4. Conclusions 

Nuclear power remains a viable production source in the near-term and future.  In order to 

meet demands for growing energy consumption, nuclear power should be considered to 

provide a larger share of energy production.  To improve their safety and performance, 

current and next generation nuclear reactors require advanced materials capable of 

withstanding the extreme environments imposed on fuel cladding and structural elements.  

The MAX phases possess a remarkable combination of properties that are desirable for in-

core applications.  Preliminary irradiation studies show that several MAX phase 

compositions are resistant to irradiation damage.  For use in nuclear reactors, however, a full 
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understanding of the irradiation response to neutrons is necessary.  This thesis investigates 

the first ever neutron irradiation of bulk MAX phases as a first step for generating a 

fundamental knowledge base of the neutron irradiation response. 
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3. Materials and Methods 

 

This chapter summarizes the experimental techniques and methods used within this thesis.  

All MAX phase samples used in this thesis were made in house at Drexel University.  This 

allowed for control of sample compositions and part geometries.  Here, a summary of 

preparation procedures for each set of samples is provided.  The neutron irradiation 

conditions for both test reactors (MITR and INL ATR) are described in detail.  Post-

irradiation experiments, including X-ray diffraction, focused ion beam, transmission electron 

microscopy, resistivity measurements, thermal diffusivity, and nanoindentation are also 

described.  Procedures for the diffusion couple and permeability experiments on non-

irradiated samples are described as well.   

 

3.1. MAX Phase Fabrication 

 

Hot pressing, HP, of elemental or pre-made powders yielded large blanks of predominately 

single-phase samples, which were then machined into test geometries for a wide range of 

experiments.  In general, large batches of each MAX phase were produced so that multiple 

experiments could be conducted on the same sample batch.  As noted above, all samples 

were prepared in house at Drexel University. 

Specifically for this thesis, randomly oriented samples of Ti3SiC2, Ti3AlC2, Ti2AlC, Ti2AlN, 

Cr2AlC, (Nb0.5,Zr0.5)2AlC, (Nb0.75,Zr0.25)2AlC, (Nb0.75,Zr0.25)2AlC, and (Ti0.75,Zr0.25)2AlC were 

made via HP (Figure 3.1a).  A graphite die (ISO-63, Toyo Tanyo, Troutdale, OR, USA) with 

an oblong rectangular shape was used, measuring 70 mm long × 25 mm wide, with rounded 
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ends (Figure 3.1b).  The thickness of the blank could be controlled by adjusting the amount 

of powder mixture added, and was usually limited to ~350 g of powder.  After HPing, 

samples were usually ~40 mm thick. 

 

 

Figure 3.1. a) Uniaxial hot press, HP, used to produce MAX phase samples and, b) graphite dies used 
for producing MAX same. 

 

3.1.1. Irradiation Specimens: MITR, Massachusetts Institute of Technology 

Samples of Ti3SiC2, Ti3AlC2, Ti2AlC, and Ti2AlN were produced for irradiation at MITR.  

Samples of Ti2SC were also produced, but resulted in abnormally high activation after 

irradiation, and were subsequently dropped from the characterization plans.  Samples of 

chemical vapor deposition, CVD, cubic phase SiC (also called Ƣ-SiC) for TEM and resistivity 

experiments were purchased from Dow Chemical as a reference for comparison.  In this 

case, due to time constraints out of our control, these samples were not characterized after 

irradiation.  This is not a great loss, however, since as discussed in this thesis, the influence 

of neutrons on SiC is fairly well documented. 

Ti2AlC: Samples of Ti2AlC were prepared by pouring pre-reacted Ti2AlC powders (Kanthal, 

Hallstahammar, Sweden) into graphite dies, which were loaded into a vacuum hot press and 

a) b) 
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hot pressed, HPed, at 1300 °C for 4 h under a load corresponding to a stress of ~ 40 MPa 

and a vacuum of 10-1 Pa.   

Ti3AlC2: The Ti3AlC2 samples were fabricated by ball milling stoichiometric mixtures of pre-

reacted Ti2AlC and TiC powders (Alfa Aesar, Ward Hill, MA, USA) for 24 h.  The latter 

were, in turn, HPed at 1400 °C for 4 h under a load corresponding to a stress of ~ 40 MPa 

and a vacuum of 10-1 Pa.   

Ti2AlN: The Ti2AlN samples were fabricated by milling stoichiometric mixtures of Ti and 

AlN powders (Alfa Aesar, Ward Hill, MA, USA) as above, and then HPed them at 1300 °C 

for 4 h under a load corresponding to a stress of ~ 40 MPa and a vacuum of 10-1 Pa.   

Ti3SiC2: Fine-grained samples of Ti3SiC2, henceforth referred to as FG-Ti3SiC2, were 

prepared by ball milling stoichiometric mixtures of Ti (99.9%, -325 mesh, Alfa Aesar, Ward 

Hill, MA, USA), Si (99.5%, -325 mesh, Alfa Aesar, Ward Hill, MA, USA), and C powders 

(99.9%, Alfa Aesar, Ward Hill, MA, USA) for 24 h, which were then HPed at 1450 °C for 6 

h under a load corresponding to a stress of ~ 40 MPa and a vacuum of 10-1 Pa.  Coarse-

grained Ti3SiC2, henceforth referred to as CG-Ti3SiC2, were prepared from elemental 

mixtures as above, and HPed at 1500 °C for 4 h, followed by an anneal at 1600 °C for 8 h in 

an argon atmosphere in order to grow the grains. 

Ti2SC: Samples of Ti2SC were prepared by pouring pre-reacted Ti2SC powders (Kanthal, 

Hallstahammar, Sweden) into graphite dies, which were loaded into a vacuum hot press and 

hot pressed, HPed, at 1500 °C for 4 h under a load corresponding to a stress of ~ 40 MPa 

and a vacuum of 10-1 Pa. 

 

 



 32
 

3.1.2. Irradiation Specimens: ATR, Idaho National Laboratory 

Samples of Ti3SiC2 and Ti3AlC2 were prepared for irradiation experiments at INL ATR, 

using similar methods as for the MITR set.  Samples of CVD cubic phase SiC for TEM and 

resistivity experiments were purchased from Dow Chemical as a reference for comparison. 

Ti3AlC2: The Ti3AlC2 samples were fabricated by ball milling stoichiometric mixtures of pre-

reacted Ti2AlC (Kanthal, Hallstahammar, Sweden) and TiC powders (Alfa Aesar, Ward Hill, 

MA, USA) for 24 h.  The mixture was HPed at 1400 °C for 4 h under a load corresponding 

to a stress of ~ 40 MPa and a vacuum of 10-1 Pa. 

Ti3SiC2: Samples of Ti3SiC2 were prepared by ball milling stoichiometric mixtures of Ti 

(99.9%, -325 mesh, Alfa Aesar, Ward Hill, MA, USA), Si (99.5%, -325 mesh, Alfa Aesar, 

Ward Hill, MA, USA), and C powders (99.9%, Alfa Aesar, Ward Hill, MA, USA) for 24 h, 

which were then HPed at 1450 °C for 6 h under a load corresponding to a stress of ~ 40 

MPa and a vacuum of 10-1 Pa. 

3.1.3. Irradiation Specimens: Machining 

For both irradiation experiments, small test parts were machined from hot pressed blanks in 

order to fit into restrictive capsule designs (Figure 3.2).  Test specimens were electro-

discharged machined, EDM, into 1.5 × 1.5 × 25.4 mm3 resistivity bars, 16 × 6 × 0.7 mm3 

tensile dogbones, and 3 mm dia. × 0.3 mm thick discs for TEM observation (Figure 3.3).  

Details of the arrangement of these samples into the irradiation capsules are provided later. 
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Figure 3.2 Hot pressed blank of Ti3SiC2, with miniature tensile bars machined from a similar blank. 

 

 

Figure 3.3 Sample geometries for MITR and ATR irradiation studies. 

  



 34
 

3.1.4. Diffusion Couple Specimens 

In order to determine the interaction between Zircaloy-4, Zr-4, a common fuel cladding 

material, and Ti3SiC2 or Ti2AlC, diffusion couples were investigated.  Samples of Ti3SiC2 and 

Ti2AlC were fabricated specifically for diffusion couple experiments. 

Ti3SiC2: Samples of Ti3SiC2 were prepared by pouring pre-reacted Ti3SiC2 powders 

(Kanthal, Hallstahammar, Sweden) into a graphite die that, in turn, was HPed at 1500 °C for 

4 h under a uniaxial load corresponding to a stress of ∼40 MPa and a vacuum of 10î1 Pa. 

Ti2AlC: Samples of Ti2AlC were prepared by pouring prereacted Ti2AlC powders (Kanthal, 

Hallstahammar, Sweden) into a graphite die that was HPed at 1300 °C for 4 h under a 

uniaxial load corresponding to a stress of ∼40 MPa and a vacuum of 10î1 Pa. 

Samples were sectioned via high-speed diamond saw into nominally 12 × 12 × 3 mm3 plates.  

Zr-4 samples (Westinghouse, Cranberry Township, PA, USA) were machined from a 10 mm 

diameter rod stock into 3 mm thick discs via EDM.  The top and bottom faces of all 

samples were then ground parallel with 1200 grit silicon carbide grit paper and polished to a 

final surface finish with a 3 μm diamond suspension to form parallel surfaces. 

3.1.5. Thermal Diffusivity Specimens 

Samples of Ti3SiC2-FG, Ti3SiC2-CG, Ti3AlC2, Ti2AlC, and Ti2AlN were taken from leftover 

blanks from the MTIR samples sets and machined into 12.5 mm dia. × 3mm thick discs for 

diffusivity measurements.  In addition several solid solutions containing Nb, Zr, and Ti, as 

well as Cr2AlC, were fabricated for thermal diffusivity, and machined to size. 

(Nb0.5,Zr0.5)2AlC: Samples of (Nb0.5Zr0.5)2AlC were prepared by ball milling mixtures of Nb, 

Zr, Al (-325 mesh, 99.5%, Alfa Aesar, Ward Hill, MA), and graphite (-325 mesh, 99%, Alfa 

Aesar, Ward Hill, MA, USA) powders in a 1 Nb: 1 Zr : 1.1 Al: 1 C ratio for 24 h with 

zirconia milling media.  The homogeneous mixture was then heated in an alumina crucible at 
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5 °C/min up to 1600 °C for a total of 4 h in a tube furnace under flowing argon, Ar, 

atmosphere to pre-react the powders.  The resultant porous block was mechanically end-

milled into powder, sieved through a -325 mesh, poured into a graphite die and HPed at 

1400 °C for 4 h under a load corresponding to ~40 MPa and a vacuum of 10-1 Pa. 

(Nb0.75,Zr0.25)2AlC: Samples of (Nb0.75Zr0.25)2AlC were prepared by ball milling mixtures of 

Nb, Zr, Al (-325 mesh, 99.5%, Alfa Aesar, Ward Hill, MA), and graphite (-325 mesh, 99%, 

Alfa Aesar, Ward Hill, MA, USA) powders in a 1.5 Nb: 0.5 Zr : 1.1 Al: 1 C ratio for 24 h.  

The homogeneous mixture was then pre-reacted, milled and HPed as above at 1400 °C for 4 

h. 

(Ti0.75,Zr0.25)2AlC: Samples of (Ti0.75Zr0.25)2AlC were prepared by ball milling mixtures of Ti, 

Zr, Al (-325 mesh, 99.5%, Alfa Aesar, Ward Hill, MA), and graphite (-325 mesh, 99%, Alfa 

Aesar, Ward Hill, MA, USA) powders in a 1.5 Ti: 0.5 Zr : 1.1 Al: 1 C ratio for 24 h.  The 

homogeneous mixture was then pre-reacted, milled and HPed as above at 1400 °C for 4 h. 

Cr2AlC: Samples of Cr2AlC were prepared by ball milling a 2:1:1 stoichiometric mixture of 

Cr (-325 mesh, 99%, Alfa Aesar, Ward Hill, MA), Al (-325 mesh, 99.5%, Alfa Aesar, Ward 

Hill, MA), and graphite (-325 mesh, 99%, Alfa Aesar, Ward Hill, MA) powders for 24 h.  

This mixture was then poured into a graphite mold and HPed at 1400 °C for 4 h. 

Test specimens were machined via EDM into 12.5 mm dia. × 3 mm thick discs and polished 

down to a final surface preparation of 3μm diamond suspension on both sides to form 

parallel faces.  Prior to testing with the laser flash analysis technique, the surfaces of each 

sample were plasma coated with graphite to ensure absorption of the laser pulses. 
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3.1.6. Helium Permeability Specimens 

Samples of Ti3SiC2, Ti3AlC2, and Ti2AlC were prepared for helium, He, permeation 

experiments.  Discs of 12 mm dia. × 3 mm thickness were machined via EDM, and both 

faces were polished parallel down to a final preparation of 3 μm diamond suspension. 

Ti2AlC: Samples of Ti2AlC were prepared by pouring pre-reacted Ti2AlC powders (Kanthal, 

Hallstahammar, Sweden) into a graphite die and HPed at 1300 °C for 4 h under a load 

corresponding to a stress of ~ 40 MPa and a vacuum of 10-1 Pa. 

Ti3AlC2: The Ti3AlC2 samples were fabricated by ball milling stoichiometric mixtures of pre-

reacted Ti2AlC and TiC powders (Alfa Aesar, Ward Hill, MA, USA) for 24 h.  The mixture 

was, in turn, HPed as above at 1400 °C for 4 h. 

Ti3SiC2: Samples of Ti3SiC2 were prepared by pouring pre-reacted Ti3SiC2 powders 

(Kanthal, Hallstahammar, Sweden) into a graphite die and HPed as above at 1500 °C for 4 h. 

 

3.2. Metallography 

 

The MAX phases polish remarkably well, due to the presence of metallic bonding.  They are 

readily machined to a mirror finish.  Metallography was performed to assess the grain size 

and microstructure of samples after fabrication.  Samples were sectioned using a high speed 

diamond saw (Accutom-5, Struers Inc., Cleveland, Ohio, USA) and encapsulated in a 

metallographic mount of either a 2-part slow cure epoxy, or Bakelite mount via a hot 

mounting press (Labopress-3, Struers Inc., Cleveland, Ohio, USA).  Samples were polished 

to a final surface preparation of 3 μm diamond suspension for observation under an optical 

microscope, OM, using an automatic polisher (Rotopol-2 with Pedemat, Struers Inc., 
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Cleveland, Ohio, USA). The grinding and polishing procedure using various SiC grinding 

paper and diamond suspension is detailed in Table 3.1. 

Table 3.1 Metallographic procedure used for polishing MAX phases within this thesis. 

Grit Time (Min.) Force (N) Rotation** Water 

600 3 30 Counter CW On 

800 5 30 Counter CW On 

1200 8 25 CW On 

*3μm 10 25 CW Off 

*DP-Suspension A, diamond suspension applied to MD-Plus lapping cloth, used with 
alcohol based DP-Lubricant Blue. (Struers Inc., Cleveland, Ohio, USA) 
**Direction of polishing head rotation with respect to the clock wise, CW, rotation of the 
polishing wheel. 

 

The MAX phase microstructure was exposed with an etchant composed of a 1:1:1 parts-by-

volume solution of hydrofluoric acid (50 vol.%, Thermo Fisher Scientific Inc., Waltham, 

MA, USA), nitric acid (70 vol.%, Thermo Fisher Scientific Inc., Waltham, MA, USA), and 

deionized water, which was applied with a cotton swab to the surface for < 30 s and rinsed.  

This etchant resulted in vibrantly colored MAX phase grains, notably in Ti3AlC2 and Ti3SiC2, 

with well-exposed grain boundaries.  After etching, impurity TiC grains appeared as bright 

white grains, and were easily distinguished from their surrounding MAX phase grains.  The 

length, ݀௟ , and thickness, ݀௧, of >100 grains per sample were measured from OM 

micrographs.  The equivalent grain size was calculated as the geometric mean value of the 

grain dimensions, i.e.  ඥ݀௟ଶ ∙ ݀௧య . 

Optical microscopy, OM, micrographs of the MITR irradiation samples were fully dense, 

with some evidence of pull out, and predominately single phase, with randomly aligned plate 

like grains (Figure 3.4). The average grain sizes of the FG-Ti3SiC2 and CG-Ti3SiC2, were 8±3 
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and 50±20 μm, respectively. The average grain sizes of Ti2AlC, Ti2AlN and Ti3AlC2 were 

10±4, 15±2 and 16±6 μm, respectively. 

 

 

Figure 3.4 Representative optical micrographs of a) Ti2AlC , b) Ti3AlC2 , c) Ti2AlN, d) FG-Ti3SiC2, and 
e) CG-Ti3SiC2 microstructures after etching with a solution of hydrofluoric acid, nitric acid, and water. 
The MAX phase samples were fully dense and predominately single phase, with randomly aligned plate 
like grains, which are vibrantly colored after etching. TiC appears as bright white grains, denoted by 
white arrows. 
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3.3. X-ray Diffraction 

 

X-ray diffraction, XRD, is a powerful nondestructive technique that provides a wealth of 

knowledge about material composition and structure.  As a bulk method, XRD can probe a 

large volume of the material and provides statistically relevant results of phase composition, 

lattice distortion, and microstrains. 

3.3.1. X-ray Diffraction Experiments 

XRD patterns from the surfaces of samples of Ti2AlC, Ti3AlC2, Ti2AlN, Ti3SiC2-FG and 

Ti3SiC2-CG were obtained using two identical, but separate diffractometers (Bruker D8, 

Madison, WI, USA) in the Bragg–Brentano configuration, for pristine and irradiated 

conditions.  The diffractograms were collected using step scans of 0.02° in the 5°–120° 2ƨ 

range, with a step time of 2 s.  Scans were made with Cu Kơ radiation (ƫ = 1.54 nm, 45 kV 

and 40 mA). 

3.3.2. Profile Refinement 

Standards, such as single crystal LaB6, can be used to evaluate systemic errors present in the 

XRD data.  Rietveld refinement is used to evaluate the peak locations, full width half 

maximums (FWHM), peak shape, and intensity ratios of the peaks in collected XRD 

patterns.  A theoretical pattern, produced by the combination of structure factors of phases 

predicted to be present in the sample, is fitted to the experimental data.  Through iterative 

calculations, the structures and phases are incrementally refined until a goodness of fit is 

reached.  The resultant theoretical pattern is used to determine accurate phase composition, 

lattice parameters, atomic positions, atomic displacement parameters, occupancies, 

microstrain, and nanocrystallite size.  Results of refinement of the XRD patterns collected 

from the irradiated samples are presented in Chapter 4. 
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The accuracy of each diffractometer in determining lattice parameters, and their instrumental 

peak-shape function parameters were calibrated using a LaB6 standard (NIST 660A).  All 

diffractograms were analyzed by the Rietveld refinement method, using the FULLPROF 

code [72, 73].  A systematic shift of 0.02% was found, and corrected for, in the evaluation of 

lattice parameters, LP, as compared to the reported values of the LaB6 standard.  For each 

data set, a model containing TiC and each specific MAX phase, e.g., Ti3SiC2, Ti3AlC2, or 

Ti2AlC was refined.  For Ti2AlN, the model was refined with TiN and Ti4AlN3 phases. 

The Thompson-Cox-Hastings pseudo-Voigt model was used to refine the peak-shape of 

each phase’s reflections.  Lattice strains and particle sizes were also estimated assuming 

isotropic Lorentzian and Gaussian contributions to the peak shape function [74].  The micro 

strain was calculated from the full width half max, FWHM, parameter U from each sample, 

according to the following equation: 

߳ߤ%  ൌ 1.8ߨ ሺට ௦ܷ௔௠௣௟௘ െ ௦ܷ௧ௗሻ (3.1)

where Ustd was refined from the LaB6 standard.  If ௦ܷ௔௠௣௟௘ refined lower than ௦ܷ௧ௗ , the 

microstrain was unresolvable for that specimen.  The ௦ܷ௧ௗ values were 0.006(2) and 0.014(2) 

for the standards scanned on the diffractometers for pristine and irradiated samples, 

respectively. 

 

3.4. Neutron Irradiation Experiments 

 

In this work, two concomitant neutron irradiation experiments were carried out.  By 

coordinating two reactor studies, a wider range of doses and temperatures were explored 

within a limited timeframe.  Designators for irradiation conditions studied within this thesis 
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are summarized in Table 3.2.  The response of Ti3SiC2 and Ti3AlC2 to neutron irradiation 

was explored in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) at 

temperatures up to 1000 °C as a function of neutron fluence up to 9 dpa Table 3.3.  The 

response of a wider array of MAX phase compositions to neutron irradiation was 

investigated in the research reactor, MITR, at Massachusetts Institute of Technology Nuclear 

Reactor Laboratory at temperatures up to 710 °C as a function of dose up to 0.7 dpa Table 

3.3.  The irradiation conditions for each sample set are summarized below. 

 

3.4.1. MITR Irradiation Experiments 

The irradiation occurred in three phases at the 6 MW MITR Research Reactor.  The neutron 

spectrum similar to that of a light water power reactor (Figure 3.5).  Phase I was from 

10/13-12/4 2010, Phase II from 12/4/2010-3/8/2011, and Phase III from 3/8-12/22 2011.  

Details of the irradiation phases are provided in Table 3.4.  The low dose, M-D1, sample sets 

were exposed only in Phase I; the medium dose, M-D2, sample sets were exposed in Phase 

III; and the high dose, M-D3, samples were exposed in all three phases. 

The samples were irradiated in an inert gas atmosphere consisting of a mixture of high purity 

(>99.99%) helium, He, and neon, Ne, and were in contact only with clean titanium, Ti, (CP 

Grade 2).  The effluent gas was periodically monitored for impurities using a residual gas 

analyzer, capable of analyzing oxygen and water of a few ppm.  The irradiation temperature 

was monitored using a thermocouple in each capsule.  Calculations using Fluent ™ show 

that the temperature variation across each sample capsule was less than about +/-10 K.  

While 60 and 650 °C were the initial temperature targets for this experiment, the capsule 

designs and their positions within the reactor resulted in higher temperatures being reached, 

as given in Table 3.4.  The average capsule temperatures for T2 and T4, the two temperature 

regimes targeted at MITR, were 350(40) and 710(50) °C, respectively. 
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Table 3.2 Irradiation temperature and dose designators. 

Dose 
Designator 

Nominal 
Dose 
(dpa) 

MITR ATR
Temp. 

Designator 
Nominal 

Temp. (°C) 
MITR ATR

D1 0.1   T1 100 -  
D2 0.4  - T2 350  - 
D3 0.7  - T3 500 -  
D4 1.0 -  T4 710  - 
D5 9.0 -  T5 1000 -  

 

 

Table 3.3 Irradiation condition labels for each reactor experiment. 

Irradiation Condition* Samples Irradiated 

M-D1-T2 Ti3SiC2-FG 
Ti3SiC2-CG 
Ti3AlC2 
Ti2AlC 
Ti2AlN 
Ti2SC 
SiC 

M-D1-T4 

M-D2-T2 

M-D2-T4 

M-D3-T2 

M-D3-T4 

A-D1-T1 

Ti3SiC2 
Ti3AlC2 
SiC 

A-D1-T3 

A-D1-T5 

A-D4-T1 

A-D4 T3 

A-D4-T5 

A-D5-T1 

A-D5-T3 

A-D5-T5 

*M – MITR, A – ATR denoting location of irradiation experiments. 
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Table 3.4 Irradiation exposure parameters for the MITR experiments. 

Condition 
Temperature 

(°C) 
Irradiation 

Dates 
Exposure 
(MWh) 

Fluence 
(>0.1 MeV)

(n/cm2) 

Total 
Fluence 
(n/cm2) 

dpa 
(4x1021 n/cm2 

= 1 dpa) 

M-D1-T2 360(20) 10/13-12/4 2010 5,000 2.40×1020 3.40×1020 0.1 

M-D1-T4 695(25) 10/13-12/4 2010 5,000 3.50×1020 4.80×1020 0.1 

M-D2-T2 340(20) 3/8-12/22-2011 20,200 9.80×1020 1.40×1021 0.4 

M-D2-T4 740(20) 3/8-12/22-2011 20,200 1.40×1021 1.90×1021 0.5 

M-D3-T2 380(10) *300(10) 10/13/2010-
12/22/2011 29,300 1.40×1021 2.00×1021 0.5 

M-D3-T2 750(30) *650(15) 10/13/2010-
12/22/2011 29,300 2.00×1021 2.80×1021 0.7 

*-The reactor was operated at a lower temperature for a several weeks awaiting permission to increase 
reactor temperature after phase 2 shut down.  Average values for T2 and T4 were 350(40) and 710(50) 
°C. 

 

 

Figure 3.5 Normalized flux per unit lethargy of typical PWR and of in-core sample assembly, ICSA, 
configurations of a) ICSA thimble with aluminum dummy element (standard), b) 3mm H2O annulus 
introduced outside ICSA thimble. Note that the MAX phase irradiation took place with an 
approximately 1-mm water gap with the spectrum corresponding to curve (a). Flux per unit lethargy is 
equal to the flux divided by the natural log of the total energy range of the neutrons. 

(a)
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The total irradiation exposures expressed in MWh (reactor power multiplied by time at 

power) were: Phase I, 5,000; Phase II, 4,100; and Phase III, 20,200.  Specimens were 

irradiated to a maximum fluence ranging from 2.0 × 1020 n/cm2 to 2.8 × 1021 n/cm2 (E>1 

MeV) at T2 and T4, respectively.  Note that the fluences are based on the actual integrated 

MWh for each set of specimens and Monte Carlo N-Particle Transport Code, MCNP, 

calculated flux levels at the irradiation positions.  Based on the SiC damage cross-sections 

reported in [75] and the neutron spectrum in another in-core experimental facility, the 

damage rate for SiC has been previously calculated to be 4 × 1021 n/cm2 = 1 dpa.  In the 

absence of other damage cross-sectional information, we used this damage rate for the MAX 

phases herein.  It follows that in this work we explored the irradiation response in the 0.1, 

0.5, and 0.7 dpa regimes, henceforth denoted as D1, D2 and D3, respectively (Table 3.2).  

After irradiation, samples were stored in cooling pools while they awaited post-irradiation 

examination, PIE. 

Delays in irradiation, and increased cooling periods led to a ripple effect in the majority of 

the characterization experiments.  Reviewed later in this thesis, resistivity testing and XRD 

refinement have been completed for all low dose MAX phase samples.  TEM 

characterization of irradiation defects has been performed on as-received samples of FG-

Ti3SiC2 and Ti2AlC, as well as samples M-D1-T2, M-D1-T4, and M-D2-T2, listed in Table 

3.4. 

Ti2SC was found to be unexpectedly problematic during this project due to a significantly 

higher neutron activation compared to all other samples.  Ta and Hf impurities in the Ti2SC 

pre-reacted powders resulted in the formation of long lived isotopes, which led to unsafe 

dose counts for the radiological workers.  In concurrence with the technical point of contact, 

Douglas Marshall, Ti2SC was abandoned early on.   
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3.4.2. INL ATR Irradiation Experiments 

Details of the irradiation experiments conducted at INL ATR are provided.  The irradiation 

was carried out at the 106 MW INL ATR facility in multiple phases depending on the target 

dose of the sample sets.  A wide range of doses (0.7 – 70 1020 n/cm2, E > 1 MeV) and 

temperatures (100, 500 and 1000 C) were reached, and the details of the irradiation 

conditions are shown in Table 3.5.  The high dose irradiations, A-D4 and A-D5, were carried 

out in the inboard location A-3 of ATR (Figure 3.6) with a high fast neutron flux (average 

peak fast flux ~ 1.9  1014 n/cm2-sec, E > 1.0 MeV).  The low dose irradiation, A-D1, 

utilized the ATR Hydraulic Shutter Irradiation System (HSIS), also referred to as the Rabbit 

system, at the B-7 position (Figure 3.6) (average peak fast flux ~ 8.1  1013 n/cm2-sec, E > 1 

MeV).  The capsules at the A-3 and B-7 positions were in direct contact with coolant water, 

and were filled with a mixture of He and Ar to provide necessary thermal conductivity to 

achieve desired irradiation temperatures.   

 

Table 3.5 Nominal irradiation exposure parameters for the ATR experiments 

Condition 
Temperature 

(°C) 
Irradiation Dates

Exposure 
(MWh) 

Fluence 
(>1 MeV) 
(n/cm2) 

dpa 
(7x1020 n/cm2 = 

1 dpa) 

A-D1-T1 100 - 25000 7.0×1019 0.1 

A-D1-T3 500 - 25000 7.0×1019 0.1 

A-D1-T5 1000 - 25000 7.0×1019 0.1 

A-D4-T1 100 2/19-4/8/2011 125000 7.0×1020 1.0 

A-D4-T3 500 2/19-4/8/2011 125000 7.0×1020 1.0 

A-D4-T5 1000 4/23-6/10/2011 125000 7.0×1020 1.0 

A-D5-T1 100 12/11/2010-
8/4/2012 1086000 7.0×1021 9 

A-D5-T3 500 12/11/2010-
8/4/2012 1086000 7.0×1021 9 

A-D5-T5 1000 12/11/2010-
8/4/2012 1086000 7.0×1021 9 
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Figure 3.6 Representative capsule locations in the ATR loading positions. 

 

For irradiation at the inboard A-3 position (A-D2, A-D5) in ATR, samples were loaded into 

3.75 inch long capsules containing identical material content and sample loading 

configuration (Figure 3.7) composed of:  

 One TEM fixture loaded with (15) TEM discs (1  5 pieces  3 materials) 

 Two tensile fixtures each loaded with (6) tensile specimens (2  2 pieces  3 

materials) 

 One resistivity fixture loaded with (9) resistivity specimens (1  3 pieces  3 

materials)  

Inboard A-3 location 

Outboard B-7 location, “Rabbit” 
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 One zirconia ceramic spacer for thermal insulation (8.0 mm diameter, 6.35 or 

12.7 mm thick) 

 

 

Figure 3.7 Specimen loading configuration for the ATR irradiation capsules. Samples of each type were 
arranged in stainless steel holders and loaded vertically into the capsule tube. 

 

The overall stack height of these fixtures, with fins welded on each end of the fixture (for 

holding and centering), and the thermal insulator discs at the bottom of the capsules were 

approximately 76.2 mm (~ 3.0”).  The internal heating for each capsule was calculated using 

the MCNP Coupled with ORIGEN2 (MCWO) analysis methodology, and the necessary 

insulation gap sizes were determined.  Schematics of gap size and specimen fixture for 

tensile, TEM and resistivity samples for three different irradiation temperatures are shown in 

Figure 3.8. 

TEM discs

Tensile 
specimens 

Resistivity 
specimens
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Figure 3.8 Fixture configurations for tensile (top), TEM (middle) and resistivity (bottom) samples 
for irradiation temperatures of 500 °C and 1000 °C (left: gap 0.97 mm) and 100 °C (right: gap 0.05 mm). 
Capsule inner dia. is 11.0 mm. 

 

The low dose irradiation, A-D1, using the HSIS (Rabbit) system, was not constrained by the 

ATR irradiation cycle with the exception of outage periods.  Sample sets were loaded into six 

2.0 inch long titanium capsules.  The 0.1 dpa irradiation for all 6 capsules was completed in 

one Rabbit run.  All 6 short capsules, with a stack length of 12 inches, were loaded to the 
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core midplane position B-7 and irradiated at the peak fast flux to maintain a heat generation 

rate adequate for the, relatively, high irradiation temperatures of 500 to 1000ºC.  The 

corresponding irradiation time for 0.1 dpa at B-7 core midplane was approximately 240 h. 

After irradiations were completed, all sample capsules were removed and stored in the 

cooling canal until PIE work was coordinated.  

 

3.5. Transmission Electron Microscopy 

 

Transmission electron microscopy, TEM, is widely used to visualize and quantify irradiation 

defects.  Irradiation induced defects range from point defects to dislocation loops and 

dislocation networks.  In image mode, the electron beam can be used to excite defects and 

features, using brightfield and darkfield imaging.  Selected area electron diffraction patterns 

can be used to identify crystal orientation, dislocation Burgers vectors, and lattice distortions.  

Samples for TEM must be thin enough, then, to be electron transparent.  Too thick, 

however, and the defects will not be resolvable in the resultant TEM images, or appear in 

too high of a density to quantify.   

 

3.5.1. Sample Preparation 

TEM foils were prepared using a focused ion beam, FIB, microscope (Quanta 3D FEG, FEI 

Company, USA) (Figure 3.9a), by milling out 20 × 2 × 15 μm3 sections from the pristine and 

irradiated samples, which were then lifted out onto copper TEM grids.  Following the 

thinning procedure detailed in Table 3.6, foils were thinned from the liftouts by milling away 

from alternating sides at the described angles.  Progressively gentler beams were used to 
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finely polish the foils.  Samples were thinned in the FIB through stage 5 (Table 3.6) until 

small perforations were observed.  FIB damage was then cleaned with a final polish using 2 

kV at 27 pA ion emission current.  TEM foils were thinned to thicknesses of 100-200 nm. 

Secondary electron, SE, micrographs showing the surface microstructure of samples prior to 

FIB milling were taken using the scanning electron microscope, SEM, which was a part of 

the FIB microscope (Quanta 3D FEG, FEI Company, USA). 

Table 3.6 Focus ion beam milling procedure for MAX phase thin foils for TEM observation. 

Step 
Voltage 

(kV) 
Emission 
Current 

Thin until 
thickness 

(nm) 

Z depth 
(μm) 

Tilt angles 
(ƨ°) 

Mill 
Type 

Time 
(Min.)

1 30 3 nA 1000 3 50.5-53.5 *CCS 3-5 

2 30 1 nA 500 1 50.5-53.5 *CCS 3-5 

3 30 0.3 nA 250 0.5 50.5-53.5 *CCS 3 

4 30 0.1 nA ~150 0.2 50.5-53.5 *CCS 3 

5 5 77 pA - 0.1 45-49 Regular 5 

6 2 27 pA - 0.1 45-49 Regular 1 

*CCS- Cleaning cross section mode. 
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Figure 3.9 a) Quanta 3D FEG focused ion beam used to prepare TEM foils and b) FEI TF30-FEG 
STwin STEM used to characterize the pristine and irradiated samples. 

 

3.5.2. TEM Observation and Characterization 

Microstructural analysis of irradiation defects was carried out on the FG-Ti3SiC2 and Ti2AlC 

samples using a TEM (TEM, TF30-FEG STwin STEM, FEI Company, USA) equipped with 

anelectron energy loss spectroscope (EELS) and an energy dispersive X-ray spectroscope, 

EDX, (EDAX Inc., Mahwah, NJ, USA) (Figure 3.9b).  Brightfield, BF, and darkfield, DF, 

micrographs were collected in order to characterize irradiation induced defects, as well as 

selected area electron diffraction patterns.  In order to determine the Burgers vector, b, of 

dislocations, the b·g = 0 criteria was used, and various tilt experiments were conducted to 

excite specific g planes in kinematic 2-beam conditions (Figure 3.10)[76]. By tilting to at least 

two g’s that resulted in minimum contrast for the dislocation loops, b was determined as the 

cross product of those two g’s. 
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Figure 3.10 Schematic representation of the different diffraction conditions used in diffraction-contrast 
imaging: a) 2-beam dynamical, b) 2-beam kinematical, and c) weak-beam. In each case the Ewald 
sphere is sketched on the left-hand side, and a schematic diffraction pattern (DP) showing the position 
of the relevant Kikuchi lines on the right-hand side. The curvature of the Ewald sphere is exaggerated 
for clarity. The open circle represents the objective aperture [76]. 

 

3.5.3. TEM Foil Thickness Calculation 

The TEM foil thickness was calculated using the inelastic mean free path, IMFP, ߣ, for 

transmission of electrons through a solid, following the equation developed by Iakoubovskii 

et al. [77],  

 
ߣ ൌ 	 ଴.ଷߩ଴11ܧܨ200 	 lnሾሺߙଶ ൅ ଶߚ ൅ ாଶߠ2 ൅ ଶߙ| െ ଶߙ|ଶߚ ൅ ଶߚ ൅ ஼ଶߠ2 ൅ ଶߙ| െ ଶ|ሻߚ ൈ ሺߠ஼ଶߠாଶሻሿ (3.2)

where ߩ is the sample density, F = (1+E0/1022)/(1+E0/511)2 is a relativistic factor, E0 is the 

electron energy, ơ is the convergence angle, Ƣ is the collection semiangle, ƨE = 5.5 × 0.3ߩ/(FE0) and ƨC = 20 mrad.   

a) 

b) 

c) 
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Log-ratio thickness measurements of EELS spectra were collected for various regions with 

defects to generate a relative mean free path, RMFP, used to calculate the foil thicknesses, t, 

for defect density calculations, as ߣ × log-ratio = t.  The diameter and lengths of more than 

200 loops at each condition were measured and averaged using image analysis software 

(ImageJ, NIH, Bethesda, MD, USA). 

 

3.6. Room Temperature Resistivity of Irradiated MAX phases 

 

Pre- and post-irradiation room temperature, RT, resistivity, ρ, measurements were obtained 

for all samples using a 4-point probe technique and a constant current of 100 mA.  Three 

resistivity bars of each material were irradiated at each condition, and the recorded values 

were averaged from the multiple bars tested.  Some resistivity bars were broken upon 

retrieval, and in those cases the average of only 2 resistivity bars was reported. 

Voltages were recorded once per second for 3 minutes to allow the scans to reach steady 

state, and averaged over time.  Resistivity was calculated using the following formula: 

 ρ ൌ VAIL  (3.3)

where A is the cross sectional area, L is the lead separation , I is the applied current, and V is 

the measured voltage.  For most samples, a time-independent voltage signal was recorded.  

Occasionally, a Ti3AlC2 or a Ti2AlC sample would exhibit a noisy signal due to surface 

roughness impeding contact with the test leads.  Lightly polishing the surfaces with 600 grit 

grinding paper solved the problem and resulted in steady voltage measurements.   
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3.7. Thermal Diffusivity, Non-irradiated 

 

The thermal diffusivity of pristine samples of Ti3SiC2, Ti3AlC2, Ti2AlC, Cr2AlC, and solid 

solutions of (Nb0.5Zr0.5)2AlC, (Nb0.75Zr0.25)2AlC, and (Ti0.75Zr0.25)2AlC were measured as a 

function of temperature.  The samples were loaded into a laser flash analysis device (LFA 

427, Netzsch , Burlington, MA, USA), which measures the time-dependent temperature 

increase of the sample due to energy pulses applied to one side, i.e. thermal diffusivity, ߙ.  

Thermal conductivity, ߢ௧௛, is related to thermal diffusivity by the following equation: 

ߙ  ൌ ௧௛݀ܿ௣ (3.4)ߢ

where, ݀ and ܿ௣ are density and specific heat, respectively.  When available in the literature, 

for the above MAX phases, the ܿ௣ as a function of temperature was used in the calculations.  

It has also been shown that ܿ௣ of a given MAX phase is closely correlated to that of its 

binary MX counterpart, by a factor of n+1 [25].  Using this relationship, the ܿ௣ for the 

(NbxZr1-x)2AlC and (TixZr1-x)2AlC compounds was estimated using 2 × ܿ௣ values for NbC 

and TiC, respectively.  Thermal diffusivity was measured in 25 K increments over the range 

of 298 – 1223 K.  Using available ܿ௣ data for the MAX phases, density, and the diffusivity 

results, thermal conductivity was calculated as a function of temperature.   

 

3.8. Diffusion Bonding, Non-irradiated 

 

Diffusion couples were formed with Zircaloy-4, Zr-4, foil typically sandwiched between two 

different non-irradiated MAX phases.  Alumina plates were placed in between the MAX 
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phases and the graphite punch that was used to transfer an applied load corresponding to a 

stress of ~ 5 MPa (Figure 3.11).  The entire assembly was then placed into a 36 mm diameter 

graphite die.  The diffusion tests were performed in a vacuum hot press at temperatures of 

1100, 1200, and 1300 °C for 1, 2, 10 and 30 h, under a vacuum of 10î1 Pa, before furnace 

cooling. 

 

 

Figure 3.11 Schematic of the diffusion couple loading assembly that was in turn placed in the hot press. 

 

The resulting diffusion couples were cross-sectioned with a high speed diamond saw 

(Accutom-5, Struers Inc., Cleveland, Ohio, USA), mounted for metallographic inspection, 

and polished with a final surface preparation of 3 μm diamond suspension polish. 

Diffusion profiles were obtained using a SEM, (Carl Zeiss Supra 50VP, Germany) equipped 

with an energy-dispersive X-ray spectroscope, EDX, (Oxford Inca X-Sight, Oxfordshire, 

UK).  EDX line scans were used to generate elemental concentration profiles across the 

various interfaces.  Point scans were also used to identify the chemical composition of the 

various intermetallic diffusion layers. 

Calculation of diffusion coefficients from the diffusion profiles was problematic since in 

most cases more than one distinct intermetallic layers had formed, each presumably with its 
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own diffusion coefficient.  To partially solve this problem and partially quantify the kinetics, 

the total diffusion distance, x, in m, defined here as the total thickness of all intermetallic 

phases was measured as a function of time, t, in s.  If the overall process is diffusion 

controlled and: 

ݔ  ൌ ඥ2ܦ஺(3.5) ݐ

then plots of x vs. t1/2 should yield straight lines with slopes that are proportional to the 

effective chemical diffusion coefficient, DA, of the solute species into Zr-4.  The temperature 

dependence of DA then follows the Arrhenius equation: 

஺ܦ  ൌ D௢݁ሺିொಲோ் ሻ (3.6)

where Do is the pre-exponential term, QA is activation energy for diffusion, R is the universal 

gas constant, and T is temperature, in Kelvin. 

 

3.9. Helium Permeability 

 

He permeability tests were performed at 850 °C and 950 °C for three MAX phase samples: 

Ti2AlC, Ti3AlC2 and Ti3SiC2 following a similar procedure described in the ASTM D1434 

[78]. 

A customized differential pressure (DP) rig, as shown in Figure 3.12, was designed by SRNL 

personnel to mount the samples for the high temperature tests.  The samples were 

supported by a sintered disc in order to prevent mechanical failure.  The DP rig had two 

parts that clamped into the sample, each with a stainless steel Swagelok fitting to which gas 

lines to the external system were connected.  After clamping the edges of the samples, the 
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area exposed was 10 mm diameter.  The sample chamber was housed in a furnace that was 

capable of reaching up to 1000 °C.  Just outside of the furnace, pressure gauges were fitted; 

an analogue high pressure gauge on the high pressure line, and a digital vacuum gauge on the 

low pressure line.  The lines were controlled with valves to allow either gas in (on the high 

pressure test gas side) or vacuum (on both sides).  The pressure was regulated from a nearby 

cylinder with a reservoir attached to prevent the regulator from controlling the rate.  The 

readings from the digital vacuum gauge were logged. 

 

Figure 3.12 a) Small furnace and b) sample chamber used for permeability testing. 

 

In the DP tests, both sides of the sample chamber were evacuated and then the system was 

isolated.  The sample chamber was then allowed to stand for the test period of 2 h and the 

increase in pressure in the low pressure side was regarded as the baseline.  Subsequently, 

another evacuation was performed and He gas was supplied at 0.5 bar to the high pressure 

side.  The pressure on the high-pressure side was maintained throughout the test run at 0.5 

bar, whereas the pressure on the low pressure side was allowed to rise and the rate at which 
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this occurred was measured.  A LabVIEW program was used to calculate and record the 

permeation rate dynamically 

.
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4. Irradiated Structures and Phase Stability 

 

As described in previous chapters, irradiation with neutrons can cause significant changes to 

the crystal structure and composition of materials.  This chapter is focused on detailing the 

theory of, and experimental results obtained from, x-ray diffraction, XRD.  This wave-

scattering technique produces an intensity spectrum of diffracted x-rays, generated by the 

beam’s interaction with the atomic ordering of crystalline solids.  In this thesis, XRD is used 

to investigate the changes in microstructure and composition of the MAX phases as a 

function of irradiation dose.  Rietveld refinement of the resultant XRD patterns is provided 

to assess distortions in the unit cell, as well as increases in microstrain in samples after 

irradiation.  Results are compared with previous heavy ion studies, and assessment of 

structural stability under irradiation is summarized. 

XRD is one of several diffraction techniques available for crystal structure investigation.  

Selected area electron diffraction, SAED, is utilized in Chapter 5 to assist in analysis of 

irradiation defects.  XRD patterns in this chapter were obtained utilizing x-ray 

diffractometers at the collaborating radiological laboratories; Savannah River National Lab, 

for the MITR samples, and Idaho National Lab, for the ATR samples.  A discussion of 

diffraction theory is provided, as well as details of the refinement methods used to interpret 

the XRD spectra presented here.  Following the theory, experimental results are presented 

and discussed, with an emphasis on phase stability and microstructural changes.  Lastly, a 

possible explanation of the resultant defective microstructure is hypothesized, with 

incorporation of previous DFT modelling results and the structural changes experienced 

herein.   
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4.1. Diffraction Origins and Theory 

 

In 1912, Max von Laue and his colleagues discovered that x-ray radiation was able to diffract 

from the periodicity in crystalline materials.  Later, in 1913, Sir W. H. Bragg and his son Sir 

W. L. Bragg developed a relationship between the wavelength, ƫ, of diffracted light and 

atomic layer spacing, known as Bragg’s Law (see Section 4.1.1).  This observation of 

reflected x-ray beams at distinctive angles of incidence became known as x-ray diffraction, 

XRD, and provided direct evidence for the previously postulated theory of periodic atomic 

structure of crystals.  XRD has since become an invaluable tool for exploring the atomic 

structure of materials, used in various fields, including, but not limited to, materials science, 

geology, biology, and physics. 

Crystalline materials are depicted by the long range, orderly arrangement of atoms.  The unit 

cell of a crystalline material is the basic repeating unit of atoms in a particular arrangement.  

Parallel planes of atoms within that unit cell have defined planar spacings, dhkl , using Miller 

indices notation, which are unique for specific materials and crystal structures.  X-rays are 

photons with a typical energy range of 100eV-100 keV.  For diffraction studies, hard x-rays, 

with shorter wavelengths on the order of 1 angstrom, Å, intentionally on the same order as 

the d-spacings, are used to probe atomic structures.  X-rays are produced by x-ray tubes 

where they are filtered to generate monochromatic wavelengths, e.g. Cu x-rays with ƫ = 1.54 

Å, or by synchrotron radiation which can provide a range of wavelengths.   

X-ray waves predominantly interact with the electron cloud of an atom, and do so in various 

ways.  Elastically, the atoms of a crystal can coherently scatter x-rays.  As the electron cloud 

interacts with the oscillating electric fields of the x-rays, this can result in a reflected x-ray 

with the same wavelength as the original.  This is known as Thompson scattering, where 
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only momentum is transferred, and the wavelength is constant.  X-rays can also be 

transmitted, absorbed, refracted, or scattered incoherently, though XRD does not take into 

account these other interactions.   

Diffracted x-ray waves from different atoms tend to interfere, resulting in a distribution of 

reflected beams into various diffraction peaks, the intensity of which are dependent on the 

periodicity in a crystal.  Measurements of the diffraction pattern can be used to understand 

the distribution of atoms in a material, and relevant d-spacings for specific crystals.  The 

distribution of peak intensities and positions can be calculated for a given material by using 

Bragg’s Law.   

4.1.1. Bragg’s Law 

When x-rays scatter from atoms in the crystal lattice, most combinations of wavelengths and 

incidence angles result in destructive interference, canceling out the waves of transmitted 

light.  However, when the reflecting plane is aligned in a particular way, the reflected beams 

interfere constructively, and remain in phase, resulting in a diffraction peak. The relationship 

that relates this is known as Bragg’s Law: 

ߣ݊  ൌ 2݀௛௞௟ sin (4.1) ߠ

where n is an integer, ߣ is the wavelength of the x-ray,	݀௛௞௟ is the spacing between parallel 

planes, or Bragg reflections, ሺ݄݈݇ሻ, and ߠ is the angle of incidence.  This relationship is 

shown in Figure 4.1, where the incident wave is shown reflecting from a given plane must 

travel an extra distance equal to 2݀ sin  Constructive interference occurs when this extra  .ߠ

distance is equal to integer, n, multiples of ߣ, corresponding to a phase shift of 360°.  

Examination of d-spacings of crystalline materials is possible since only certain wavelengths 

and angles lead to constructive interference when using a fixed ߣ x-ray diffractometer.  It 

then follows that, by scanning across a range of incident angles, ƨ, grains oriented to the 
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proper directions will provide the necessary constructive interference, resulting in an 

intensity distribution spectrum profile.  The location of specific peaks can then be converted 

to related d-spacings using Bragg’s law. 

 

 

Figure 4.1 Schematic of Bragg's law. 

 

4.1.2. Elastic Scattering of X-rays 

The amplitude of elastically scattered x-rays from a crystal structure is determined by the 

atomic arrangement in the diffracting (hkl) planes.  The intensity of expected peaks can be 

described by: 

௛௞௟ܫ  ൌ ௛௞௟|ଶܨ| ∙ (4.2) ܲܮ

where ܨ௛௞௟ is the structure factor, and LP is a combined geometry and polarization factor 

dependent on experimental setup.  The structure factor sums the result of scattering from all 

atoms in a unit cell forming a diffraction peak from the (hkl) plane, given by: 
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௛௞௟ܨ  ൌ෍ ௝ܰ ௝݂௠
௝ୀଵ ݁ଶగ௜ሺ௛௫ೕା௞௬ೕା௟௭ೕሻ (4.3)

where Nj is the occupied fraction of equivalent positions of atom j in coordinates (xj, yj, zj), 

and the scattering factor, f, described by: 

 |݂|ଶ ൌ ቆ ଴݂݁ି஻ ୱ୧୬మ ఏఒమ ൅ Δ݂′ቇଶ ൅ ሺΔ݂ᇱᇱሻଶ (4.4)

which quantifies the relative efficiency of electron scattering of each atom.  The pre-

exponetial f0 at 0° ƨ is equal to the number of electrons in the atom, and can be found using 

tables or equations derived experimentally as a function of (sinƨ)/ƫ.  The thermal motion 

correction, to account for atomic vibration, incorporates the Debye-Waller factor, B, where 

B = 8ư2U2, with U2 as the mean-square amplitude of atomic vibration.  

4.1.3. Profile Refinement 

The previous sections describe the relationship between the crystalline arrangement of atoms 

in a material and the resultant scattering of x-rays.  The diffraction patterns directly correlate 

to the crystal structure.  In practice, it is desirable to fit, or refine, a structural model to 

compare with experimental data.  Initially an approximation, or prediction, of relevant 

phase(s) is (are) needed to hypothesize an initial structure based on structural and 

instrumental parameters.  The “goodness” of the fit between the measured and calculated 

profile is then assessed through a least squares analysis using both the instrumental and 

structural parameters.  This is known as Rietveld refinement [72, 73].. 

Rietveld refinement, a method devised by Hugo Rietveld, takes advantage of the fact that the 

diffraction peaks from monochromatic sources are quite Gaussian in shape [73].  The 

calculated profile function includes structural parameter variables that can be refined to fit 
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peak positions and shapes, as well as instrument variables to account for systemic alignment.  

Details of the refinement parameter functions can be found in Ref. [73] 

The Rietveld method involves minimizing the variance, ƅ, given by: 

 Δ ൌ෍ݓ௜ሺݕ௢௕௦,௜௜ െݕ௖௔௟௖,௜ሻଶ (4.5)

where i refers to each data point at wavelength ƫi, wi is the weight, and yobs,i and ycalc,i are the 

observed and calculated intensities, respectively.  It is important to include various 

agreement indices, to measure the process of convergence, known as R-factors.  The first to 

consider is the weighted profile R-factor, Rwp, which is related to the minimized quantity 

scaled by the weighted intensities as follows: 

 ܴ௪௣ଶ ൌ ∑ ௢௕௦,௜௜ݕ௜ሺݓ െݕ௖௔௟௖,௜ሻଶ∑ ௢௕௦,௜௜ݕ௜ሺݓ ሻଶ  (4.6)

The expected R-factor, Rexp, as a measure of quality of the data, represents the ideal model of 

the best possible fit, and is given by: 

 ܴ௘௫௣ଶ ൌ ሺܰ െ ܲ ൅ ∑ሻܥ ௢௕௦,௜௜ݕ௜ሺݓ ሻଶ (4.7)

where N is the total number of observations, P is the number of parameters refined, and C is 

the number of constraints used in the refinement.  It is common in typical powder XRD 

refinement for N to dominate over P+C, and thus the latter can be safely ignored.  The ratio 

of these two R-factors, known as the chi-squared factor,	߯ଶ, represents the statistical average 

ratio, and for an ideal fit would approach unity, according to: 

 ߯ଶ ൌ ሺܴ௪௣ܴ௘௫௣ሻଶ (4.8)
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Initially, ߯ଶ is large when the calculated model is a poor fit to the observed data.  Upon 

subsequent refinement steps, which improve the model, ߯ଶ decreases and approaches 1 

indicating a better fit.  While minimizing the differences between observed and calculated 

intensities can lead to a more accurate fit, it is important to understand that there is 

uncertainty in the refined parameters and fitted data.  Error bars on plots, and standard 

deviations, shown in parentheses as the standard error of the last digit, are used throughout 

this thesis to display statistical error.   

 

4.2. X-ray Diffraction Results: MITR Samples 

 

The XRD patterns collected from the FG-Ti3SiC2, CG-Ti3SiC2, Ti3AlC2, Ti2AlC and Ti2AlN 

samples before and after the M-D1-T2 and M-D1-T4 irradiations are shown in Figures. 4.2-

4.6.  XRD patterns collected from the FG-Ti3SiC2 and Ti2AlC samples after M-D2-T2 are 

shown in Figure 4.7. Each figure displays the observed data as open black circles, along with 

the calculated model in solid red.  Beneath each plot, the variance between observed and 

modeled spectra is plotted, the flatness of which indicates the goodness of the fit.  The 

results of the Rietveld analyses of these patterns are summarized in Table 4.1.  Several 

structural parameters were refined for each sample; a- and c-lattice parameters, LP, atomic 

positions of Ti and C, overall B factor, and relative peak intensities to determine phase 

compositions. In addition, the full width half max (FWHM) parameter, U, was refined in 

order to calculate microstrain, as well as the Lorentzian peak shape parameter, Y, for 

determining nanocrystallite size. 
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4.2.1. X-Ray Diffraction Refinement Results 

In all cases, the neutron irradiations resulted in structural (Figure 4.8) as well as 

compositional changes compared to the materials’ pristine state (Table 4.1).  Changes in 

microstrain were also observed as a result of neutron irradiation.  The best fit of the XRD 

patterns was achieved by including TiC during refinement of the carbide phases, and TiN for 

the Ti2AlN phase.  Additionally, Ti4AlC3 was included in the refinement of Ti2AlN:M-D1-

T4, which showed an increased level of dissociation after irradiation.  It is also important to 

note that the relative atomic positions of each MAX phase tested herein did not change 

significantly under the studied irradiation conditions (Table 4.1).  Assessment of the Y 

parameter revealed no signs of peak distortion due to nanocrystallite grain sizes in any of the 

samples. 
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Figure 4.2 Rietveld analysis of XRD pattern of FG-Ti3SiC2. 
a) Pristine, and, b) FG-Ti3SiC2:M-D1-T2 and, c) FG:Ti3SiC2:M-D1-T4. Open circles, solid line, and solid 
line at the bottom, represent the observed data, calculated model, and the difference between the two, 
respectively. The two rows of vertical tags represent the calculated Bragg reflections’ positions of 
Ti3SiC2 (1st row) and TiC (2nd). 

  

Sample: Ti3SiC2-FG 
Pristine 

M-D1-T2 (0.1 dpa at 350 °C) 

M-D1-T4 (0.1 dpa at 710 °C) 
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FG-Ti3SiC2: 

The Rietveld refinement of the XRD pattern of the FG-Ti3SiC2:M-D1-T2 sample showed an 

increase in the c-LP from 17.680(5) to 17.812(9) Å and a decrease in the a-LP from 

3.0685(6) to 3.0648(1) Å (Figure 4.2).   

A microstrain of 0.27% was calculated for the distorted lattice; an increase from the pristine 

sample, at 0.19% (Table 4.1).  The lattice of the FG-Ti3SiC2:M-D1-T4 was only slightly 

perturbed, with a c-LP of 17.668(1) and a-LP of 3.0674(1) (Figure 4.2, Table 4.1).  The 

microstrain level was below that of the standard used to calibrate the diffractometer.   

Refinement of FG-Ti3SiC2:M-D2-T2 patterns revealed an increasingly distorted lattice in 

comparison to the lower dose, D1, irradiation.  The c-LP increased to 17.887(1) Å and the a-

LP decreased to 3.0637(1) Å (Figure 4.7, Table 4.1).  At 0.36%, the lattice microstrain was 

seen to increase from pristine condition, and was also larger than the M-D1-T2 sample. 

CG-Ti3SiC2: 

The CG-Ti3SiC2 samples behaved similarly to their fine-grained counterparts (Figure 4.3). 

Refinement of the XRD patterns of the CG-Ti3SiC2:M-D1-T2 sample revealed an increase in 

the c-LP from 17.680(8) to 17.840(8) Å and a decrease in the a-LP from 3.0688(7) to 

3.0647(8) Å.  There was a simultaneous increase in microstrain to 0.33% (Table 4.1).  The 

CG-Ti3SiC2:M-D1-T4 lattice was slightly distorted, with a c-LP of 17.669(6) Å, and an a-LP 

of 3.0674(8) Å (Fig. 7); the microstrain was only 0.06%.  
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Figure 4.3 Rietveld analysis of XRD data of CG-Ti3SiC2. 
a) Pristine, and b) CG-Ti3SiC2:M-D1-T2 and, c) CG-Ti3SiC2:M-D1-T4. Open circles, solid line, and solid 
line at the bottom, represent the observed data, calculated model, and the difference between the two, 
respectively. The two rows of vertical tags represent the calculated Bragg reflections’ positions of the 
Ti3SiC2 (1st row), and TiC (2nd).  

  

Sample: Ti3SiC2-CG 
Pristine 

M-D1-T2 (0.1 dpa at 350 °C) 

M-D1-T4 (0.1 dpa at 710 °C) 
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Ti3AlC2: 

The Rietveld refinement of Ti3AlC2:M-D1-T2 XRD patterns (Figure 4.4) also showed an 

increase in the c-LP from 18.562(2) to 18.896(1) Å and a decrease in a-LP from 3.0736(2) to 

3.0542(2) Å (Table 4.1).  Concomitantly, there was an increase in microstrain from 0.1% to 

0.39%. At 18.543(2) Å and 3.0699(2) Å, the c- and a-LPs, respectively, of the Ti3AlC2:M-D1-

T4 samples were less distorted than those at T2.  After irradiation at M-D1-T4, the 

microstrain was 0.34 %.  

Ti2AlC: 

The Rietveld refinement of the Ti2AlC XRD patterns revealed similar lattice distortion after 

irradiation (Figure 4.5).  Refinement of the Ti2AlC:M-D1-T2 sample revealed an increase in 

the c-LP from 13.650(2) to 13.882(1) Å and a decrease in the a-LP from 3.0614(2) to 

3.0367(2) Å.  There was a simultaneous increase in microstrain to 0.66%, from below that of 

the standard used to calibrate the diffractometer at pristine. (Table 4.1).  The Ti2AlC-M-D1-

T4 lattice returned to near pristine dimensions, with a c-LP of 13.659(3) Å, and an a-LP of 

3.0585(3) Å (Figure 4.8); and the microstrain was only 0.11%. 

Refinement of Ti2AlC:M-D2-T2 patterns similarly revealed distorted lattice in comparison to 

the lower dose, D1, irradiation.  The c-LP increased to 14.056(3) Å and the a-LP decreased 

to 3.0206(3) Å (Table 4.1).  At 1.14%, the lattice microstrain was drastically increased from 

pristine condition. 

Ti2AlN: 

Rietveld refinement of the Ti2AlN samples revealed a similar trend in distorted LPs (Table 

4.1).  Ti2AlN:M-D1-T2 showed an increase in the c-LP from 13.640(2) to 13.714(4) Å and a 

decrease in a-LP from 2.9886(3) to 2.9808(6) Å (Figure 4.6).  
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Figure 4.4 Rietveld analysis of XRD patterns of Ti3AlC2. 
a) Pristine, and b) Ti3AlC2:M-D1-T2 and, c) Ti3AlC2:M-D1-T4. Open circles, solid line, and solid line at 
the bottom, represent the observed data, calculated model, and variance between the two, respectively. 
The two rows of vertical tags represent the calculated Bragg reflections’ positions of the Ti3AlC2 (1st 
row), and TiC (2nd).  

  

Sample: Ti3AlC2 
Pristine 

M-D1-T2 (0.1 dpa at 350 °C) 

M-D1-T4 (0.1 dpa at 710 °C) 
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At 0.2%, the microstrain after M-D1-T2 was increased from pristine, at 0.16%.  At 13.664(4) 

Å and 3.0086(3) Å, the c- and a-LPs, respectively, of the Ti2AlN:M-D1-T4 samples were 

closer to pristine values (Figure 4.8).  However, at 0.58 %, the micro-strain found in Ti2AlN-

HT sample was significantly higher than all other samples irradiated at this condition.  

TiC and TiN Formation: 

The formation of binary MX compounds is common during the fabrication of MAX phases 

via HP.  Additionally, as the furnace operates under vacuum, an outer layer of TiC or TiN 

forms due to the preferential dissociation of Al or Si metal from the outside of the sample 

blanks. This was observed for all samples fabricated for this thesis, which is why the outer 

surfaces of each blank were purposefully machined off to remove this contamination layer.  

According to the XRD refinement of pristine samples, the TiC contents of the pristine 

Ti2AlC, Ti3AlC2, Ti3SiC2-FG and Ti3SiC2-CG samples, were found to be 8(1) wt.%, 1.9(6) 

wt.%, 23(1) wt.% and 18.2(5) wt.%, respectively.  In pristine Ti2AlN, the TiN content was 

found to be 3.2(2) wt. %. 

Irradiation of the Ti3AlC2 samples resulted in the significant increase in the TiC content 

from 1.9(6) wt.% before irradiation, to 52.6(9) and 44.4(8) wt.%, after the M-D1-T2 and M-

D1-T4 irradiations, respectively. Cross sections of these samples were also scanned by XRD 

confirming that the dissociation into TiC was not a surface phenomenon Figure 4.4.  

The TiC content in the CG-Ti3SiC2 samples changed from 18.2(5) wt.% as received to 

23.3(6) and 17.0(4) wt.% after M-D1-T2 and M-D1-T4 irradiations, respectively (Table 4.1).  

Irradiation of FG-Ti3SiC2 also yielded a change in TiC content, going from 23(1) wt.% 

initially to 22.7(5) and 25(1) wt.% after the M-D1-T2 and M-D1-T4 irradiations, respectively.  

The FG-Ti3SiC2:M-D2-T2 samples only showed a slight decrease in TiC, to 21.8(6) wt.%. 
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Figure 4.5 Rietveld analysis of XRD patterns of Ti2AlC. 
a) Pristine and, b) Ti2AlC:M-D1-T2 and c) Ti2AlC:M-D1-T4. Open circles, solid line, and solid line at 
the bottom, represent the observed data, calculated model, and the difference between the two, 
respectively. The two rows of vertical tags represent the calculated Bragg reflections’ positions of the 
Ti2AlC (1st row), and TiC (2nd).  

  

Sample: Ti2AlC 
Pristine 

M-D1-T2 (0.1 dpa at 350 °C) 

M-D1-T4 (0.1 dpa at 710 °C) 
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At 8.3(3) wt.%, the TiC composition did not vary significantly for Ti2AlC after the M-D1-T2 

irradiation and was within the variability in TiC content obtained for these samples.  

Refinement also revealed that the Ti2AlC:M-D1-T4 samples contained 4.3(1) wt.% TiC, a 

value lower than in the pristine samples.  Furthermore, after M-D2-T2 irradiation, the 

Ti2AlC samples showed 1.9(5) wt.% TiC, even lower than pristine. Since it is impossible to 

transform TiC to Ti2AlC by neutron irradiation, this result simply shows that the initial TiC 

impurity phase distribution in these samples was inhomogeneous. This point is discussed in 

more detail below.  

At 11.6(1) wt.%, the TiN content in Ti2AlN:M-D1-T2 increased from pristine, at 3.23(2).  

Ti2AlN-M-D1-T4 contained 13(1) wt.% TiN as well as 36(3) wt.% Ti4AlN3.  An additional 

phase with peaks around 36, 41, and 58.6° 2ƨ was unidentified, due to these peaks’ low 

intensity and the high background noise.  

While the a- and c-LPs for each MAX phase discussed above were distorted at T2 

conditions (Figure 4.8), the a-LP for the TiC phase remained relatively constant under most 

conditions, showing at most an increase of ~ 0.2 % in the Ti3AlC2:M-D1-T2 samples (Table 

4.1).  While the TiC content increased in some cases, its LPs remained quite close to their 

values in the pristine samples.  The only sample to show deviation was Ti2AlC:M-D2-T2, 

where the a-LP for TiC decreased by ~ 1%.  
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Table 4.1 Irradiation-induced structural and compositional changes in MITR irradiated MAX phases. 

Condition Ʒ2 a-LP (Հ) c-LP (Հ)
TiII_z 

position
C_z 

position

TiC 
content 

wt.%

TiC a-LP 
(Հ) 

FWHM 
Parameter, 

U 
μƥ% 

Ti3SiC2FG-Pristine 2.10 3.0685(6) 17.680(5) 0.3658(3) 0.573(1) 23(1) 4.3200(2) 0.0174(2) 0.19 

Ti3SiC2FG:M-D1-T2 3.08 3.0648(1) 17.812(9) 0.3661(3) 0.571(1) 22.7(5) 4.3192(1) 0.0385(7) 0.27 
Ti3SiC2FG:M-D1-T4 1.83 3.0667(2) 17.675(1) 0.3675(7) 0.556(3) 25(1) 4.3195(2) 0.0133(5) - 
Ti3SiC2FG:M-D2-T2 2.43 3.0634(2) 17.887(1) 0.3657(3) 0.558(2) 22(1) 4.3217(1) 0.057(1) 0.36 

Ti3SiC2CG-Pristine 16.7 3.0688(7) 17.680(1) 0.3662(4) 0.572(2) 18.2(5) 4.3185(1) 0.0042(1) - 
Ti3SiC2CG:M-D1-T2 1.84 3.0647(1) 17.840(1) 0.3664(3) 0.565(1) 23.3(5) 4.3238(2) 0.0488(1) 0.33 
Ti3SiC2CG:M-D1-T4 2.79 3.0674(8) 17.669(1) 0.3660(4) 0.556(2) 17.0(4) 4.3215(1) 0.0150(2) 0.06 
Ti3SiC2CG:M-D2-T2 2.36 3.0626(2) 17.900(1) 0.3656(4) 0.559(2) 21.3(7) 4.3235(2) 0.03768(8) 0.27 

Ti3AlC2-Pristine 1.88 3.0736(2) 18.562(2) 0.1291(5) 0.564(2) 1.9(6) 4.3114(2) 0.0094(7) 0.10 
Ti3AlC2:M-D1-T2 2.63 3.0542(2) 18.896(1) 0.1251(3) 0.600(1) 52.6(9) 4.3197(3) 0.064(1) 0.39 
Ti3AlC2:M-D1-T4 3.73 3.0699(2) 18.543(2) 0.1313(4) 0.599(1) 44.4(8) 4.3082(3) 0.05(1) 0.34 
Ti3AlC2:M-D2-T2          

 

Condition Ʒ2 a-LP (Հ) c-LP (Հ)
TiI_z 

position
C_z 

position

TiC 
content 

wt.%

TiC a-LP 
(Հ) 

FWHM 
Parameter, 

U 
μƥ% 

Ti2AlC-Pristine 1.95 3.0614(2) 13.650(2) 0.589(1) an/a 8(1) 4.3068(9) 0.0060(1) - 
Ti2AlC:M-D1-T2 3.17 3.0367(2) 13.882(1) 0.5843(5) an/a 8.3(3) 4.3168(3) 0.157(1) 0.66 
Ti2AlC:M-D1-T4 2.44 3.0585(3) 13.659(3) 0.585(3) an/a 4.3(1) 4.3128(1) 0.0176(2) 0.11 
Ti2AlC:M-D2-T2 1.9 3.0206(3) 14.056(3) 0.586(2) an/a 1.9(5) 4.264(1) 0.4378(4) 1.14 

 

Condition Ʒ2 a-LP (Հ) c-LP (Հ)
TiI_z 

position
C_z 

position

Tin 
content 

wt.%

TiN a-LP 
(Հ) 

FWHM 
Parameter, 

U 
μƥ% 

Ti2AlN-Pristine 1.6 2.9886(3) 13.640(2) 0.587(2) an/a 3.23(2) 4.2329(2) 0.015(1) 0.16 
Ti2AlN:M-D1-T2 2.2 2.9808(6) 13.714(4) 0.590(1) an/a 11.6(1) 4.2336(1) 0.0262(2) 0.20 

bTi2AlN:M-D1-T4 2.6 3.0086(3) 13.664(4) 0.570(2) an/a 13(1) 4.2223(3) 0.125(2) 0.58 

Ti2AlN:M-D2-T2          

Numbers in parenthesis represent one standard deviation of the last significant digit. 
a- In M2AX compounds, the C-atom z position is fixed at the origin. 
b- In the case of Ti2AlN:M-D1-T4, 36(3) wt.% Ti4AlN3 content was detected. With a-LP of 
2.9931 and c-LP of 22.986, the lattice was distorted from pristine, at 2.988 and 23.372, for a-
LP and c-LP, respectively. 
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Figure 4.6 Rietveld analysis of XRD pattern of Ti2AlN. 
a) Pristine and, b) Ti2AlN:M-D1-T2 and c) Ti2AlN:M-D1-T4. Open circles, solid line, and solid line at 
the bottom, represent the observed data, calculated model, and the difference between the two, 
respectively. The two rows of vertical tags represent the calculated Bragg reflections’ positions of the 
Ti2AlN (1st row) and TiN (2nd). In c), the best fit for Ti2AlN:M-D1-T4 pattern was achieved by 
including Ti4AlN3 in the refinement (3rd row). Peaks around 36, 41, and 58.6° 2ƨ were unidentified due 
to their low intensity and the high background noise.  

 

Sample: Ti2AlN 
Pristine 

M-D1-T2 (0.1 dpa at 350 °C) 

M-D1-T4 (0.1 dpa at 710 °C) 
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Figure 4.7 Rietveld analysis of XRD patterns of M-D2-T2 samples of FG-Ti3SiC2 and Ti2AlC 
a) pristine Ti3SiC2-FG and, b) FG-Ti3SiC2:M-D2-T2. The two rows of vertical tags represent the 
calculated Bragg reflections’ positions of the Ti3SiC2 (1st row) and TiC (2nd). c) Pristine Ti2AlC and, d) 
Ti2AlC:M-D2-T2. The two rows of vertical tags represent the calculated Bragg reflections’ positions of 
the Ti2AlC (1st row), and TiC (2nd). Circles, solid line, and solid line at the bottom, represent the 
observed data, calculated model, and the difference between the two, respectively. 

Sample: Ti3SiC2-FG 
Pristine 

M-D2-T2 (0.4 dpa at 350 °C) 

Sample: Ti2AlC 
Pristine 

M-D2-T2 (0.4 dpa at 350 °C) 
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4.2.2. Stable Compositions 

As materials are exposed to neutron irradiation, the formation of new phases would 

demonstrate an inability to cope with irradiation damage.  Based on the XRD results, Ti3SiC2 

and Ti2AlC showed the highest phase stability after neutron irradiation. 

Ti3SiC2, both fine and coarse grained, showed a slight variation in TiC content when 

irradiated at M-D1-T2 and M-D1-T4 conditions.  Given the fluctuations in the TiC contents 

of the pristine and irradiated samples, it is difficult to conclude if any dissociation occurred 

at all.  Results of Ti3SiC2-FG:M-D2-T2 (Table 4.1) also show minimal decrease in TiC 

content confirming that Ti3SiC2-FG remains stable, even with increasing dose. 

As noted in Chapter 3, pristine Ti2AlC samples were fabricated starting with commercially 

available MAX powders (Kanthal, Sweden), resulting in an initial TiC volume fraction of 8(1) 

wt. %.  At 8.3(3) wt.%, the TiC composition was slightly higher in the Ti2AlC:M-D1-T2 

samples and was likely within the error of the TiC content measured.  Refinement of the 

Ti2AlC:M-D1-T4 samples revealed 4.3(1) wt.% TiC, a value lower than in the pristine 

samples.  At 1.9(5) wt.%, the TiC content in Ti2AlC:M-D2-T2 was even further below that 

of the pristine sample, which suggests a somewhat inhomogeneous distribution of the TiC 

impurity phase in these samples.  It is possible that the specimens scanned for the pristine 

condition were machined from the outer regions of the blank, thus possessing a higher TiC 

content.  These comments notwithstanding, the fact that the TiC content does not increase 

shows that the Ti2AlC phase remained stable after irradiation. 

4.2.3. Unstable Compositions 

What is noteworthy and completely unexpected however, was the dissociation of roughly 50 

wt.% of the Ti3AlC2 into TiC Table 4.1.  One of the reasons this was unexpected is that it 

was never observed or reported on in any of the heavy ion irradiation work [3, 22, 60-64, 66, 
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67, 69, 71].  This is an important result since it is clear that Ti3AlC2 may not be as resistant to 

neutrons as previously assumed.  Clearly, the dissociation of Ti3AlC2 into TiC appears to be 

enhanced by the neutron irradiation, the extent of which increased at the lower irradiation 

temperature. 

Ti2AlN also was seen to dissociate, increasing TiN content from 3.23(2) wt.% to 11.6(1) and 

13(1) wt.% after M-D1-T2 and M-D1-T4, respectively.  Unique among all MAX phases 

tested herein, Ti2AlN:M-D1-T4 resulted in the formation of 36(3) wt.% Ti4AlN3, a MAX 

phase morphology with more TiN layers between Al-layers.  An additional phase with peaks 

around 36, 41, and 58.6° 2ƨ was unidentified, due to these peaks’ low intensity and the high 

background noise. 

Also of note is the resiliency of TiC after irradiation at these conditions.  While the Ti3AlC2 

and Ti2AlC samples showed significant lattice distortion after T2 irradiation, the a-LP of the 

TiC phase remained largely unperturbed, at most increasing by 0.19 % in the Ti3AlC2 

samples.  It is plausible then that the TiC which forms via dissociation of Ti3AlC2 relieves 

the lattice strains.  While the large scale dissociation of Ti3AlC2 into TiC may be detrimental 

to its future in nuclear applications, it is unclear if the presence of small volume fractions will 

be problematic for other MAX phases, since commercially available Ti2AlC and Ti3SiC2 

often contain ~10 wt.% TiC. 

4.2.4. Lattice Parameter Distortions 

Rietveld refinement revealed a distortion of LPs under neutron irradiation of the FG-

Ti3SiC2, CG-Ti3SiC2, Ti3AlC2, Ti2AlC and Ti2AlN samples (Figure 4.8).  This result concurs 

with previous work where heavy ions and He irradiations were shown to result in lattice 

distortions [3, 22, 60-64, 66, 67, 69, 71].  After M-D1-T2 irradiation, Ti3AlC2 and Ti2AlC 

showed the largest increase in c-LPs, while Ti2AlN showed the least (Figure 4.8a).  The a-
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LPs decreased after M-D1-T2 irradiation, with Ti2AlC showing the largest deviation from 

pristine (Figure 4.8b).  In contradistinction, after M-D1-T2 irradiation, the LPs for most 

materials tested were distorted by � 0.1%, confirming the dynamic recovery capabilities of 

the MAX phases.  There were little observable differences between the fine and coarse 

grained Ti3SiC2 samples, both of which showed less extensive distortion than Ti3AlC2. 

 

 

Figure 4.8 Lattice parameters of MAX phases as a function of irradiation temperature. 
Plots comparing a) c-LPs and b) a-LPs as a function of irradiation temperature for the MAX phases FG-
Ti3SiC2, CG-Ti3SiC2, Ti3AlC2, Ti2AlC, and Ti2AlN show an increase in c-LP and a decrease in a-LP after 
irradiation at M-D1-T2. After irradiation at M-D1-T4, however, the LPs are seen to return closer to 
pristine values, which have been plotted for reference. 

 

Figure 4.8 summarizes the effect of irradiation temperature on the LPs of each MAX phase 

tested herein.  In all cases, irradiation at condition M-D1-T2 resulted in an expansion in the 

c-LP and a reduction in the a-LP. The Ti3AlC2 showed the largest increase in c-LP, with 

Ti2AlN showing the least. Ti2AlC had the largest reduction in a-LP, while the Ti3SiC2 

samples had the least.  Unsurprisingly, the FG and CG Ti3SiC2 samples responded similarly.  

For most samples, irradiation at T4 resulted in LPs that were only slightly distorted from 

pristine dimensions.  Ti2AlN revealed an increase in a-LP at T4, in contrast to all other 

samples tested.  This is attributed to the extensive distortion observed in the XRD spectrum 
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(Figure 4.6c) seen by the increased background intensity, and the formation of several 

impurity phases after irradiation. 

In summary, at temperatures as low as 710(50) °C, the MAX phases show remarkable 

recovery of lattice parameters after irradiation to 0.1dpa.  Lattice distortion is nearly 

completely reverted back to pristine values in all samples, save for Ti2AlN which resulted in 

the formation of multiple new phases at 710(50) °C, leading to increased microstrains.  

Ti3AlC2 also showed extensive dissociation, having ~50 wt.% TiC content after irradiation.  

These results indicate that the Ti3AlC2 and Ti2AlN compositions used herein were unable to 

withstand irradiation induced segregation and solute migration which resulted in the drastic 

removal of Al from the MAX phase unit cells.   

Potential reactor applications require radiation tolerant materials, able to withstand the 

effects of irradiation induced defects.  Ti3SiC2 and Ti2AlC showed remarkable phase stability 

and lattice recovery at all conditions.  Therefore, focus was given specifically to these two 

compositions as having the most potential for use in reactors.  TEM investigation of the 

irradiation defects is presented in Chapter 5.  

 

4.3. Theoretical Defective Structures 

 

The previous sections describe in detail the results of Rietveld refinement of XRD patterns 

collected from pristine and irradiated MAX phases.  The following section attempts to 

explain the changes in lattice dimensions and microstrains in relation to the material 

structure evolutions induced by irradiation.  
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Attempts have been made to understand the irradiation response of MAX phases by using 

density functional theory, DFT, calculations of point defect formation and migration.  

Several recent first principles studies [79-82] have concluded that the presence of the A-layer 

could provide significant irradiation tolerance for the MAX phases.  The general trends 

showed that Frenkel pairs, FPs, of Ti, A (either Si or Al), and C elements readily form as 

interstitials within the A-layer and/or in the space between the A and Ti layers (Figure 4.9).   

 
Figure 4.9 Possible interstitial sites in the M3AX2 structure include A: Ipri, B: Ihex, C: Itet, and D: Ioct [79]. 
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While varying in values due to differences in calculation methods, the energy of formations, 

Ef’s, for point defects, eg. Ci or VA, in the A-layers were consistently much lower, by ~1-3 

eV, compared to defects within the TiC blocks, > 9 eV [79-82].  Antisite defects, e.g. TiAl, 

were also shown to have quite low Ef, ~2 eV, comparable to A-layer Frenkel pairs.  

Middleburg et al. showed that the lowest energy Ci in hexagonal coordination with 3 basal Si 

and 2 Ti forms bond lengths similar to those found in TiC and SiC (Site B inFigure 4.10) 

[82].  The low energy requirements for the formation of antisite and point defects within the 

A-layer indicate that the A-layer can act as potent defect sinks within each nanolaminate 

layer.  

In comparing various A-elements, Wang et al. showed that CFP and SiFP with Ef = 1.5 and 2.1 

eV, respectively, were the lowest energy defects in Ti3SiC2 [80].  In contrast, the TiAl_AlTi 

antisite defects, requiring 1.6 eV to form, were the lowest energy defects in Ti3AlC2 [80].  At 

2.96 eV, the same antisite defect was also the lowest energy defect in Ti2AlC [79].  Xiao et al. 

further described the effect of bond character between various MAX compositions, stating 

that the more ionic character of the Ti-Al bonds found in Ti3AlC2 and Ti2AlC would lead to 

enhanced irradiation tolerance compared to Ti3SiC2 by allowing for easier recovery of the 

lattice damage [79].  

With a higher Al:TiC block ratio, and thus a larger volume of point defect sinks, Ti2AlC was 

predicted to have higher irradiation tolerance than its 312 counterpart [79].  It was then 

theorized that the Al-containing phases would have better irradiation tolerance, due to the 

ease of forming stable antisite defects over Frenkel pairs, which would allow them to recover 

irradiation damage more easily. 
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Figure 4.10 Schematic of the lowest energy C interstitial arrangement showing the nearest neighbor 
bonds to the Si atoms within the basal layer and to the Ti atoms in the z-direction [82]. 

 

However, XRD analysis of neutron irradiated MAX phase samples discussed herein showed 

a decrease in a-LP and an increase in c-LP after irradiation at lower temperatures, e.g. T2 

(350 °C).  In order to describe what structural change results in this shift, it is instructive to 

look back at several theoretical studies of the MAX phases and MX binaries.  In the case of 

Ti2AlC, deficiency in Al resulted in a decrease in c-LP, while the a-LP remains constant [83].  

This was explained by loss of Ti-Al bonding between layers, resulting in shrinkage of the c-

LP.  The a-LP was determined to be highly dependent on the Tin+1Cn block structure, and 

remained constant [83].  Furthermore, exploration of structural relaxation in TiC1-x showed 

that vacancies in the TiC rock salt structure resulted in a decrease in a-LP [84].  Therefore, in 

order for the MAX phase structure to contract in the a-direction, carbon vacancies, Cv, must 

be introduced during neutron irradiation.  This is not unexpected, as VC is well understood 

to have low Ef, ~2-3 eV, in both Ti3SiC2 and Ti3AlC2 [79-82].  Additionally, at ~4 eV, the 

migration energy, Em, of Vc is relatively high for diffusion along the M3C2 blocks [82].  This 

higher barrier for migration, in conjunction with the lower formation energy, would result in 
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Vc that are less likely to migrate within the M3C2 block.  In contrast, the lower Em of Ci 

within the A-layer, ~0.5-1 eV, indicates the ease in which C defects migrate within the layer 

[79-82].   

Middleburgh et al., through DFT calculations, proposed that C and Ti interstitials would 

dominate in Ti3SiC2, while MA_AM antisites would dominate in Ti3AlC2 and Ti2AlC [82].  

Interestingly, most DFT calculations reported that the most likely point defects would be 

located within the A-layers, residing in a hexagonal bi-pyramidal configuration in-plane 

between 3 A atoms, and between 2 M atoms (Site B in Figure 4.9).  This, however, would 

lead to an increase in the bond lengths between neighboring A atoms, resulting in, if any 

distortion, an increase in the a-LP.  As the XRD results presented reveal a decrease in a-LP 

with an increase in c-LP, it is clear that some other defect configuration was stabilized after 

neutron irradiation in these materials.   

I propose that a more complex defect structure, which transforms the unirradiated lattice 

(Figure 4.11a), is needed to explain the results deduced from XRD refinements. 

4.3.1. Low Temperature Irradiation (� 350 °C)  

First, consider C Frenkel pairs, where C vacancies formed in the TiC block would lead to a 

decreased a-LP for the overall structure. As the C interstitials preferentially fill the in-plane 

hexagonal interstitial sites (Site B in Figure 4.9), subsequent A or M interstitials might then 

be more favorably located in the octahedral site between 3 A atoms and 3 Ti atoms, above 

or below the plane of A atoms (Site D in Figure 4.9).  This would result in a bilayer 

positioning of the A or M atom within the M-A layer, resulting in a distortion of the M-A 

bonding along the c-axis.  The combination of VC in the Ti3C2 block with increased atomic 

spacing in the c-direction could produce the LP distortions observed in the XRD results 

(Figure 4.8).   
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The separation of interstitials and vacancies must also be considered.  As discussed above he 

Em of A and X interstitials, have been shown to be very low when migrating along the A-

layers, on the order of 0.5-1 eV [82].  The M interstitials, on the other hand, have a higher Ef 

and Em [79, 81].  Additionally, diffusion across the Mn+1X block has been shown to be very 

difficult, with very large energy barriers and can be ruled out. It would then follow that A or 

X Frenkel pairs that form, and are separated by the Mn+1X blocks, are much less likely to 

recombine.  It is not unexpected that such interstitials can form after neutron irradiation, 

thus the proposed defect structure becomes plausible.  At low irradiation temperatures, 

where defect mobility is limited, interstitials that become separated from their respective 

vacancies by the impenetrable Mn+1Xn blocks could likely form a complex structure, resulting 

in c-LP expansion (Figure 4.11b).  

 

 

Figure 4.11 (૚૙૚ഥ૙) view of M3AX2 structure a) pristine, b) after irradiation at low temperatures (350 °C), 
and c) after irradiation at higher (700 °C) temperatures. Region I shows coherent interstitial loops; 
region II shows M atom antisite layers. Combinations of the two types of defects in a single layer are 
also possible. The unit cell is shown by the dotted line in a. 
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4.3.2. High Temperature Irradiation (� 500 °C)  

At higher irradiation temperatures, defect mobility is increased, leading to increased 

agglomeration and/or annihilation of point defects.  As point defects cluster together, the 

defect platelets could eventually collapse into dislocation loops.  Larger defect structures, 

which become coherent with the lattice, would lead to less distortion of the unit cell overall. 

As seen herein, the XRD refinement results show that the lattice parameters of the MAX 

phases tend to return to their pristine values after high temperature irradiations.  A possible 

structure that could accommodate for the observed lattice parameters is proposed in Figure 

4.11c. 

As the point defects discussed above being to interact and cluster together, being restricted 

to the basal plane, specifically within the free volume in and around the A-layer, could result 

in limited possibilities for defect arrangements.  Interstitial atoms, likely A or M in nature, 

might agglomerate into a platelet between the A and M layers, with the atoms sitting more 

favorably in the Ioct positions (Region I in Figure 4.11c).  Alternatively, substitutional antisite 

defects, likely M atoms on the A-sublattice positions, could also form into a platelet in the 

A-layer (Region II in Figure 4.11c).  At higher irradiation temperatures, where the defect 

mobility is increased, if localized regions of defect clusters coherently form dislocation loops 

of this nature, the result would be an overall relaxation of the crystal lattices, with dislocation 

or antisite loops throughout.  The XRD results suggest that this configuration is plausible, 

based on the relaxation of unit cell parameters at higher temperatures Figure 4.8.  

Furthermore, evidence of dislocation loops that fit these descriptions is provided and 

discussed further in Chapter 5.  
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4.4. Conclusions 

 

The first ever reported neutron irradiation of bulk MAX phases shows that Ti3SiC2, Ti3AlC2, 

Ti2AlC and Ti2AlN remain crystalline after neutron irradiation up to 0.1 dpa at 350 °C and 

710 °C and also at 0.4 dpa at 350 °C.  Rietveld analysis of post-irradiation XRD patterns of 

Ti2AlC and Ti3AlC2 reveal a drastic difference in irradiation tolerance between the two 

compounds.  Roughly 50 wt.% of the Ti3AlC2 sample was converted to TiC with a 1.7% 

increase in c-LP and a 0.6% decrease in a-LP after irradiation to 0.1 dpa at 350 °C(Table 

4.1).  This dissociation was not mitigated by irradiation at 0.1 dpa at 710 °C, though the 

lattice parameters showed less distortion, being close to pristine.  This same trend in lattice 

parameters is seen in Ti2AlC, however, no dissociation into TiC was observed in this case.  

Ti2AlN was seen to dissociate into 13(1) wt.% TiN and 36(3) wt.% Ti4AlN3, resulting in 

significant lattice strains after irradiation at T4. 

Ti3SiC2 also showed lattice distortion, but to a lesser extent than Ti3AlC2 or Ti2AlC, with 

only ~1% increase in c-LP and 0.6% decrease in a-LP after 0.1 dpa at 350 °C.  The Ti-Si 

bonding has been shown to be stronger than Ti-Al bonding in the MAX phases, which 

could explain the lesser distortion of the lattice [85].  There also appears to be no differences 

in the lattice response as a function of grain size.  Irradiation at higher doses, up to 0.4 dpa at 

350 °C, revealed even greater distortions of Ti3SiC2-FG and Ti2AlC LPs, and significantly 

higher microstrains were measured in the latter, at 1.14%.   

In an effort to explain the distorted lattice structures at low irradiation temperatures, i.e. 350 

°C, recent DFT calculations were incorporated into a model structure (Figure 4.11).  Carbon 

interstitials, preferentially forming in the A-sublattice could force subsequent point defects 

into a position between the A and TiII layers (Site B in Figure 4.9), resulting in an expansion 
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along the c-direction.  The resultant C vacancies in each Tin+1Cn block would then result in a 

decrease in a-LP, as predicted by theoretical studies.  This defect-defect interaction, 

previously unaccounted for in DFT modelling of the MAX phases, would be plausible 

during neutron irradiation.   

As XRD has shown a global effect on crystal structure and phase composition induced by 

irradiation, it is necessary to understand how the irradiation defects interact on the 

nanoscale.  The following chapter discusses the formation and nature of the irradiation 

induced defects utilizing transmission electron microscopy.  As Ti3SiC2 and Ti2AlC showed a 

greater resistance to decomposition, these phases remain potential candidates for nuclear 

applications.  TEM investigations are focused on these two compositions. 
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5. Irradiation Induced Defects 

 

The interaction of irradiation induced defects leads to many structural and behavioral 

changes in materials.  XRD analysis provided a bulk statistical analysis of structural 

parameters in the MAX phases.  Irradiation with neutrons resulted in lattice distortions and 

phase instability in some phases.  These structural changes were thus presumed to have been 

caused by irradiation induced defects.  TEM, which is able to resolve nanoscale defects, was 

used to investigate the irradiation induced defects in these materials.  With increasing dose 

and temperature, point defects are seen to agglomerate into larger defect structures.  The 

majority of this chapter explores the effect of irradiation on defect formation in Ti3SiC2 and 

Ti2AlC, as investigated by transmission electron microscopy.  Results are then compared 

with previous heavy ion studies. 

 

5.1. Transmission Electron Microscopy, TEM 

 

Based on results from XRD discussed in Chapter 4, it was found that Ti3SiC2 and Ti2AlC 

samples remained phase pure after irradiation at MITR, while Ti3AlC2 and Ti2AlN showed 

signs of dissociation.  Therefore, the remaining efforts to characterize the irradiation defects 

were focused on Ti3SiC2 and Ti2AlC.  Samples of FG-Ti3SiC2 and Ti2AlC were made using 

FIB techniques to mill electron transparent lamella for TEM analysis.  From analysis of the 

XRD results, there was found to be little difference in irradiation response on lattice 

distortions between FG-Ti3SiC2 and CG-Ti3SiC2.  Thus, investigations were concentrated on 

FG-Ti3SiC2, simply to allow for observation of more grains per sample in the TEM.   
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5.2. TEM Results: MITR Samples 

 

TEM micrographs of unirradiated FG-Ti3SiC2 (Figure 5.1a and b) and Ti2AlC (Figure 5.1c 

and d) lamella reveal the types of defects present before irradiation.  The majority of grains 

appear clear of damage, lacking significant dislocation density.  Occasionally, as seen in 

Figure 5.1, some grains contain perfect basal dislocations throughout, as well as growth 

dislocation arrays and stacking faults, SFs.  SFs in the MAX phases occur only as growth 

defects, when missing A-layers leave close-packed MX stacking [86].  In Ti2AlC, dislocations 

can be seen emanating from a grain boundary (Figure 5.1c and d).  The samples are fully 

crystalline and contain some impurity phases, such as TiC or Al2O3 particles.  

This section is divided further detailing the type of defect structures observed in the post-

irradiated samples. 
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Figure 5.1 Representative TEM micrographs of unirradiated FG-Ti3SiC2 and Ti2AlC. 
a) FG-Ti3SiC2, brightfield, using a 2-beam condition near the ሾ૚૚૛ഥ૙ሿ	zone; b) FG-Ti3SiC2 from another 
region on zone showing dislocation arrays commonly observed in pristine samples; c) Ti2AlC taken on 
zone down the ሾ૚૚૛ഥ૙ሿ axis, and, d) Ti2AlC tilted off zone to a 2 beam condition revealing dislocation 
arrays and SFs. Dislocations appear to be straight lines when viewed on zone in (c), but in fact are 
curved within the basal planes, and some appear to emanate from a grain boundary, as seen when tilted 
in (d). 

 

5.2.1. Black Spots and/or Defect Clusters 

Samples of FG-Ti3SiC2 irradiated to 0.1 dpa, M-D1, at 350(40) °C, T2, revealed limited signs 

of irradiation induced defects, and remained fully crystalline with no amorphization as 

observed in the SAEDs (shown as insets in Figure 5.2a and b).  If any defect clusters formed 
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within the Ti3SiC2 areas, they were beyond the resolution of the TEM.  Stacking faults and 

basal dislocations (Figure 5.2a), closely resembling preexisting defects observed in the 

unirradiated samples (Figure 5.1a), were observed in a grain tilted near the ሾ112ത0ሿ zone axis.   

 

 

Figure 5.2 Representative brightfield TEM micrographs of FG-Ti3SiC2 after T2 irradiations. 
a) FG-Ti3SiC2 irradiated to M-D1-T2 reveals no signs of irradiation induced defects the MAX phase 
matrix. Defect clusters are observed within the stacking faults throughout the grain (top inset); b) in 
another region at the same irradiation condition as (a) shows dislocation arrays commonly observed in 
pristine samples; c) irradiated to M-D2-T2 reveals kink boundaries (red arrows) in grains near the ሾ૚૚૛ഥ૙ሿ orientation, with inset SAEDs of each grain indicated by white arrows; d) at high resolution of a 
region near (c) showing disorder in the layered structure and defect clusters and/or black spots. 
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Within the stacking faults, small defect clusters can be observed (Figure 5.2a, top inset).  

Arrays of basal dislocations are observed, which are most likely preexisting as well (Figure 

5.2b).  

Samples of FG-Ti3SiC2 remain crystalline after irradiation to 0.4 dpa, M-D2, at T2 as seen by 

the SAED patterns (insets in Figure 5.2c and d).  HRTEM of the sample near a kink 

boundary reveals the presence of black spots and defect clusters (Figure 5.2d).  The defect 

clusters are observed throughout the grains.  With the sample viewed edge-on, i.e. down the ሾ112ത0ሿ zone axis, no missing spots are observed in the SAED pattern (inset in Figure 5.2d) 

indicating no loss of long range ordering of the structure. 

Examples of larger dislocations, similar to those seen in the unirradiated samples (Figure 

5.1c and d) are also observed in the Ti2AlC samples irradiated at M-D1-T2 (Figure 5.3a) and 

M-D2-T2 (Figure 5.3c).  HRTEM micrographs of Ti2AlC irradiated to M-D1-T2 reveal 

distorted basal planes and irradiation induced black spots (Figure 5.3b).  The size and 

apparent density of these black spots increase in the M-D2-T2 samples (Figure 5.3d).  
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Figure 5.3 Representative brightfield TEM micrographs of Ti2AlC after T2 irradiations.  
a) Ti2AlC irradiated to M-D1-T2 reveals dislocations threading through the grain as seen in pristine 
MAX phases; b) high resolution micrograph of another grain seen edge on reveals disorder of the basal 
planes and the presence of defect clusters and/or black spots, c) M-D2-T2 sample taken in 2 beam 
condition near the [0001] zone axis showing overlapping basal plane dislocation networks; d) Higher 
magnification of same region as (c) tilted further removing contrast from dislocation arrays, and 
revealing only black spots and defect clusters. 

 

5.2.2. Dislocation Loops 

TEM micrographs of FG-Ti3SiC2 samples irradiated to M-D1 at T4, 710(50) °C, reveal the 

presence of dislocation loops (Figure 5.4).  Extensive tilting experiments revealed that their 

Burgers vector is b = 1/2 [0001], i.e. perpendicular to the observed (0001) basal habit 

planes.  In some cases, the loops can be seen to accumulate along stacking faults (Figure 
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5.4a).  The dislocation loops observed in FG-Ti3SiC2 were found to be 9(3) nm long with a 

defect density of 3 × 1021 loops/m3. The loops appear in the bulk of the grains with black 

and white lobe contrast (Figure 5.4b).   

 

 

Figure 5.4 Representative brightfield TEM micrographs of FG-Ti3SiC2 irradiated to M-D1-T4 
a) showing dislocation loops imaged near the ሾ૚૚૛ഥ૙ሿ zone axis, i.e. parallel to the basal plane. A 
denuded zone, DZ, of ~200 nm width is observed at the grain boundaries. b) a region nearby (a) 
showing an even distribution of loops with black/white lobe contrast due to strain induced in the 
surrounding lattice with an average loop diameter of 9(3) nm and a loop density of 3.4 × 1021 loops/m3. 
c) at high resolution of a single loop in (a), with d) a Fourier filtered image (dotted square) showing the 
interstitial character of the loop. 
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HRTEM of an individual loop shows significant strain contrast all around the affected 

region (Figure 5.4c), and a Fourier filtered image of the region shows the addition of atomic 

layers (Figure 5.4d).  A ~ 300 nm loop-denuded zone in grains where defects are imaged was 

also observed (Figure 5.4a).  

Brightfield and darkfield TEM micrographs of a region in the Ti2AlC sample irradiated to 

M-D1-T4 also showed evidence of dislocation loops (Figure 5.5a and b).  Taken near the ሾ112ത0ሿ zone, the loops appear with bright white contrast in the darkfield, DF, image (Figure 

5.5b).  Imaged near the ሾ3ത301ሿ zone axis, the loops appear as open ellipses (Figure 5.5c). 

Viewed edge on, near the ሾ112ത0ሿ zone axis, the basal plane loops appear as parallel lines 

lying in the basal planes, with a high density throughout the grain (Figure 5.5d).  The average 

length of these loops was 10(5) nm.  In this case there does not seem to be any preferred 

accumulation near stacking faults.  At 1 × 1023 loops/m3, the loop density is 1.5 orders of 

magnitude greater than that observed in FG-Ti3SiC2 exposed to the same conditions. 
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Figure 5.5 Representative TEM micrographs of Ti2AlC irradiated to M-D1-T4.  
a) brightfield and, b) darkfield condition using g =૚૚ഥ૙૜ near the ሾ૚૚૛ഥ૙ሿ zone showing dislocation 
loops within the basal planes. The red circles in the inset SAED patterns denote location of objective 
aperture used for darkfield imaging. The dislocation loops appear as strong white contrast in (b). c) 
near the ሾ૜ഥ૜૙૚ሿ zone axis, showing the dislocation loops as open ellipses. d) near the ሾ૚૚૛ഥ૙ሿ zone axis 
showing edge on loops with an average diameter of 10(5) nm and a defect density of 1.1 × 1023 loops/m3. 
The lines of bold dark contrast in (d) are SFs (black arrows). 

 

5.2.3. Stacking Faults, SF 

When imaged down the ሾ112ത0ሿ zone axis, one area of the FG- Ti3SiC2:M-D1-T4 sample 

showed significantly damaged regions near stacking faults (Figure 5.6a).  Loops were found 

to cluster in, and around, these SFs as opposed to the relatively clear areas in the 

50 nm 

c 
a 

d) 

50 nm 

c) 

100 nm 100 nm 

(0001)

g =11ത03 

SF



 99
 

surrounding MAX phase matrix (Figure 5.6a).  This same region, tilted to excite g = 112ത0 

which rendered the basal plane defects in FG-Ti3SiC2 invisible, is seen to have a high density 

of loops and spots within the wider stacking faults, (see regions A, B and C in Figure 5.6b).  

Stacking faults in Ti2AlC irradiated to the same condition are more numerous and appear to 

span the entire grains (Figure 5.6c).  HRTEM within the stacking faults reveals cubic TiC 

layers within the band (Figure 5.6d).  EDS line scans across the stacking fault A in Fig. 8a 

confirm the absence of Si within the fault (Figure 5.6e).  Analysis of the stacking faults 

imaged edge on, in both FG-Ti3SiC2 and Ti2AlC samples reveals a broader distribution of 

widths in the former, with most SF in Ti2AlC being < 7 nm wide (Figure 5.6f).  Several SF in 

FG-Ti3SiC2 were > 15 nm wide, all of which show a high concentration of defects within 

them (Figure 5.6a). 
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Figure 5.6 TEM microraphs detailing stacking faults in FG-Ti3SiC2 and Ti2AlC  
a) Brightfield TEM micrograph taken on the ሾ૚૚૛ഥ૙ሿ	zone shows extensive damage around and within 
stacking faults in FG-Ti3SiC2:M-D1-T4. b) In a 2 beam condition with g = ૚૚ഥ૙૙, the basal loops in FG-
Ti3SiC2 reach the b • g = 0 criterion for weak diffraction contrast, and are thus invisible. c) Ti2AlC:M-
D1-T4 imaged in a similar 2 beam condition showing extensive stacking fault number. d) HRTEM 
micrograph of a wider SF in (b) reveals de-twinned TiC layers within the band. e) A composition profile 
across the SFs (dotted line in (b)) confirms the absence of Si. f) Distribution of SFs widths in FG-
Ti3SiC2 and Ti2AlC after M-D1-T4 irradiation.  The wider, de-twinned stacking faults are seen to have 
black spots and defect clusters within the TiC phase platelet. 
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5.2.4. Grain Boundaries and Impurity Phases 

A grain boundary in the FG-Ti3SiC2:M-D1-T4 sample appears to have grown along the a-

direction – into a neighboring grain (Figure 5.7a). Such stepped and jagged grain boundaries 

were not observed in the as-received samples.  

 

 

Figure 5.7 a) Brightfield TEM micrograph of a grain boundary found in FG-Ti3SiC2:M-D1-T4. The 
jagged features imply irradiation induced growth has occurred along the a-direction. b) Representative 
TEM micrograph of preexisting TiC particle found in the FG-Ti3SiC2:M-D1-T2 sample showing 
extensive microstructural damage compared to the relatively clean surrounding Ti3SiC2 matrix. 
Representative TEM micrograph of Al2O3 impurity particles observed in Ti2AlC samples irradiated to, 
c) M-D1-T2 and, d) M-D2-T2. Density of irradiation induced defects is larger in (d) than in (c) and in 
both cases, significantly higher than the defects in the surroundingTi2AlC. 
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TEM micrographs of the TiC impurity particles in FG-Ti3SiC2 samples exposed to M-D1-T2 

show a high density of defect clusters (Figure 5.7b).  The surrounding FG-Ti3SiC2 grains, on 

the other hand, are relatively clear of defects.  Impurity Al2O3 particles in the Ti2AlC sample 

were also highly damaged after irradiation at M-D1-T2 (Figure 5.7c) and M-D2-T2 (Figure 

5.7d), with larger defect clusters in the latter condition. 

 

5.3. TEM Results: ATR Samples 

 

In order to explore higher dose conditions, samples of Ti3SiC2 and Ti3AlC2 were irradiated at 

the Idaho National Laboratory’s Advanced Test Reactor.  Due to delays in sample access 

and radiological assistance beyond our control, the majority of ATR samples remain 

uncharacterized.  Preliminary access to the high dose samples is presented below.  Samples 

of Ti3SiC2 irradiated at the INL ATR reactor reached does of 1 dpa, A-D4,  and 9 dpa, A-

D5,  at 500 °C, T3. 

5.3.1. Dislocation loops and Denuded Zones 

TEM micrographs of Ti3SiC2 irradiated at A-D4-T3 reveal dislocation loops, within the 0001 

habit plane (Figure 5.8a and b).  The loops had an average length of 21(6) nm and a density 

of. 5 × 1020 loops/m3.  The loops were larger than those observed after M-D1-T4, but were 

of the same type, confirmed to have a Burgers vector b = 1/2 [0001].   

Irradiation to the highest dose, 9dpa, resulted in the largest observed loops, with an average 

length of 30(8) nm and a lower density of. 2 × 1020 loops/m3 (Figure 5.8c and d).  Again, the 

loops were confirmed to have the same Burgers vector as the loops observed in all of the 
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lower dose samples.  This further illustrates that all defects induced by irradiation are strictly 

limited to the free volumes within the basal planes.  

 

Figure 5.8 Brightfield TEM micrographs of Ti3SiC2 irradiated at ATR at T3 
a)Ti3SiC2:A-D4-T3 showing dislocation loops imaged on the ሾ૚૚૛ഥ૙ሿ zone axis, i.e. parallel to the basal 
plane, with an average loop diameter of 21(6) nm and a loop density of 5 × 1020 loops/m3. b) High 
resolution image of a single loop in (a), showing strain contrast due to interstitial character of the loop. 
c) Ti3SiC2:A-D5-T3 showing dislocation loops imaged near the ሾ૚૚૛ഥ૙ሿ zone axis, with an average loop 
diameter of 30(8) nm and a loop density of 2 × 1020 loops/m3. A large denuded zone of ~0.9 Ƭm is 
observed near the grain boundary off to the upper left. d) High resolution image of several loops in (c). 

 

What is more remarkable is the presence of a defect denuded zone almost 1 Ƭm wide (Figure 

5.8c and Figure 5.9a).  Such a wide denuded region is quite rare, especially such a moderate 
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irradiation temperature of 500 °C.  In comparison, SiC irradiated to ~2dpa at 1380 °C 

resulted in at most a DZ of 57 nm, drastically smaller than observed herein for Ti3SiC2 [87].  

Even irradiation at very high temperatures in SiC is not inductive to forming large DZs.  

This result further proves the ease of which defects can diffuse along the basal planes.  Grain 

boundaries in the MAX phases are apparently strong defect sinks.  This bodes well for MAX 

phases in general, as increased grain boundary defect sink strength will lead to improved 

irradiation tolerance at higher irradiation temperatures.  To this effect, nanocrystalline 

materials are investigated for nuclear applications.  The results herein indicate that ultra-fine 

grained samples of Ti3SiC2, with grain sizes on the order of 1 Ƭm might prove to have 

superior radiation tolerance at temperatures as low as 500 °C.   

5.3.2. Grain Boundary Voids 

Unique to the highest dose irradiations, at 9 dpa, voids were observed at the grain 

boundaries of Ti3SiC2:A-D5-T3 (Figure 5.9b).  In light of observing large denuded zones, it 

is apparent that point defects are easily absorbed to the GBs from a far distance away.  

Agglomeration of vacancies would result in the formation of voids.  From this evidence, it is 

clear that vacancies have diffused towards the GB and resulted in forming small spherical 

voids, on average 7(2) nm in diameter.   
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Figure 5.9 TEM micrographs of Ti3SiC2:A-D5-T3 
a) Darkfield micrograph showing wide denuded zones, DZ (orange arrows), of 860(90) nm in width. b) 
Brightfield micrograph showing spherical voids which formed at the grain boundaries after irradiation, 
with an average diameter of 7(2) nm. 

 

5.4. Comparison with Ion Irradiation Studies 

 

The differences between charged particles and neutrons for irradiation are well known, each 

varying in energy range, penetration depth, volume of interaction, and length of irradiation 

exposure [17].  The correlation between irradiation temperature and damage rate is also well 

known, allowing for comparison of various particles used for irradiation at a fixed dose, 

assuming a recombination dominant regime [88].  In this case, the solution for the 

correlation which assumes that the ratio of defects lost to sinks, Rs= Nsv/Nsi, is invariant is 

more accepted for comparing defect structures, given by: 

 ଶܶ െ ଵܶ ൌ ሺ ݇ ଵܶଶܧ௠௩ ൅ ௙௩ሻlnሺ߶ଶ߶ଵሻ1ܧ2 െ ሺ ݇ ଵܶܧ௠௩ ൅ ሺ߶ଶ߶ଵሻ (5.1)	௙௩ሻlnܧ2
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where ܧ௙௩, ௠௩ܧ , ߶, ܶ, ܽ݊݀	݇ are the energy of formation of a vacancy, energy of migration of 

a vacancy, damage rate in dpa/s, irradiation temperature in K, and Boltzmann’s constant, 

respectively.  Based on the irradiation dose rate herein, the damage rate for irradiation at 

MITR is assumed to be 4.7 x 10-9 dpa/s.  As Ti3AlC2 dissociated into TiC by way of Al 

migration out of the layered structure, the correlation was calculated based on Al vacancies 

with Ef = 4 eV and Em = 0.61 eV, based on density functional theory calculations[82].  

According to the dose rates reported in [22], the damage rate for 1 MeV Xe irradiation of 

Ti3AlC2 was roughly 2.5 x 10-3 dpa/s, in good agreement with typical heavy ion irradiation 

studies [17].  The irradiation temperatures of the study herein were 350 °C and 710 °C.  

Based on this alone, to expect similar defect structures at 0.1 dpa, heavy ion irradiation 

studies would need to be conducted at ~ 420 °C and ~ 840 °C, respectively.  This required 

increase in irradiation temperature could explain the lack of irradiation defects and phase 

decomposition shown in ref [22], which was conducted at room temperature.  Such high 

temperature ion irradiation studies were lacking in the literature.  High temperature ion 

irradiation should more thoroughly be explored to better correlate defect results with 

neutron irradiation. 

 

5.5. Benefits of the A-layer in MAX Phase Structure 

 

As discussed in Chapter 4, DFT calculations have shown that the A-layer in MAX phases 

offers the most preferential sites for point defects with low formation energies, allowing for 

accommodation of point defects and dislocation loops.  In concurrence with theoretical 

studies [79-81], the irradiation tolerance of FG-Ti3SiC2 appears to be unequivocally greater 

than that of its binary counterpart TiC.  TiC impurity particles (Figure 5.7b) and de-twinned 
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TiC platelets within SFs (Figure 5.6a) are seen to form dislocation loops and defect clusters, 

a response similar to a recent proton irradiation study [89].  The same is true of Ti2AlC in 

comparison with impurity Al2O3 particles (Figure 5.7c and d).  The presence of the A-layer, 

and the low energy of formation of defects within the layer, clearly provides a defect sink at 

the nanoscale level.  SFs in FG-Ti3SiC2 appear to promote dislocation loop formation, as 

loops are seen to accumulate nearby (Figure 5.4a and Figure 5.6a).  At this point, it is fairly 

well established that when the A-group element from the MAX phases diffuses out of the 

basal planes, the resulting highly twinned TiC blocks can de-twin, aligning the (111) TiC 

planes with the (0001) basal planes of the MAX structure [90, 91].  The loss of the A-

element also results in a ~ 15% volume shrinkage [90, 91].  Irradiation of presumably 

preexisting SFs resulted in varied defect microstructures (Figure 5.6).  Above a certain width, 

the SFs are comprised of de-twinned TiC, which accumulates a high density of black spots 

and small loops after irradiation (Figure 5.6b).  Not surprisingly, the morphology of these 

spots are similar to the ones seen in the TiC impurity particles (Figure 5.7b).  While it is 

unclear at this time whether the increase in stacking fault widths was induced by irradiation, 

the density of stacking faults observed appear to be quite high, notably in Ti2AlC:M-D1-T4 

(Figure 5.6).  Future studies at higher irradiation doses would reveal if these SF are indeed 

irradiation induced, as one would expect to see an even further increase in stacking fault 

density.  

 

5.6. Conclusions 

 

Analysis of defects formed after neutron irradiation of bulk MAX phases show that FG-

Ti3SiC2 and Ti2AlC remain crystalline under neutron irradiations up to 0.4 dpa at 350(40) °C.  
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Neutron irradiation resulted in the formation of black spots and defect clusters in Ti2AlC 

after irradiation at 0.1 dpa at 350(40) °C and in both Ti2AlC and FG-Ti3SiC2 after 0.4 dpa at 

350(40) °C.  The size and density of spots increased with irradiation dose.  Dislocation loops 

were observed in FG-Ti3SiC2 and Ti2AlC after irradiation at 0.1 dpa at 710(50) °C.  At 1 × 

1023 loops/m3, the loop density in Ti2AlC is 1.5 orders of magnitude greater than that 

observed in FG-Ti3SiC2, at 3 × 1021 loops/m3.  Through extensive tilting experiments, the 

dislocation loops were found to have a Burgers vector b = 1/2 [0001ሿ, and lie in basal 

planes, with diameters of 9(3) nm and 10(5) nm, for FG-Ti3SiC2 and Ti2AlC, respectively.  

As predicted by first principles, all dislocation loops observed have been restricted to within 

the basal planes.  These results also concur with the proposed high temperature defect 

structure shown in Chapter 4. 

Impurity particles, such as TiC and Al2O3, were found to be significantly more damaged than 

the surrounding MAX phase matrices, indirectly confirming an important conclusion of this 

work, which is the presence of the A-layers act as potent sinks to neutron radiation damage.  

In FG-Ti3SiC2, wide stacking faults, composed of de-twinned TiC layers, showed extensive 

defect and dislocation loop formation.  It is unclear at this time if the increased stacking fault 

width and density are induced by neutron irradiation.  As the MAX phase lattice is 

anisotropic, evidence of irradiation grain growth is unsurprising.  A few grains were seen to 

have grown along the a-direction, with the boundaries impinging into neighboring grains. 

Based on the results presented throughout, the microstrain increases described in Chapter 4 

could be caused by several reasons.  They include irradiation induced defects, increased 

lattice disorder, highly damaged impurity grains and possibly anisotropic grain growth. At 

higher irradiation temperatures, some of the point defects presumably anneal out or 

agglomerate into larger coherent structures, reducing lattice strain and distortion, and 

relieving microstrain within the material. 
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These results suggest that Ti3SiC2 remains a potential candidate for future nuclear 

applications, though more work is needed in fully understand the role of the A-layer in 

providing irradiation resistance.  Commercially available Ti2AlC has shown significant 

damage after irradiation to relatively low dose, both in defect morphology and 

microstructure.  More work is required to explore the role that antisite defects play in the 

irradiation tolerance for this material, and if it should be considered for nuclear applications.  

While the presence of the A-layer in the MAX phases clearly improves damage tolerance 

over binary MX compounds, the antisite criterion proposed by Wang et al. [80] alone does 

not sufficiently predict irradiation tolerance between members of the MAX phase family. 

The TEM results have provided insight on the types of irradiation induced defects that form 

within Ti3SiC2 and Ti2AlC and, by association, all MAX phases. Next, in Chapter 6, the 

effect of these defects on bulk material properties is investigated. 
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6. Effect of Irradiation on Properties 

 

As previously described, neutron irradiation leads to the formation of point defects and 

larger defect structures throughout the bulk of a material.  As material properties are closely 

linked with the microstructure of materials, it follows that irradiation would lead to a change 

in material behavior.  This chapter explores the effect of neutron irradiation on the physical 

and mechanical properties of Ti3SiC2, Ti3AlC2, Ti2AlC and Ti2AlN.  Properties reviewed here 

include microcracking, electrical resistivity, thermal conductivity, hardness, and Young’s 

modulus.  Neutron activation of samples is also discussed. 

 

6.1. Macroscopic Structure Post-irradiation 

 

In preparation of samples for FIB liftouts, SEM micrographs were taken showing the 

surface microstructures of samples irradiated at MITR.  The resultant microstructure 

revealed an increase in porosity and/or microcracking and pullouts, which could affect 

material properties.  The surface morphology is investigated below. 

6.1.1. Microcracking 

Unirradiated, pristine samples of FG-Ti3SiC2 and Ti2AlC shown in Figure 6.1a and e, 

respectively, were essentially fully dense. The dark spots seen in the micrographs are either 

pullouts and/or small pores. Post-irradiation SEM micrographs of roughly polished FG-

Ti3SiC2 and Ti2AlC revealed an increase of what appears to be porosity, but is more likely a 

combination of pullouts and microcracking in both samples, but more pervasively in the 
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Ti2AlC sample Figure 6.1.  In both materials, after irradiation to 0.1 dpa, M-D1, more pores 

are observed after irradiation at 350(40) °C, T2, (Figure 6.1b and f) compared to those 

irradiated at 710(50) °C, T4, (Figure 6.1c and g). The higher temperature T4 irradiation 

appears to somewhat mitigate the effects.  In the FG-Ti3SiC2 samples irradiated to 0.4 dpa, 

M-D2, at T2 (Figure 6.1d), the extent of microcracking is similar to that of M-D1-T2 (Figure 

6.1b).  In contradistinction, the Ti2AlC:M-D2-T2 sample exhibited extensive pullout 

between grains, with cracks surrounding most grains, highlighted by arrows in Figure 6.1h.  

Also of note, the friability of these samples was increased after irradiation, indicating that 

surface layer cracking was leading to sloughing off of material. 

TEM micrographs taken near the (0001) zone axis of Ti2AlC:M-D1-T2 samples reveal 

microcracks that extend across the entire lamella (Figure 6.2a). Intragranular cracking was 

often seen to extend beyond grain boundaries (e.g. region B in Figure 6.2b). Based on the 

zone axis of the micrograph taken of the lamella, for the most part, these cracks were parallel 

to the basal planes, and propagate throughout (Figure 6.2a). The cracks are seen to interact 

and overlap at the lamella edges (Figure 6.2 6a, region A). Occasional microcracking was 

observed in the FG-Ti3SiC2 samples, though not to the extent seen in Ti2AlC.  
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Figure 6.1 SEM micrographs of FG-Ti3SiC2 a) pristine, and irradiated to, b) M-D1-T2, c) M-D1-T4, and 
d) M-D2-T2, and Ti2AlC e) pristine, and irradiated to f) M-D1-T2, g) M-D1-T4, and h) M-D2-T2. 
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Figure 6.2 a) Composite TEM micrographs of the Ti2AlC lift-out irradiated to M-D1-T2. 
Networks of long microcracks (red trace) are seen to traverse the entire liftout. Cracks are seen to 
overlap and interact near the edge of the lamella (region A). b) Enlarged region of a) where several 
cracks (white arrows) are seen to extend beyond a grain boundary (region B).  
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6.2. Room Temperature Electrical Resistivity of Irradiated MAX Phases 

 

The electrical resistivity, ߩ, is a measure of the ease of electron conduction through a 

material, also described as the inverse of conductivity, ߪ.  Introduction of point defects and 

substitutional atoms lead to an increase in resistivity by increasingly scattering electrons as 

they conduct through the material. Total  , and inversely ߩ , is described by : 

 
ߩ1 ൌ ߪ ൌ ௘ߤ݁݊ ൅ ௛ (6.1)ߤ݁݌

where e is charge of an electron, n and p are the number density of electrons and holes, 

respectively, and ߤ௘ and ߤ௛ are the mobility of electrons and holes, respectively.   

The electron mobility, related to an applied electric field, E, is described by: 

௘ߤ  ൌ ܧௗߥ  (6.2)

where ߥௗ is the electron drift velocity.  Mobility is strongly dependent on temperatures and 

impurities.  As temperature increases, increasing atomic vibrations increase and impede 

electron transport, diminishing the drift velocity.  This leads to an increase in resistivity for 

conductors.  Similarly, defects in the crystal lattice, such as interstitial atoms and vacancies, 

can also impede electron conduction.  Therefore, the resistivity of a defective material can be 

explored as a function of defect density. 

As described in previous sections, irradiation of the MAX phases results in the generation of 

point defects and larger defect structures.  Resistivity is a material property that is directly 

impacted by the irradiation defects.  Results are presented in following sections as a function 

of irradiation temperature and dose. 
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6.2.1. Effect of Irradiation Temperature 

Room temperature, RT, ߩ of pristine and irradiated samples was measured to assess the the 

effect of residual defects that formed after irradiation.  The RT ߩ of the pristine MAX 

phases in this work compares well with those previously reported (Table 6.1) [92-96].  After 

M-D1-T2 irradiation, the RT ߩ values were 4-10 times greater than before irradiation (Table 

6.1).  The largest increase in RT ߩ was seen in the Ti3AlC2 samples, with 2.84(2) μƙ-m after 

irradiated as compared to 0.262(8) μƙ-m before (Figure 6.3).  At 2.2(1) μƙ-m, the CG-

Ti3SiC2 samples had a higher RT ߩ compared to FG-Ti3SiC2, at 1.1(1) μƙ-m, both of which 

increased from the pristine values of 0.21(1) and 0.21(1), respectively.  The RT ߩ of the 

Ti2AlN:M-D1-T2 samples increased from 0.37(1) μƙ-m as pristine to 1.46(1) μƙ-m 

irradiated.  At 0.75(1) μƙ-m, Ti2AlC yielded the lowest increase in RT ߩ compared to 0.31(4) 

μƙ-m as pristine.  In contradistinction to the low temperature irradiations, samples 

irradiated to M-D1-T4 experienced only a slight increase in ߩ, ranging from 0.23(1) for FG-

Ti3SiC2 to 0.44(1) for Ti2AlC (Table 6.1). 

 

Table 6.1 Room temperature resistivity of MAX Phases before and after MITR irradiations. 

Composition ࣋ (μƙ-m) 
Pristine Reference M-D1-T2 M-D1-T4 M-D2-T2

Ti2AlC 0.31(4) 
0.32 [93]
0.23 [95] 
0.39 [96] 

0.75(1) 0.44(1) 8.3(1) 

Ti3AlC2 0.262(8) 0.353 [93]
0.287 [95] 2.84(2) 0.39(1) 8(2) 

Ti2AlN 0.37(1) 0.25 [93]
0.343 [93] 1.46(1) 0.25(1) 3.34(1) 

FG-Ti3SiC2 0.21(1) 0.23 [92]
0.23 [94] 1.1(1) 0.23(1) 1.43(1) 

CG-Ti3SiC2 0.21(1) 0.23 [92]
0.23 [94] 2.2(1) 0.24(1) 2.82(1) 
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The collision of high energy neutrons with lattice atoms is known to create point defects, 

increase the dangling bond density, and result in an increase in resistivity [97].  Post-

irradiation RT ߩ values of samples irradiated at M-D1-T2 conditions were found to be 

almost an order of magnitude higher than seen for pristine samples, notably visualized in 

Figure 6.3, confirming that T2 neutron irradiation generated a significant amount of point 

defects.  After irradiation, Ti3AlC2 possessed the highest RT ߩ, presumably due to formation 

of a large density of point defects.  The RT ߩ of CG-Ti3SiC2 was twice that of FG-Ti3SiC2, 

which is attributed to the increase in grain boundary fraction present in the fine grained 

samples, likely resulting in fewer residual defects after irradiation, due to the increase in 

available defect sinks. 

 

 

Figure 6.3 RT resistivity as a function of irradiation temperature for M-D1 samples. 
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With increasing temperatures, if the defect mobility is high enough, they can start to 

agglomerate and/or annihilate.  As observed in Chapter 5, defect clusters are also seen to 

interact and coalesce into fewer but larger defect structures, notably dislocation loops, with 

increasing temperatures [17].  Annihilation of the point defects reduces the dangling bond 

density, resulting in a decrease in resistivity.  This was confirmed herein for all M-D1-T4 

samples; all showed only a slight increase in RT ߩ (Table 6.1) compared to their RT ߩ values 

prior to irradiation.  M-D1-T4 irradiation resulted in the agglomeration of the small defect 

clusters into larger dislocation loop structures (See Chapter 5).  The low resistivity values of 

samples irradiated M-D1-T4 is strong evidence for the MAX phases’ dynamic recovery at 

temperatures as low at T4 (e.g. 710 °C).   

6.2.2. Effect of Irradiation Dose 

As shown above, RT ߩ increased with neutron irradiation. This trend continued after 

irradiation at the higher dose of 0.4 dpa, M-D2, at T2 Table 6.1.  At 8.3(1) and 8(2) μƙ-m, 

the Ti2AlC and Ti3AlC2 samples, respectively, showed the highest increases in RT ߩ after M-

D2-T2 irradiation. The Ti2AlN sample did not increase as much as its Ti2AlC counterpart, 

with a value of 3.34(1) μƙ-m.  Interestingly, RT ߩ of both FG-Ti3SiC2 and CG-Ti3SiC2 

appear to approach a saturation point after the M-D2-T2 irradiation Figure 6.4. At 1.43(1) 

μƙ-m, the RT ߩ for the FG-Ti3SiC2 was half that of its coarse-grained counterpart, at 

2.82(1) μƙ-m after M-D2-T2 irradiation.  This is an important result because it further 

suggests that the increased grain boundary area in the FG-Ti3SiC2 sample yields more 

available defect sinks compared to its CG-Ti3SiC2 counterpart, effectively removing more 

irradiation defects from the grains. 
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Figure 6.4 RT resistivity as a function of irradiation dose of M-T2 samples. 

 

As the defect density, particularly point defects, increases the resistivity increases because 

these defects are effective scatterers of conduction electrons [97].  This is particularly true of 

the binary early transition carbides [98, 99] and the MAX phases [25].  Point defect 

formation also increases as a function of irradiation dose.  Post-irradiation ߩ values of 

samples irradiated M-D2-T2 increased by several orders of magnitude compared to 

unirradiated samples, and were greater than those reported for the M-D1-T2 samples Figure 

6.4.  At ~ 8 μƙm, RT ߩ for both Ti2AlC and Ti3AlC2 increased to comparable values.  The 

latter values are 2 to 3 times those of Ti3SiC2.  This large increase in RT ߩ can also be 

partially ascribed to the extensive microcracking observed (Section 6.1).  
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6.3. Thermal Conductivity of the MAX Phases 

 

Thermal conductivity is one of the more important properties required for fuel cladding 

materials in nuclear reactors.  In order to remove generated heat from the fuel pellets, fuel 

cladding must show high thermal conductivity, and maintain it at elevated temperatures and 

irradiation doses.  SiC has shown a significant decrease in thermal conductivity with 

irradiation[97].  In this section, the thermal diffusivity of several non-irradiated MAX phases 

and solid solution MAX phases is presented.  Additionally, a relationship between electrical 

resistivity and thermal conductivity is applied for the irradiated MITR samples, as most of 

the MAX phases show a major contribution to thermal conductivity, by way of high electron 

conduction. 

6.3.1. Thermal Diffusivity Results 

The thermal diffusivity, ߙ, of pristine samples of FG-Ti3SiC2, CG-Ti3SiC2, Ti3AlC2, Ti2AlC, 

Cr2AlC, and solid solutions of (Nb0.5Zr0.5)2AlC, (Nb0.75Zr0.25)2AlC, and (Ti0.75Zr0.25)2AlC were 

measured by laser flash analysis.  The solid solutions were explored in order to begin analysis 

of Zr containing MAX phases for use in thermal reactor applications where low neutron 

cross section is desirable.  Pure Zr2AlC is not thermodynamically stable, thus solid solutions 

with Nb and Ti were prepared to explore the addition of Zr.  As presented earlier, thermal 

conductivity, ߢ௧௛, is described by: 

௧௛ߢ  ൌ ߙ ∗ ܿ௣ ∗ ݀ (6.3)

where, ݀ and ܿ௣ are density and specific heat, respectively.  Specific heat, ܿ௣, of each MAX 

phase was gathered from literature [100, 101].  It has also been shown that ܿ௣ of a given 

MAX phase is comparable to the associated MX binary, by a factor of n+1 [25].  Using this 
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relationship, the ܿ௣ for the (NbxZr1-x)2AlC and (TixZr1-x)2AlC compounds was estimated 

using 2 × ܿ௣ values for NbC and TiC, respectively [102].  The effect of thermal expansion 

on density was assumed negligible, in comparison with the other parameters.  By combining 

the results for ߙ	with literature values of ܿ௣ and density, ߢ௧௛ was calculated, and is shown as 

a function of temperature in Figure 6.5.  

The results compare well with previously reported thermal conductivity data (Table 6.3) [93, 

100, 101, 103]. While the ߢ௧௛ values for Ti2AlC and the solid solutions are lower than 

expected, it is known that the quality of the samples can negatively affect thermal 

conductivity.  The presence of impurity phases and vacancies impede phonon and electron 

conduction.  The Nb containing samples have a positive correlation with temperature, 

similar to previously reported Nb-containing MAX phases [25].  The remaining samples 

showed a decrease in ߢ௧௛ with increasing temperature.  Ti3AlC2 and Cr2AlC showed an 

increase in thermal conductivity at higher temperatures.   

 

Table 6.2 Thermal conductivity ࢎ࢚ࣄ of various MAX phases as measured by laser flash analysis. ࢎ࢚ࣄ (W/m-K) Experimental Literature 

Sample 300 K 1200 K 300K 1300K [Ref] 
FG-Ti3SiC2 38.2 35.9 37 33 [100] 
CG-Ti3SiC2 39.4 34.1 37 33 [100] 

Ti3AlC2 39.9 33.8 40 - [93] 
Ti2AlC 31.6 27.8 46 36 [103] 

(Nb0.5Zr0.5)2AlC 7.3 17.3 17a 24a [103] 
(Nb0.75Zr0.25)2AlC 10.3 17.0 17a 24a [103] 
(Ti0.75Zr0.25)2AlC 9.3 21.6 17a 24a [103] 

Cr2AlC 20.4 20.0 19 16b- [101] 
a- Comparison is made with TiNbAlC, a similar solid solution, as values for these solid 
solutions are previously unreported. 
b- Extrapolated 
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Notably, ߢ௧௛ does not decrease significantly for Ti3SiC2, Ti3AlC2, Ti2AlC or Cr2AlC over the 

wide range of temperatures studied.  These results bode well for MAX phases to be used as 

fuel cladding material, as ߢ௧௛ was maintained at high temperatures.  Irradiation defects will 

only decrease ߢ௧௛, thus possessing a high baseline at elevated temperatures is a promising 

result.  

 

 

Figure 6.5 Thermal conductivities of various MAX phases as a function of temperature. 
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6.3.2. Electrical Contributions to Thermal Conductivity  

The total thermal conductivity ߢ௧௛ is a combination of both electronic ߢ௘ and phononic ߢ௣ 

thermal conductivities, given by: 

௧௛ߢ  ൌ ௘ߢ ൅ ௣ (6.4)ߢ

For a metallic conductor, as heat and electrical transport both involve the free electrons in 

the metal, the Wiedmann-Franz law can be used to approximate ߢ௘ as a function of electrical 

resistivity, ρ, given by: 

௘ߢ  ൌ ߩ଴ܶܮ  (6.5)

where ܮ଴  is the Lorenz number, having a value of 2.45 × 10-8 W ƙ K-2.  For some MAX 

phases, notably Ti3SiC2, the overwhelming majority of  ߢ௧௛ is due to ߢ௘ contributions [25].  

This relationship was used to estimate RT ߢ௘of the irradiated materials using the measured 

electrical resistivity values from the 4-pt probe experiments. 

6.3.3. Thermal Conductivity Estimation of Irradiated Samples 

Using the above formulas,	ߢ௘ was estimated for Ti3SiC2, Ti3AlC2, Ti2AlC, and Ti2AlN after 

irradiation at MITR, and the results are compiled in Table 6.3.  The % contributions [25] of 	ߢ௘ for Ti3SiC2, Ti3AlC2, Ti2AlC, and Ti2AlN, at 97%, 52%, 43%, and 67%, respectively, 

were used to extrapolate the total 	ߢ௧௛ at 298K.   
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Table 6.3 Calculated thermal 	ࢋࣄ from RT 	ૉ using the Wiedmann-Franz law. 

Sample M-D1-T2 M-D1-T4 M-D2-T2 

 ࣋ 
(μƙ-m) 

 ࢋࣄ
(W/m-K) 

 ࢎ࢚ࣄ
(W/m-K)

࣋ 
(μƙ-m)

 ࢋࣄ
(W/m-K)

 ࢎ࢚ࣄ
(W/m-K)

࣋ 
(μƙ-m)

 ࢋࣄ
(W/m-K) 

 ࢎ࢚ࣄ
(W/m-K)

FG-Ti3SiC2 1.1(1) 6.8 7.0 0.23(1) 31.3 32.2 1.43(1) 5.1 5.3 

CG-Ti3SiC2 2.2(1) 3.3 3.4 0.24(1) 30.1 31.1 2.82(1) 2.6 2.7 

Ti3AlC2 2.84(2) 2.6 4.9 0.39(1) 18.7 36.0 8(2) 0.9 1.8 

Ti2AlC 0.75(1) 9.7 22.7 0.44(1) 16.7 38.6 8.3(1) 0.9 2.0 

Ti2AlN 1.46(1) 5.0 7.5 0.25(1) 29.7 44.3 3.34(1) 2.2 3.3 

 

From these results, it is clear that irradiation at temperatures as low at 710 °C (T4) results in 

good recovery of thermal conductivity for these MAX phases.  These results compare well 

with 	ߢ௧௛ values of the MAX phases measured at 300K by laser flash analysis earlier in this 

section. It follows that the possible saturation in electrical resistivity for the Ti3SiC2 with 

dose (Figure 6.4) bodes well for its use in any nuclear application where thermal transport is 

important. This is in sharp contrast to SiC, for e.g. wherein the thermal conductivity is 

sharply reduced with small irradiation doses [97]. 

 

6.4. Nanoindentation: Mechanical Properties of Ti3SiC2 and Ti2AlC 

 

The mechanical properties of materials can be widely affected by irradiation with energetic 

particles.  The formation of point defects and larger dislocation structures often leads to 

embrittlement and hardness increases.  Metals tend to lose ductility, and fail more 

unpredictably due to the increased dislocation density, and pinning effects from point 

defects.  While the bulk of the planned mechanical testing of the irradiated samples was not 

completed for this thesis, nanoindentation was performed to determine the effect of 
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irradiation on hardness and moduli of the FG-Ti3SiC2 and Ti2AlC samples irradiated at 

MITR. 

 

6.4.1. Berkovich Tip Nanoindentation 

Nanoindentation is a valuable tool used to explore the mechanical properties of a material by 

deforming small volumes of the material.  Indentations for this work were made using a 

Berkovich nanoindenter, which is a 3-sided pyramidal shape.  A schematic representation of 

a typical data set from Berkovich indentation is presented in Figure 6.6, where P designates 

the load, and h is the displacement relative to the initial surface [104, 105].  

 

 

Figure 6.6 Schematic illustration of indentation load-displacement data [104, 105]. 

 

Quantities necessary for calculating hardness and modulus data can be obtained from the P-

h curve, including: the maximum load, Pmax, the maximum displacement, hmax, the final 

depth, hf, and the elastic unloading stiffness, S, defined as the slope of the unloading curve 
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during initial stages of unloading [104, 105]. This type of indenter can be modeled by a 

conical indenter with a half-included angle, ƶ = 70.3°, that gives the same depth-to-area 

relationship.  As the indenter sinks in to the surface, assuming negligible pile-up of the 

material, elastic models show that the amount of sink-in, hs, is given by [104]: 

 ݄௦ ൌ ߳ ௠ܲ௔௫ܵ  (6.6)

where ߳ is a constant equal to 0.75 for Berkovich tips.  It follows then, that the depth of 

contact between the indenter and specimen, hc = hmax – hs, is: 

 ݄௖ ൌ ݄௠௔௫ െ ߳ ௠ܲ௔௫ܵ . (6.6)

The contact area, A, can then be described using an area function, F(d), that describes the 

projected area of the indenter at a distance d from its tip, given by: 

 A ൌ Fሺ݄௖ሻ (6.7)

This shape function was calibrated for the specific indenter used for experiments by 

indenting a quartz standard material. 

Having an understanding of the contact area for the indenter, the hardness can then be 

estimated by [104]: 

 H ൌ ௠ܲ௔௫ܣ  (6.8)

Measurement of the elastic modulus extends from the relationship with contact area and the 

unload stiffness, S, by: 
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 S ൌ β ߨ√2 (6.9) ܣ√௘௙௙ܧ

where Ƣ is a dimensionless parameter taken as unity, and Eeff is the effective elastic modulus 

defined by: 

 
௘௙௙ܧ1 ൌ 1 െ ܧଶߥ ൅ 1 െ ௜ܧ௜ଶߥ  (6.10)

which takes into account the Young’s modulus, E, and Poisson’s ratio, Ƶ, of the sample, and 

those of the indenter, Ei and Ƶi [104].   

6.4.2. Nanoindentation Results: MITR 

Samples of FG-Ti3SiC2 and Ti2AlC from the MITR experiments were investigated using 

nanoindentation at room temperature.  Samples were indented following a strain controlled 

method to specific depths of 500, 1000, 1500, and 2000 nm (Figure 6.7).  The results for 

hardness and modulus values are compiled in Table 6.2.   

Care must be taken with these results, as the surfaces of each sample were not ideally 

polished for proper nanoindentation experiments.  As a result, the standard error of the 

results is rather large in all cases.  The indenter often encountered porosity or cracks in the 

surface, which introduce unavoidable complications with the data. These results are 

presented to form general trends. 
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Figure 6.7 Typical load-displacement curves of indentations in FG-Ti3SiC2:M-D1-T4 to various depths. 

 

Table 6.4 Young’s modulus and hardness as determined from Berkovich nanoindentation*. 

Condition E (GPa) H (GPa) 

Ti3SiC2FG-Pristine 320 [25] 5 [25] 

Ti3SiC2FG:M-D1-T2 316(62) 11(4) 

Ti3SiC2FG:M-D1-T4 230(84) 7(4) 

Ti3SiC2FG:M-D2-T2 248(60) 13(6) 

 
Ti2AlC-Pristine 240 [25] 4 [25] 

Ti2AlC:M-D1-T2 149(80) 7(5) 

Ti2AlC:M-D1-T4 170(100) 5(4) 

Ti2AlC:M-D2-T2 115(76) 5(4) 
*Results are to be taken qualitatively, as sample surfaces were not well prepared for nanoindentation. 

 

After all irradiation conditions, hardness values were seen to increase for both FG-Ti3SiC2 

and Ti2AlC.  Irradiation at T2 (350 °C) resulted in a drastic increase in hardness in FG-
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Ti3SiC2, with values of 11(4) and 13(6) GPa after D1 and D2, respectively (Figure 6.8).  At 

7(4) GPa, the hardness of FG-Ti3SiC2:M-D1-T4 was closer to that of pristine samples, at 5 

GPa, showing a recovery at higher temperature irradiations.  The same trend was observed 

in Ti2AlC:M-D1-T4, with values closer to pristine after T4 irradiation (Table 6.4).  This 

hardness increase was expected after neutron irradiation, and is attributed to the increase in 

defect densities, which would lead to embrittlement and hardening of the materials.  The 

decrease in hardness at M-D1-T4 demonstrates that FG-Ti3SiC2 and Ti2AlC undergo defect 

recovery, alleviating some of the effects of point defects on the mechanical properties.  

Evidence for this was observed in Chapter 5, where TEM results confirmed that coherent 

dislocation loops formed from the agglomeration of point defects. 

 

 

Figure 6.8 Effect of irradiation temperature on nanoindentation hardness of FG-Ti3SiC2 and Ti2AlC. 
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With the exception of FG-Ti3SiC2:M-D1-T2 , the Young’s modulus was seen to decrease 

after irradiation.  At 316(62) GPa, the Ti3SiC2:M-D1-T2 modulus was close to pristine, ~320 

GPa.  The moduli of the remaining samples decreased without any apparent trends with 

respect to dose or temperature.  The modulus of a material is determined by the bond 

strengths.  It is assumed that the neutron irradiation defects do not alter significantly the 

bonding of the elements within the MAX phases, especially since the lattice parameters at 

higher temperature irradiation were seen to be near pristine.   

Another possible cause could be porosity.  The presence of porosity would lead to the 

decrease in modulus observed due to a reduction in the effective contact area for modulus 

calculations.  This effect has been previously reported for other ceramics [106, 107], and well 

modelled for various porous systems [108].  Microcracking can also reduce modulus.  It is 

therefore most plausible that neutron irradiation of Ti3SiC2 and Ti2AlC resulted in the 

formation of microcracks and internal porosity, with a greater impact on the latter.  This can 

clearly be seen in the SEM microstructures of the sample surfaces, where increased 

microcracking and grain pullout is observed(Figure 6.1).  These pullouts are an indirect 

manifestation of the extent of neutron-induced microcracking.  Note that as the irradiation 

temperature is increased, the extent of microcracking, and concomitant grain pullouts, 

decreases suggesting that microcracks may either not form at all, or heal at higher 

temperatures. 

 

6.5. Neutron Activation 

 

In preparing samples of Ti3SiC2 and Ti3AlC2, irradiated at ATR, for PIE, an intriguing 

discovery was made regarding the activation of the samples.  Before samples could be 
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transferred between facilities, contact radioactivity counts were surveyed for each sample.  

For the most part, especially for samples irradiated up to M-D2 from MITR, the activation 

counts, measured in Roentgen, R, per hour, were low; they measured <30 mR/h on contact, 

which was an acceptable safe dose for radiological workers to conduct extended length tasks, 

such as resistivity measurements.  An exception was noticed for Ti3AlC2.  At 160 and 190 

mR/h on contact, samples of Ti3AlC2:A-D1-T1 and Ti3AlC2:A-D1-T2, respectively, showed 

a 10 fold increase in activity compared to Ti3SiC2 irradiated at the same conditions.  Further, 

the Ti3AlC2 sample irradiated to 9 dpa, A-D5, at 500 °C, T3, resulted in a measured contact 

activity of 1860 mR/h on contact, which was 3 orders of magnitude higher than Ti3SiC2, 

even after more than 2 years had passed after irradiation.  Such high levels of activity indicate 

the presence of long lived isotopes giving off hard gamma radiation.  This result was very 

concerning at the time of discovery, as the activation of these samples approached the limit 

that was allowable for me, as a non-employee public citizen, to work with the sample.  The 

cause of the activation has been attributed to the presence of impurities in the materials prior 

to irradiation, which subsequently became highly activated after irradiation.  Upon survey of 

the measurable isotopes in the sample, Cobalt-60 was identified, which is radioactive isotope 

of Co with a half-life of 5.27 years.  This result explains the significantly higher activation in 

the Al- containing samples, which showed a noticeable increase in activation after higher 

doses.  At this time, the source of the Co remains unknown.  However, it has been shown 

that elemental Al can contain parts per million traces of Co from natural occurring sources 

[109].  It is plausible then that trace amounts of Co were present in the starting powders 

used for fabrication of the Ti3AlC2 samples, sourced from Kanthal, which after sufficient 

irradiation dose reach a detectable level of activation.  It goes without saying then that future 

irradiation studies would need to incorporate stricter control of material purity for eventual 

utilization in nuclear applications. 
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6.6. Conclusions 

 

Neutron irradiation of Ti3SiC2, Ti3AlC2, Ti2AlC, and Ti2AlN has shown a significant impact 

on several material properties.  Microcracking was observed in Ti2AlC, which in combination 

with point defects produced by irradiation lead to drastic increases in electrical resistivity 

after irradiation to 0.1 and 0.4 dpa at 710(50) °C.  Ti3AlC2 showed similar resistivity trends, 

and is assumed to have also experienced microcracking, especially as 50% of the material 

dissociated into TiC (Chapter 4).  As shown in Chapter 5, irradiation induced point defects 

were annihilated at defect sinks and agglomerated into dislocation loops at high temperature 

irradiation, 0.1 dpa at 710(50) °C.  This was directly evident by the almost full recovery of 

the electrical resistivity measured in samples from that condition.  The dislocation loops that 

formed within the basal planes are more likely than not coherent with the lattice, and thus do 

not contribute significantly to electron scattering.   

SiC is known to drastically lose thermal conductivity with irradiation dose [14].  The results 

in this thesis show that MAX phases recover their electrical conductivities should be 

maintained after higher irradiation temperatures.  It follows that their good thermal 

conductivities significantly when irradiated at elevated temperatures. This result is promising 

for Gen IV reactors, which are designed to operate at temperatures ranging from 550-1000 

°C.  As defects are annihilated and agglomerated at higher temperatures, the negative effect 

on the thermal and electrical resistivity should be mitigated.  Further work is needed to fully 

understand the effect of grain size on these results.   

Typically, finer grained samples show a decrease in thermal conductivity, mainly due to the 

increase in grain boundary area which leads to scattering of phonons and electrons.  This 

was observed in the non-irradiated thermal flash analysis experiments between FG-Ti3SiC2 
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and CG-Ti3SiC2.  However, post-irradiated resistivity of FG-Ti3SiC2 was consistently half 

that of its coarse-grained counterpart (Section 6.2), which should, in principle, translate into 

higher thermal conductivities.  This result signifies the improved ability for fine grained 

materials to resist irradiation damage, as the increased grain boundary area improves defect 

annihilation to grain boundary defect sinks.  From these results, the fine grain contribution 

to defect recombination is greater than the effect that the GBs have on decreasing thermal 

conductivity.  Ultra-fine-grained and/or grain boundary engineered samples of MAX phases, 

notably Ti3SiC2, should become the focus of future irradiation studies to fully explore the 

effect of grain boundaries on the irradiation response in these materials. 

Results from this chapter illustrate the recovery of material properties in these MAX phases 

at elevated temperatures.  This reveals a promising trend for these materials for use in high 

temperature irradiation applications.  The next and final chapter explores the compatibility 

of several MAX phases with possible reactor components such as Zircaloy-4 cladding and 

high temperature helium gas. 
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7. Interaction with Reactor Components 

 

The majority of this thesis details the effect of neutron irradiation on a range of MAX 

phases.  It is also important to consider how these materials interact with other components 

and materials present in the reactor environment.  For current reactors, a commonly used 

cladding material is Zircaloy-4, Zr-4, an alloy of zirconium with small additions of tin, iron, 

chromium, and nickel.  In an effort to explore MAX phases as a potential cladding coating 

to improve oxidation resistance of Zr-4 in high temperature accident conditions, the 

reactivity of Ti3SiC2 and Ti2AlC with Zr-4 was investigated. 

Additionally, while helium, He, is commonly generated during reactor operation due to beta 

decay of fuel components, some Gen IV reactors are designed to use high temperature He 

as a coolant medium.  A major application of fuel cladding is to contain the generated gasses 

during fission.  An assessment of helium permeation in Ti3SiC2, Ti3AlC2, and Ti2AlC is 

given.  In the following chapter, the materials studied were not irradiated. 

 

7.1. Reactivity with Zircaloy-4 Fuel Cladding 

 

Zr-4 is widely used as fuel cladding in light water reactors, LWR, mainly due to its high 

strength, corrosion resistance and low neutron cross section.  However, its poor oxidation 

resistance can lead to its failure under loss of coolant conditions [36, 49, 110].  Up to 850 °C, 

ơ-zirconium (ơ-Zr) maintains an HCP structure.  Above 950 °C, a phase change occurs 

resulting in FCC Ƣ-zirconium (Ƣ-Zr) [34].  LWRs nominally operate up to 400 °C, well 

within the ơ-Zr range for Zr-4 [15].  Loss-of-coolant accidents (LOCA), however, can lead 
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to fuel rods experiencing temperatures in excess of 1200 °C, their rupture due to increased 

pressure, and exposure to the atmosphere with catastrophic consequences [34].  

Another issue with Zr-4 cladding is its susceptibility to water corrosion, specifically hydrogen 

pickup and embrittlement [35].  Dissolved oxygen in the coolant water reacts with the metal 

surface, leading to the formation of a protective layer of ZrO2.  Simultaneously, the 

hydrogen produced from the oxidation diffuses into the cladding, resulting in the generation 

of zirconium hydride, ZrH2, precipitates, which leads to hydrogen embrittlement, decreases 

in fracture toughness and the acceleration of corrosion and irradiation swelling [35].  

Mitigation of hydrogen pickup and cladding oxidation is thus vital for the longevity and 

accident tolerance of fuel rod assemblies used in LWRs.  Isolating the Zr-cladding during 

normal operating conditions could allow for higher burn-up and possibly higher operating 

temperatures.  One solution to the corrosion problem, and a means to increase the safety 

margins of a LWR in LOCA, is to hermetically seal them from their surroundings.  Recently, 

several studies have explored the thermal and cold spraying of MAX phases in general, and 

Ti2AlC in particular, as a means to apply a thin coating of MAX onto substrates, such as 

mild steel or Zr-4 [111-115]. 

7.1.1. Diffusivities of A-layers 

More germane to this work are the several studies that have investigated the interdiffusion of 

silicon, Si or Al into Zr. Kidson et al. showed that bonding Al to Zr for hydrogen mitigation 

led to the formation of a singular ZrAl3 bonding layer, even though 10 intermetallics are 

known to form between the two elements [116].  Yue et al. explored the diffusion profile of 

Al that was laser clad onto a Zr substrate. The resulting diffusion layer was composed of a 

series of phases: (Zr) Ⱥ Zr + AlZr2 + AlZr3 Ⱥ Al4Zr5 + Al3Zr2 Ⱥ Al3Zr2 + AlZr2 Ⱥ Al2Zr 

Ⱥ Al2Zr + Al3Zr [117].  Laik et al. reported the activation energy of diffusion, Qd, of - 220 ± 
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3.33 kJ/mol and Do of 5.57ିଵ.଼ାଶ.଺ × 10-6 m2/s for the temperature dependence of Al impurity 

diffusion into Ƣ-Zr, in the 1203 - 1323 K temperature range [118].  

The Si-Zr system is known to have seven intermetallics: ZrSi2, ZrSi, Zr5Si4, Zr3Si2, Zr5Si3 

Zr2Si, and Zr3Si [119].  Bertolino et al. reported the formation of a double layered diffusion 

layer between Zr and Si in the 1173–1623 K temperature range [120].  After long enough 

annealing times, ZrSi2 became the major phase on the Si-rich side. The thickness of that 

layer increased parabolically with time and its thickness was temperature dependent.  On the 

Zr side, a thin ZrSi layer, whose thickness only depended on temperature, formed. 

Diffusion bonding of the MAX phases has also been the subject of several papers.  Gao and 

Miyamoto investigated joining Ti3SiC2 with a Ti-6Al-4V alloy, resulting in of the formation 

of Ti5Si3Cx and TiC interfacial phases.  Above 1350 °C, a liquid-state was presumed to have 

formed [53].  Yin et al.  successfully joined Ti3SiC2 to itself by using an Al-interlayer [54].  

Ganguly et al. reported the interdiffusion coefficients for the A-group element (Si, Ge) to be 

more than 300 times greater than the M-elements (Ti and Nb) [50].  Dong et al. successfully 

bonded SiC parts to themselves, in the 1200 to 1600 °C temperature range, using an 

intermediate Ti3SiC2 layer.  The strength of the bond was good because of the chemical 

bonds formed and the plasticity and thermal stress relaxation of the Ti3SiC2 layer [52].  

Above 1000 °C, Gu et al. bonded Ti3SiC2 to itself using Ti-metal layer that resulted in the 

formation of TiCx, Ti5Si3 and TiSi2 within the diffusion zone [121]. 

7.1.2. Diffusion Bonding with Zircaloy-4: Results 

Like most MAX phases' interactions with other solids, herein the A-group element – Al or Si 

– diffused out of the MAX phases' basal planes and formed intermetallics with the 

surrounding Zr-4 matrices.  In the Al case, was also found deeper in the Zr matrices.  SEM 

micrographs of the diffusion zones between Zr-4, on the one hand, and Ti3SiC2 and Ti2AlC, 
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on the other, reveal the formation of multiple intermetallic layers (Figure 7.1, Figure 7.2).  

Diffusion profiles across the interfaces reveal that the diffusion of Ti and Zr was quite 

limited.  In the following sections, first the interactions of Zr-4 with Ti3SiC2 and Ti2AlC are 

discussed separately.  In the final section, the diffusivities in, and behavior of, the two 

systems are compared and contrasted.  

7.1.3. Ti3SiC2 with Zircaloy-4 

Typical SEM micrographs of Ti3SiC2/Zr diffusion couples are shown in Figure 7.1.  Table 

7.1 summarizes the phases formed as a function of time and temperature.  Based on the 

totality of our results the following conclusions can be reached: 

 The main intermetallic phase that forms is ZrSi (Figure 7.1).  At 1100 °C after less 

than 10 h, the ZrSi does not contain Ti (Table 7.1).  At higher temperatures, in areas 

adjacent to the Ti3SiC2 phase, some Ti dissolves in the ZrSi phase (Table 7.1).  

 ZrSi3 forms under all conditions save for 30h at 1300 °C. For the most part, its 

thickness is less than that of ZrSi.  

 After annealing for 30 h at 1100 °C (Fig. 1a), t > 1 h at 1200 °C (Figure 7.1 and 

Figure 7.5) and at all times at 1300 °C (Table 7.1), the Zr2Si phase is present.  

 Not surprisingly, at the highest temperatures, the number of phases and their 

intermixing increase substantially (Figure 7.1 and Table 7.1). 

As noted above, Bertolino et al. reported that two phases – ZrSi2 and ZrSi – formed 

when Si and Zr diffusion couples were annealed [120].  The thickness of the ZrSi2 layer 

increased parabolically with time and its thickness was temperature dependent.  On the 

Zr side, a thinner ZrSi layer, whose thickness only depended on temperature, formed. 
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Figure 7.1 Typical backscattered electron SEM micrographs of Ti3SiC2/Zr-4 diffusion couples 
annealed at a) 1100 °C (etched), b) 1200 °C, and c) 1300 °C (etched) for 30 h. The layers A, B, C, D, E, F, 
and G correspond to the phases (Zr,Ti)Si, ZrSi2, ZrSi, Zr3Si2, Zr2Si, Zr3Si, and Ƣ-Zr+Si, respectively. In 
each case, a thin layer of porosity is observed at the interface. The predominant layer is composed of 
ZrSi. Occasional cracks, denoted by white arrows, are observed parallel to the interface. A layer of epoxy 
is seen in a) where the diffusion couple fractured during sample mounting. 
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Table 7.1 Summary of phase compositions and their thicknesses, in μm, across the Ti3SiC2/Zr-4 
diffusion couples - starting with Ti3SiC2 - as a function of time and temperature. The last column lists 
the total thickness of the reaction layer and is the one plotted in Fig. 7.6. 

Time (h) (ZrTi)Si ZrSi2 ZrSi Zr3Si2 Zr2Si Zr3Si Ƣ-Zr + Si 
Total Diffusion 

Thickness 
1100 °C 

1 - - 6.2(1)  - 1.4(1) - 7.6(2) 
2 - - 6.4(1)  - 1.4(1) - 7.8(1) 
10 0.4(1) - 15.4(1) 1.2(1) - 1.8(1) - 18.7(2) 
30 0.9(1) - 22.7(1) - 2.2(1) 2.2(1) - 27.9(3) 

1200 °C 

1 0.5(1) - 6.4(1) - - 1.3(1) - 8.2(1) 

2 0.8(1) - 7.2(1) 1.3(1) 0.7(1) 5.4(1) 
8%Ti 2.13(7) 17.5(2) 

10 - - 15.7(3) 
3%Ti  4.0(1) 

1%Ti 3.1(1) - 23.0(4) 

30 1.3(1) - 24.7(5) 
5%Ti  1.6(1) 7.4(2) 1.9(3) 36.9(7) 

1300 °C 

2 0.84(4) - 20.7(2) - 2.9(1) 1.0(1) - 25.5(2) 

10 3.1(2) 8.1(3) 
5%Ti 

5.0(4) 
5%Ti - 10.4(3) 7.6(2) 2.0(1) 36.2(8) 

30 4.7(1) 15.4(3) 
5%Ti 40.3(6) 2.0(2) 10.0(2) - 2.6(1) 75.2(8) 

‡ Standard deviation of last digit = (1) 

 

Based on these results it is reasonable to conclude that the overall reaction or diffusion path 

between Ti3SiC2 and Zr-4 is:   

Ti3SiC2 Ⱥ (Zr,Ti)Si Ⱥ ZrSi2 Ⱥ ZrSi Ⱥ Zr3Si2 ȺZr2Si Ⱥ Zr3Si Ⱥ -Zr + 12 at.% Si Ⱥ Ƣ-

Zr. 

Phases shown in bold formed under most conditions.  A layer close to the Ti3SiC2 side with 

a phase corresponding to a solid solution (Zr, Ti)Si was observed after 10 h at 1100 °C and 

at both 1200 and 1300 °C.  Only at 1300 °C after 10 h and 30 h was a ZrSi2 phase observed.  

A thin layer of a composition corresponding to Zr3Si2 was sporadically observed after 

annealing for 10 h at 1100 °C, 2 h at 1200 °C, and 30 h at 1300 °C.  The Zr2Si phase was 

more common after longer times and higher temperatures, appearing after 30 h at 1100 °C 

and at times longer than 1 h at both 1200 and 1300 °C.   
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No precipitates were seen to form beyond the intermetallic layers.  Slight porosity at the 

interface was observed at 1100 °C after annealing for 30 h and at 1200 °C and above (Figure 

7.1a-c).  Occasional cracks were observed parallel to the interface (Figure 7.1 and Figure 7.5).  

In general, the Ti3SiC2 diffusion couples resulted in firmly bonded interfaces that were able 

to withstand the clamping forces applied during sectioning, polishing, etc. 

7.1.4. Ti2AlC with Zircaloy-4 

At all temperatures studied, Ti2AlC formed numerous distinct layers, the thicknesses of 

which increased with annealing temperatures and times (Figure 7.2).  Table 7.2 summarizes 

the phases formed between Zr-4 and Ti2AlC as a function of time and temperature.  From 

the totality of these results it is reasonable to conclude that: 

 The main intermetallic phases that form at all temperatures are Zr2Al3 and Zr3Al2. 

 A layer with a consistent composition of 45% Al / 55% Zr, corresponding to 

Zr5Al4, is also seen at all conditions, though nominally thinner than the layers 

described above.  The layer appears homogeneous; no precipitates can be seen 

(Figure 7.2).  

 A thin Zr3Al layer is observed closest to the Zr-4 side at all times at 1100 °C and 

after 1h at 1200 °C (Table 7.2).  At higher temperatures, Zr2Al is seen to form in 

addition, eventually replacing Zr3Al all together at 1300 °C. 
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Figure 7.2 Typical backscattered electron SEM micrographs of Ti2AlC /Zr-4 diffusion couples 
annealed at a) 1100 °C (etched), b) 1200 °C (etched), and c) 1300 °C for 30 h. The layers A, B, C, D, and E 
correspond to the phases Zr2Al3, Zr5Al4, Zr3Al2, Zr2Al, and Zr3Al, respectively. In all cases, a layer of 
epoxy is seen where the diffusion couple fractured during sample mounting. Zr3Al precipitates are 
observed along the Ƣ-Zr grain boundaries beyond the intermetallic layers. At 1300 °C, no single layer 
dominates. Significant cracking of the intermetallic layers is observed parallel and perpendicular to the 
original interface. 
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 Deep into the Zr-4 and beyond the intermetallic layers, Zr3Al precipitates decorate 

the grain boundaries of the Ƣ-Zr phase (Figure 7.2).  Additionally, the latter contains 

§ 8 at.% Al in solid solution.  The solubility of 8 at.% corresponds to a temperature 

of about 900 °C, which suggests that is the temperature below which the 

diffusivities of Al in the Ƣ-Zr phase are too low.  Interestingly and consistent with 

this interpretation is that the 8 at.% does not appear to be a function of annealing 

time or temperature.  In other words, it is most probably determined upon cooling 

from the annealing temperature.  

 In contrast to Ti3SiC2/Zr-4, Ti from Ti2AlC was not seen to diffuse into the Zr-4.  

There was slight counter diffusion of Zr towards Ti2AlC. 

Based on the aforementioned results it is reasonable to conclude that the overall reaction or 

diffusion path between Ti2AlC and Zr-4 is: 

Ti2AlC Ⱥ Zr2Al3 Ⱥ Zr5Al4 Ⱥ Zr3Al2 Ⱥ Zr2Al Ⱥ Zr3Al Ⱥ Ƣ-Zr + 8 at.% Al + Zr3Al 

precipitates Ⱥ Ƣ-Zr 

Phases shown in bold were present after all anneals.  The Zr2Al3 layer was the thickest layer 

at all conditions (Figure 7.2, Table 7.2).  In contradistinction to the Ti3SiC2/Zr-4 interfaces, 

the ones between Zr-4 and Ti2AlC, more often than not, fractured simply in handling the 

samples or after clamping them for sectioning.  Transverse cracks were also more frequently 

observed in the intermetallic layers (Figure 7.2). Both observations can be attributed to 

thermal stresses induced on cooling together with, presumably, the presence of a weak 

interface. 
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Table 7.2 Summary of phase compositions and their thicknesses, in μm, across the Ti2AlC/Zr-4 
diffusion couples – starting with Ti2AlC – as a function of time and temperature. The last column lists 
the total thickness of the reaction layer and is the one plotted in Fig. 7.6. 

Time (h) Zr2Al3 Zr5Al4 Zr3Al2 Zr2Al Zr3Al Total Diffusion Thickness‡

1100 °C 

1 39.3(4) 2.9(2) 5.5(2) - 2.6(1) 50.3(7) 
10 158(1) 10(1) 13.6(5) - 4.5(2) 186(2) 
30 212(2) 17(1) 30.7(7) 3.9(2) 4.5(1) 268(2) 

1200 °C 

1 76.4(5) 4.6(3) 11.9(3) 2.4(1) 3.5(1) 99.3(8) 
2 82.8(5) 7.1(3) 12.5(3) - 6.9(3) 109.2(8) 
10 142(1) 26(1) 23(1) 11(1) - 201(2) 
30 230(2) 48(2) 58(1) 9.7(8) - 346(3) 

1300 °C 

1 90.2(6) 9.7(3) 14.0(4) 10.4(5) - 124(1) 
10 147.7(6) 44.7(8) 58(1) 16(1) - 267(2) 
30 130(1) 114(1) 126(1) 19.7(9) - 390(2) 

‡ Does not include the region with Zr3Al precipitates. 

 

In some cases, the Ti2AlC grains deep in the MAX phase were surrounded by a thin 

white/grey layer, identified in SEM/EDX as TiC (Figure 7.5d).  Based on the extensive 

diffusion of Al seen in Figure 7.6b, the TiC layers did not appear to act as a diffusion barrier.  

Interestingly, no TiC boundary layers were observed in the Ti3SiC2 samples, likely due to the 

significantly less Si diffusion from within the sample.  

As shown in other studies of MAX diffusion bonding, it is apparent that the Al from the 

Ti2AlC acts as a transient liquid phase, diffusing out of the basal planes in the grain 

boundaries (Figure 7.5d) and readily diffusing throughout the Zr-4, that resulted in the 

growth of Zr3Al precipitates along the Zr-4 grain far away from the interface (Figure 7.2). 

7.1.5. Comparison of the Diffusion Couples 

There are a number of important similarities and differences between the results obtained 

from the various diffusion couples.  In terms of similarities, in all cases, the main diffusing 

species is the A-group element.  Given what is known about the reactivity of the A-group 
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elements in the MAX phases this is far from surprising [25].  As early as 1999, it was shown 

that when Ti3SiC2 was immersed in cryolite, the Si was selectively etched by diffusing along 

the Ti3SiC2 grain boundaries[90].  Over the years the same was shown for other MAX phases 

in many environments. More recently it was shown that the Al can be etched out of the basal 

planes of Al-containing MAX phase by immersing their powders, at room temperature, in 

hydrofluoric acid, HF, solutions [122].  At all temperatures there was some intermixing of 

the Ti and Zr atoms, suggesting at least some solubility of Zr in all these MAX phases.  

Under the conditions explored herein and within the resolution of our EDX measurements, 

no C appears to have diffused into the Zr-4 or the intermetallics formed.   

Since the solubility of Si in Zr is negligible, even at T > 1600 °C, only a thin layer of Si in 

solution is detected beyond the intermetallic layers at 1200 °C, 2 and 10 h, and > 10 h at 

1300 °C.  In sharp contradistinction, the solubility of Al in Zr at 1200 °C is of the order of 

20 at.% [123].  It is presumably this significant solubility that accounts for the presence of Al 

deep beyond the intermetallic layers that form.  Furthermore, at T < 1019 °C, for Al 

concentrations > 8 at.% and < 25 at.%, the equilibrium phase is Zr3Al as observed in all 

cases.  It is worth noting that while the initial Zr-phase was the ơ-Zr polymorph, after the 

high temperature anneals, it was transformed to Ƣ-Zr, as is evidenced by the shape of the Zr 

grains after annealing which are clearly decorated by the Zr3Al particles that precipitate along 

their grain boundaries (e.g. see Figure 7.2a, b, and c).  The initial Zr-4 microstructure (not 

shown) was comprised of small equiaxed grains.  
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Figure 7.3 Typical composition profiles determined by EDX line scans of the Ti3SiC2/Zr-4 interfaces 
obtained after annealing at, a) 1100 °C, b) 1200 °C, and c) 1300 °C for 30 h reveal the formation of several 
intermetallic layers with distinct compositions. A depletion of Si is seen on the Ti3SiC2 side at 1100 °C 
(a), though not at higher temperatures. There is a slight counter diffusion of Ti and Zr, though Si is the 
dominant diffusing species. At 1300 °C, a layer of ZrSi2 is observed.    
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Figure 7.4 Typical composition profiles determined by EDX line scans of the Ti2AlC /Zr-4 interfaces 
obtained after annealing at, a) 1100 °C, b) 1200 °C, and c) 1300 °C for 30 h reveal the formation of several 
intermetallic layers with distinct compositions. Each condition tested resulted in similar phase 
compositions, with layer thickness increasing with temperature. During annealing at the temperatures 
tested, the Al dissolves into solution with Ƣ-Zr beyond the intermetallic layers on the Zr-4 side. Upon 
cooling, Al segregation at the grain boundaries likely resulted in the precipitation of Zr3Al structures, 
seen in Figure 7.2. 
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Figure 7.5 Typical backscattered electron SEM micrographs of etched diffusion couples 
of Ti3SiC2/Zr-4 annealed at, a) 1100 °C for 1 h, b) 1200 ºC for 10 h, and, c) Ti2AlC /Zr-4 annealed at 1100 
°C for 1 h. At the same conditions, the diffusion layer thicknesses observed for the Ti2AlC /Zr-4 couples 
are almost an order of magnitude larger. Tunnel like pores are seen in the ZrSi layer in a). d) SEM 
micrograph of the etched Ti2AlC /Zr-4 diffusion couple annealed at 1300 °C for 1 h shows TiC layers 
that formed surrounding the Ti2AlC grains near the interface. 

 

In all diffusion profiles, the Si and Al concentrations in the MAX phases are lower than their 

concentrations in the adjacent intermetallics (Figure 7.3, Figure 7.4).  This uphill diffusion 

implies that the activities of the A-group elements in the MAX phases are considerably 

higher than their concentration would suggest.  It is this enhanced activity that is responsible 

for crack healing in Ti2AlC and Ti3AlC2 [45, 124, 125].  

All else being equal, the diffusion layer thicknesses observed when Zr-4 was in contact with 

Ti2AlC were up to an order of magnitude larger than when it was in contact with Ti3SiC2 

(Figure 7.5a, c).  This is especially noted in the 1200 °C, 30 h condition (Figure 7.2b) where, 

at 346(3) μm, the intermetallic layer depth in TAC is an order of magnitude greater than 

Ti3SiC2, at 36.9(7) μm (Figure 7.1b). 
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Figure 7.6 Total diffusion distance (x) vs. t½ for diffusion couples 
of: a) Ti3SiC2 and, b) Ti2AlC with Zr-4 in the temperature range of 1100-1300 °C. In all cases, Ti3SiC2 
results in a shallower diffusion length. These trends show a parabolic diffusion behavior as x § (2Dt)½. 
c) Arrhenius plot of the effective diffusion coefficients, DA. 

 

Total diffusion distances, x, vs. t½ for diffusion couples of Zr-4 with Ti3SiC2 (Figure 7.6a) 

and T2AlC (Figure 7.6b) in the temperature range of 1100-1300 °C reveal that, for both 

materials, a linear fit with t½ was observed, indicating that the diffusion obeyed a parabolic 

law in each case.  The temperature dependence of the effective diffusion coefficients, DA, of 

the A-group elements through the reaction layers was fit to a linear regression of an 

Arrhenius plot (Figure 7.6c). For Ti3SiC2/Zr-4, the temperature dependence is described by: 
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ݏௌ௜ሺ݉ଶܦ  ሻ ൌ 7.4 ൈ 10ିଽ݁݌ݔሺିଵ଻଴ ௞௃/௠௢௟ோ் ሻ (7.1)

and for Ti2AlC /Zr-4, the temperature dependence is described by: 

ݏ஺௟ሺ݉ଶܦ  ሻ ൌ 9.2 ൈ 10ିଵଶ݁݌ݔሺିଷ଼ ௞௃/௠௢௟ோ் ሻ (7.2)

At 38 kJ/mol, the activation energy for DAl is significantly lower than the 170 kJ/mol of DSi. 

These results for Ti3SiC2/Zr-4 compare well with previous diffusion studies, where 

activation energies of various diffusion couples were reported as 118, 132, and 156 kJ/mol 

for Ti3SiC2/Ni [51], Ti3SiC2/Si [126], and Ti3SiC2/Ti-6Al-4V [53], respectively.  

In general, and under all conditions tested, the diffusion layer thicknesses observed were 

larger when Al was present in the system than when Si was.  Figure 7.5 compares SEM 

micrographs of diffusion couple interfaces between Zr-4 bonded with Ti3SiC2 in (a), and 

with Ti2AlC in (c).  Despite the relatively short diffusion time of 1 h and the relatively low 

diffusion temperature, 1100 °C, it is obvious that the Si penetration depth in the Zr-4 is 

significantly less than Al.  This difference is more dramatically realized when Zr-4 and 

Ti2AlC were diffusion bonded at 1300 °C for 30 h are compared (Figure 7.1c and Figure 

7.2c).  The reaction layer thickness in the Ti2AlC case was of the order of 390 μm.  The 

reaction layer thickness that formed under identical conditions when Ti3SiC2 was in contact 

with Zr-4 was § 75 μm (Figure 7.1c). 

7.1.6. Successful Bonding in LOCA Conditions 

The reactivity between Zr-4 with Ti3SiC2 and Ti2AlC, over the 1100-1300 °C temperature 

range, was studied by setting up Ti3SiC2/Zr-4 and Ti2AlC /Zr-4 diffusion couples.  Based on 

the results shown, and similar to previous work in the Zr/Al system, it is clear that Al-

diffusion into Zr was extensive, and resulted in a large affected diffusion zone with several 
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ZrxAly intermetallic layers [116-118].  Zr3Al precipitates were observed up to 200 μm into the 

Zr-4 bulk after annealing at all conditions.  The Al diffused out of the Ti2AlC basal planes 

and through the grain boundaries, resulting in the formation of TiC rings around Ti2AlC 

grains near the bonding interface.  

Diffusion of Si from Ti3SiC2 generally formed two intermetallic layers: ZrSi and Zr3Si. At 

higher temperatures, layers of ZrSi2, Zr3Si2, and Zr2Si also formed.  In this case, TiC layers 

were not seen to form around any of the Ti3SiC2 grains.  

Overall, diffusion depths from Ti3SiC2 were an order of magnitude shallower than the Al-

containing MAX phases at 1100 and 1200 °C, and 5-7 times shallower at 1300 °C.  The 

diffusion of both Si and Al is seen to follow the parabolic law, and the microstructure of the 

diffusion bonded regions is indicative of the diffusion controlled reaction. 

 

7.2. Helium Permeability 

 

During reactor operation, many gases, such as krypton, are generated as by-products from 

the fission process.  Additionally, alpha particles are released from the decay processes of 

radioactivate isotopes that form during the reaction cycle.  Alpha radiation is essentially the 

nucleus of a helium, He, atom without electrons, which can lead to ionization of atoms in 

surround materials.  He accumulation at high temperatures can also lead to the formation of 

voids and bubbles within reactor component microstructures, inducing embrittlement and 

swelling, along with unpredictable failure modes.  Fuel cladding materials must be able to 

contain fission gases and prevent the transport of He through their structure.  He 

permeability, which is a measure of diffusion of He atoms through a material, can be 

investigated to understand a materials’ ability to limit He transport. 
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7.2.1. Permeation 

In the literature, permeation is commonly reported in terms of a permeability coefficient, 

which is also called the permeation or permeability constant, or just permeability.  In some 

cases, the models used to calculate the permeability are different or a variety of units are 

used making the comparison of the results not a straight forward task.  Often, the terms 

permeability and permeance are confused as well.  Permeability is not dependent on the 

thickness of the material while permeance does depend on the on the thickness of the 

material.  In this section, the following definitions and units are used to report permeation. 

Permeation is the transmission of a fluid through a solid.  For a gas, the permeation involves 

the gas dissolving into the surface of the solid, diffusing through the solid; and desorbing 

from it.  However, the diffusion is the slowest step and, hence, the permeation rate is 

determined by the diffusion process.  The permeation of gases through solids is directly 

related to the concentration gradient of the gas across the material and the properties of such 

material.  For steady state, the permeation can be formulated based on the diffusion process 

given by Fick’s law: 

ܬ  ൌ െ(7.3) ܿ׏ܦ

where J is the flux of the diffusing gas, c is the concentration of gas within the solid, and D is 

the diffusion coefficient.  The concentration of the diffusing gas in the solid’s surface if 

given by Henry’s law: 

 ܿ ൌ (7.4) ݌ܵ

where S is the solubility coefficient and p is the gas pressure.  For a one-dimensional flux 

across the material, and substituting Eq. (7.4) into Eq. (7.3) gives: 
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ܬ  ൌ െܭ (7.5) ݔ݀݌݀

where K, the permeation constant, which has units of (mol m)/(m2 s Pa) and is equal to the 

product of the solubility coefficient, S, and diffusion coefficient, D.  The permeation 

constant is multiplied by the differential pressure across the material thickness, (dp/dx) to 

give the flux of gas. 

The flux of gas is the amount of gas in moles, n, passing through the material per unit time, 

t, and per unit area, A. 

ܬ  ൌ (7.6) ܣݐ݊

For a gas, the amount of gas can be expressed in terms of volume, V, using the ideal gas law 

as: 

 ܸ ൌ ܴ݊ܶܲ  (7.7)

where R, is the gas constant and T is the absolute temperature. Combining Eq. (7.5) to (7.7) 

gives the average flow velocity, ݒ, as: 

ݒ  ൌ ܣݐܸ ൌ ൬ܴ݊ܶܲ ൰ ൬ ൰ܣݐ1 ൌ െ൬ܴܶܲ൰ܭ ݔ݀݌݀  (7.8)

or 

ݒ  ൌ െܭᇱ ݔ݀݌݀  (7.9)

where K’ is the permeation constant in (m3 m)/(m2 s Pa).  The units of volume in this 

constant are sometimes expressed at standard temperature and pressure (STP, 0°C and 1 

atm). 
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Another common unit for expressing the permeation constant can be obtained by the 

product of the average flow velocity and the dynamic viscosity, , of the gas as: 

ߤݒ  ൌ െ݇ᇱ (7.10) ݔ݀݌݀

where k’ is the apparent permeation constant in m2. Eq. (7.10) is known as the Darcy’s 

equation where k’ takes into account the gas as the permeation fluid instead of a 

compressible fluid [127, 128].  

In summary, the three major forms of the permeability constant found in the literature are 

expressed in terms of Eq. (7.5), (7.9) and (7.10). By comparing these equations, the following 

relationship is obtained: 

ᇱܭ  ൌ ൬ܴܶܲ൰ܭ ൌ ݇ᇱߤ  (7.11)

 

7.2.2. High Temperature Helium Permeation in Ti3SiC2, Ti3AlC2, and Ti2AlC 

Results for the He permeability performed at 850°C and 950°C for the three MAX phases, 

Ti2AlC, Ti3AlC2 and Ti3SiC2, are shown in Table 7.3, showing  the permeability values based 

on Eq. (7.5) and Eq. (7.9). The results in terms of Darcy’s permeability coefficient, Eq. 

(7.10), are presented in Table 7.4. The dynamic viscosity for He used with Eq. (7.11) were 

5.16 x 10-5 and 5.56 x 10-5 kg/(m s) at 850°C and 950°C, respectively [129].  

In general, the results from the three materials show that the permeability at a constant 

temperature of 850°C or 950°C decreases for the material type as follows: Ti2AlC > Ti3SiC2 

> Ti3AlC2 by about 1 order of magnitude difference. Also, the He permeability increased 

from 850°C to 950°C by 15.5%, 30.2%, and 35.3% for Ti2AlC, Ti3SiC2, and Ti3AlC2, 

respectively. 
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Table 7.3 Permeability of Ti2AlC, Ti3AlC2 and Ti3SiC2 at 850°C and 950°C. 

Sample 

Permeability (K) 

(mol m)/(m2s Pa) (m3(STP)m/(m2s Pa) 

850 °C 950 °C 850 °C 950 °C 

Ti2AlC 1.72 × 10-7 1.99 × 10-7 3.87 × 10-9 4.46 × 10-9 

Ti3SiC2 4.48 × 10-8 5.83 × 10-8 1.00 × 10-9 1.31 × 10-9 

Ti3AlC2 6.05 × 10-9 8.18 × 10-9 1.36 × 10-10 1.83 × 10-10 

 

 

Table 7.4 Equivalent Darcy’s permeability coefficient of Ti2AlC, Ti3AlC2 and Ti3SiC2 at 850°C and 
950°C. 

Sample 

Equivalent Darcy’s Permeability Coefficient(k’) 

(m2) 

850 °C 950 °C 

Ti2AlC 8.20 × 10-13 1.00 × 10-12 

Ti3SiC2 2.13 × 10-13 2.93 × 10-13 

Ti3AlC2 2.88 × 10-14 4.11 × 10-14 

 

 

7.2.3. Comparison with Other Ceramics 

The permeability results for the MAX phase materials tested show values of what would be 

expected for sintered samples. For example, Pulkrabek et al. [127, 128] measured the 

apparent permeability, k’, of He through alumina over an extended temperature range 

(Figure 7.7).  The results from this figure for He permeation at 850°C and 950°C were 

compared with values for the MAX phases (Figure 7.8).  This comparison shows that the He 



 154
 

permeability of the MAX phases tested is about the same order of magnitude as the He 

permeability of alumina at the same temperatures.  
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Figure 7.7 Apparent diffusivity, k’, of He in Ti3SiC2, Ti3AlC2, and Ti2AlC compared to Alumina [128]. 

 

The results for permeability, K, also compare well with various SiC/SiC fiber composites 

investigated for fusion reactor applications [130].  At 1.83 × 10-10 m2/s for Ti3AlC2 and 4.46 

× 10-9 m2/s for Ti2AlC, the permeability constants for the MAX phases at 950 °C were 

similar to the room temperature permeability of fully dense SiC/SiC woven fiber plates, 

fabricated via liquid phase sintering and HPing, ranging from 4.0 × 10-11 to 1.0 × 10-9 m2/s 

[130].  This result indicates a considerable advantage of reduced permeability compared to 

SiC parts designed for fusion reactors, as permeability of those parts would increase with 

increasing temperatures 
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7.3. Conclusions 

 

Based on these results, it is clear that at temperatures in excess of 1000 °C a diffusion bond 

can be formed between Ti3SiC2 or Ti2AlC and Zr-4.  Below that temperature, bonding was 

unsuccessful.  For fuel cladding applications, this bodes well for the MAX phases to be used 

as a coating to improve safety performance of fuel rods.  While not explored in this thesis, 

methods of applying a coating of Ti3SiC2 or Ti2AlC have been investigated, including 

thermal spray and cold spray techniques.  These methods make use of mechanical bonding 

of MAX particles to a rough Zr-4 surface.  During normal operation, at temperatures 

ranging from 300-500 °C, the MAX coating would provide mechanical impact protection, 

while allowing for thermal conduction of heat generated in the fuel pellets.  During an 

accident condition, where coolant may be lost, the fuel rods can heat up to temperatures in 

excess of 1200 C, and be exposed to steam.  The rapid oxidation of the Zr-4 rods leads to 

hydrogen production, which can diffuse into the cladding and form brittle zirconium 

hydrides, weakening the Zr-4, not to mention also collecting in the reactor vessels and 

become an explosion hazard.   By forming a hermetically sealed coating of Ti3SiC2 or Ti2AlC, 

which would provide advanced oxidation resistance, there is potential for improving the 

safety tolerances of fuel cladding, increasing the length of time before cladding failure.  The 

difference between minutes and hours for emergency response before fuel cladding failure 

during LOCA events could prove incredibly beneficial. 

He permeability tests were performed at 850°C and 950°C for three MAX phase material 

samples: Ti2AlC, Ti3AlC2 and Ti3SiC2. At constant temperature, the He permeability 

decreases for the material type as follows: Ti2AlC > Ti3SiC2 > Ti3AlC2 about 1 order of 

magnitude difference between each value.  These materials showed between 15.5% and 

35.3% increase in the He permeability at 950°C as compared to their respective 
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permeabilities at 850°C.  These He permeability results are comparable to those in literature 

for alumina at similar temperatures, and show the same order of magnitude of permeability 

at high temperatures as room temperature measurements in SiC/SiC composites.  These 

results indicate a significant ability for these MAX phases to contain and limit the transport 

of He through bulk. 
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8. General conclusions and perspectives 

 

8.1. Principle Discoveries 

 

The main objective of this thesis was to study the behavior of select MAX phases in 

response to neutron irradiation.  To this end, we chose to irradiate several MAX phase 

chemistries, and characterize them as a function of irradiation dose and temperature using 

X-ray diffraction, XRD, and transmission electron microscopy, TEM.  Rietveld refinement 

analysis of the post-irradiation XRD patterns was conducted to document the structural and 

compositional changes due to irradiation.  TEM was utilized to explore the nanoscale 

morphology and nature of defects induced by irradiation.  Further, electrical resistivity and 

nanoindentation experiments were explored to understand the effect of irradiation on 

properties. 

Neutron irradiation of hot pressed polycrystalline samples of Ti3SiC2, Ti3AlC2, Ti2AlC, and 

Ti2AlN was successfully completed at MITR and INL ATR, with exposures ranging from 

0.1-9 dpa and irradiation temperatures of 100 to 1000 °C.  This thesis marks the first ever 

neutron irradiation of bulk MAX phases. 

Rietveld refinement of XRD patterns revealed that all phases studied remained crystalline - 

and were thus resistant to amorphization- after irradiation to doses of 0.1 to 0.4 dpa at 350 

and 710 °C.  Additionally, Ti3SiC2 retained its crystallinity after neutron irradiation to a dose 

of 9 dpa at a temperature of 500 °C.   

After irradiation to 0.1 and 0.4 dpa at 350 °C, the c-LPs increased, while the a-LPs 

decreased.  Ti3SiC2, with near identical LP values for both fine-grained (FG) and coarse-
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grained (CG), showed the least distortion in LPs.  Refinement of the XRD patterns also 

revealed an increase in microstrains in the samples irradiated to 0.1 dpa at 350 °C.  The 

microstrains were seen to further increase when the dpa was increased to 0.4 at the same 

temperature.  These results indicate that defects induced upon exposure to low temperature 

irradiation resulted in a global distortion of the crystal lattice of each phase.  Furthermore, 

the Ti3AlC2 and Ti2AlN phases exhibited an unacceptable level of phase decomposition, 

forming significant fractions of TiC or TiN + Ti4AlC3, respectively, after irradiations as low 

as 0.1 dpa at 350 °C.  As a result, it was concluded that their future as possible fuel cladding 

materials is dim. The focus then shifted to Ti3SiC2 and Ti2AlC, both of which showed 

compositional stability up to 0.4 dpa at 350 °C, meriting further study. 

After irradiation at 710 °C, the LPs were close to the unirradiated values for all irradiated 

samples, one exception being Ti2AlN due its decomposition.  Microstrains also diminished at 

this temperature.  These results indicate that after irradiation at higher temperatures, some of 

the point defects presumably anneal out or agglomerate into larger coherent structures, 

reducing overall lattice strains and distortions. 

Based on the TEM micrographs, it was concluded that neutron irradiation resulted in the 

formation of defect clusters and dislocation loops. Defect clusters were observed in Ti2AlC 

after irradiation to 0.1 dpa at 350 °C and in both Ti2AlC and FG-Ti3SiC2 after 0.4 dpa at 350 

°C.  Dislocation loops were observed in both materials after irradiation to 0.1 dpa at 710 °C.  

At 1 × 1023 loops/m3, the loop density in Ti2AlC was 1.5 orders of magnitude greater than 

that observed in FG-Ti3SiC2, at 3 × 1021 loops/m3.  Based on these results, it is reasonable to 

conclude that Ti3SiC2 is more resistant to neutron irradiation damage, at least in terms of 

loop density.  Through extensive TEM tilting experiments, the dislocation loops were found 

to have a Burgers vector b = ½ [0001ሿ, and thus lie in the basal planes. The average loop 

diameters were 9(3) nm and 10(5) nm, for FG-Ti3SiC2 and Ti2AlC, respectively.  Irradiation 



 159
 

of Ti3SiC2 at 500 °C, up to 1 and 9 dpa, resulted in larger dislocation loops, with average 

diameters of 21(6) and 30(8) nm, respectively.  The dislocation loops densities decreased 

from 5 × 1020 loops/m3 at 1 dpa to 2 × 1020 loops/m3 at 9dpa, indicating that loop 

coarsening occurred with increased dose.  Also of note, after irradiation to 9 dpa at 500 °C, 

denuded zones approaching 1 Ƭm in width were observed next to most grain boundaries in 

Ti3SiC2. This suggests that the combination of A-layers and grain boundaries in Ti3SiC2 serve 

as potent defect sinks.  This result is quite remarkable, and is in need of further study to 

understand.  

In light of the XRD and TEM results, and by incorporating recent DFT calculations of point 

defects in the MAX phases, we propose a model that can explain the evolution of the 

distorted lattice structures after irradiation.  From DFT studies, the presence of the A-layers 

in the MAX phases was predicted to provide a significant radiation tolerance, due to the low 

formation energy and stability of point defects residing in, and near, the A-layers.  In order 

to account for the observed distortion of lattice parameters, the low temperature structure 

model assumes the formation of excess X vacancies in the Mn+1Xn blocks accompanied by A 

or M interstitials in the free volume sites between the A and M layers.  As neutron irradiation 

is known to produce drastic localized disorder of atoms during cascade events, it is not 

implausible that these defects could form. 

The high temperature irradiation resulted in larger defect structures, coherent with the 

lattice.  TEM micrographs confirmed that the interstitial atoms precipitated as interstitial 

dislocation loops between the A and M layers, or potentially as platelets of MA antisite 

defects within the A-layer.  Defects of this nature, i.e. within the basal planes, were observed 

in samples irradiated to all doses at 500 and 710 °C.  Additional studies are needed to fully 

characterize the composition of the loops that form, however.  What is surprising, however, 

is that the loops were predominately interstitial in nature.  As the concentration of vacancies 
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and interstitials are presumably equal, more work is required to understand the propensity of 

interstitial loops to form over vacancy type loops. 

Furthermore, these results confirmed the ability of the A-layers to accommodate defects 

while maintaining crystallinity.  This was indisputably evidenced by the fact that TiC and 

alumina impurity particles showed extensive irradiation damage, directly adjacent to relatively 

undamaged grains of Ti3SiC2.   

To assess the effect of the irradiation defects described above on material properties, 

measurements of electrical resistivity, hardness and modulus were conducted.  The results 

further illustrate the high temperature recoverability of MAX phases.  Resistivity values were 

seen to increase with irradiation at 350 °C, for the most part linearly with dose, with Ti3SiC2 

showing saturation at 0.4 dpa.  Point defects are potent scatterers of electrons, and the TEM 

results confirm that low temperature irradiation resulted in the formation of point defect 

clusters.  After irradiation at 710 °C, however, the resistivity values recovered almost fully, 

presumably due to the fact that the dislocation loops were coherent and thus having less of 

an impact on electron transport.  Additionally, black spots and/or defect clusters were not 

observed in the presence of the dislocation loops, therefore it is reasonable to conclude that 

the former are transformed into the latter.  It is known that in most MAX phases, a majority 

(>90% in Ti3SiC2) of the thermal conductivity is due to electron transport. Said otherwise, 

electrical resistivity is a good measure of the magnitude of the thermal conductivity. It 

follows that the possible saturation and recovery in electrical resistivity for Ti3SiC2 bodes 

well for its use in any nuclear application where thermal transport is important. This is in 

sharp contrast to SiC, wherein the thermal conductivity is sharply reduced with small 

irradiation doses. 

Nanoindentation results for FG-Ti3SiC2 and Ti2AlC provided evidence for irradiation 

induced hardening, which was expected for the irradiated materials.  The Young’s moduli 
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were quite low, however, and most probably due to the formation of microcracks. The latter 

were quite profuse throughout the Ti2AlC samples irradiated to 0.1 and 0.4 dpa at 350 °C. 

Lastly, the interactions of select MAX phases with Zircaloy-4, Zr-4, and helium, He, gas 

were investigated to assess their compatibility with reactor components.  Zr-4 is a common 

fuel cladding material used in current reactors, and He is a proposed Gen IV coolant, as well 

as a fission reaction product.  With the possibility of using MAX phases as a protective 

coating for existing cladding, the diffusion bonding of Zr-4 to Ti3SiC2 and Ti2AlC was 

studied to understand what would happen under LOCA conditions.  Results over a 

temperature range from 1100 to 1300 °C showed extensive diffusion of the A-layer elements 

into Zr-4 which led to the formation of several intermetallic layers.  Overall, diffusion depths 

from Ti3SiC2 were an order of magnitude shallower than Ti2AlC at 1100 and 1200 °C, and 5-

7 times shallower at 1300 °C.  The bonds were strong between Zr-4 and Ti3SiC2, but quite 

weak for the Ti2AlC couples.  As these temperatures are well above the normal operating 

temperature for conventional reactors, as well as the typical Zr-4 heat treatment 

temperatures, bonding of the MAX phases to the Zr-4 substrate would need to rely on other 

means for adhesion.  One possible solution would be to cold spray a MAX coating, which 

adheres by mechanical deformation of the sprayed powder.  During accident conditions, 

however, temperatures can easily exceed those studied here.  Thus, it is likely that this 

enhanced diffusion at high temperatures will improve the bonding of the MAX layer to the 

Zr-4 substrate, and help provide extended oxidation and impact resistance.  Ideally, this 

would increase the available response time for emergency action before fuel containment 

failure would occur. 

He permeability in Ti3SiC2, Ti2AlC and Ti3AlC2, at temperatures of 850 and 950 °C, was 

found to be comparable to other sintered ceramics, and was similar to room temperature 

permeability of SiC/SiC fiber composites.  This indicates that He transport is quite limited 
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through the MAX phases at high temperatures, showing promise for these ceramics to 

contain gaseous fission products. 

The work presented in this thesis, all of which being the first of its kind, is only a preliminary 

study of select MAX phase behavior under neutron irradiation.  These results represent the 

start of the foundation for the knowledge base of neutron irradiation response in the MAX 

phases, and provide the necessary groundwork for future studies.  These results highlight the 

need for characterization of the systematic effect of the irradiation over larger temperature 

and dose ranges.  Notably, what critical irradiation temperature is required to form 

dislocation loops, and what dependence chemistry or grain size may have on this transition 

point, remains unknown.  The samples studied here are part of a larger family of similarly 

structured phases.  As such, the damage tolerance might be optimized through 

compositional and structural tuning.  The results of this work also hint to the effects of grain 

size on damage tolerance, seeing a lesser increase in resistivity for the fine-grained samples as 

compared to their coarse-grained counterparts, and thus demonstrate the need to 

characterize future samples with systematic grain size variations.  With denuded zones 

approaching 1 Ƭm in width, which appear to be isotropic regardless of grain boundary 

orientation, it would not be unexpected to see quite limited irradiation damage in very fine 

grained samples.  Of all phases studied herein, Ti3SiC2 has shown the greatest potential for 

use in reactor applications, and warrants further study. 

 

8.2. Future Work 

 

Following this work, it is pragmatic to mention some potential paths forward.  The following 

areas deserve particular attention. 
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With regret, analysis of mechanical properties was unobtainable for this work.  Before MAX 

phases can be considered for incorporation into irradiation applications, the effect of 

irradiation on mechanical properties such as modulus, strength, fracture toughness, hardness, 

and creep should be investigated thoroughly.  Additionally, the statistical variation in these 

properties, using Weibull statistics, is commonly expected for ceramic materials in the 

nuclear field, and should thus be incorporated.  It is imperative that correlations be made 

between the defects observed herein with mechanical properties, which can be explored in 

future research projects. 

As described in Chapter 5, this work shows evidence for irradiation defects, i.e. dislocation 

loops, which have not been previously observed in the MAX phases.  Those previous 

irradiation studies used a wide variety of irradiation particles, and the majority of these 

studies were conducted at room temperature.  Calculations using the theories developed for 

equivalent dose comparison suggest that to obtain microstructures similar to the ones 

obtained here would require higher temperature ion irradiation studies than reported to date.  

Understanding of the neutron irradiation response is necessary before these materials can be 

incorporated into reactor components.  However, access to neutron irradiation is limited, 

time consuming, and costly, not to mention that the resultant test samples become 

radioactive, requiring extensive protective measures during characterization.  Ion irradiation 

studies, as surrogate radiation particles, are vastly easier to conduct and characterize. 

Therefore, it is imperative that future studies attempt to adjust and refine their conditions to 

more closely match those induced by neutrons in these materials.    

Lastly, it should be stated that further theoretical simulations can always be beneficial.  DFT 

models are quite capable of predicting point defect structures.  Neutron irradiation, however, 

results in significant interactions between defects, on a much larger scale.  Molecular 

dynamics, MD, is capable of modeling and predicting defect structures on the scale of 
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irradiation defects, and should thusly be explored.  It is understood, however, that the MAX 

phase structure is quite complex, in terms of MD.  Future work will have to begin by 

generating the necessary potentials used for MD, as they currently, as far as I know, do not 

exist for the MAX phases.  The results in this thesis could then be used as possible 

computational starting points in an effort to model the formation of dislocation loops in 

these remarkable ceramics. 
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A1 A Critical Review of the Oxidation of 

Ti2AlC, Ti3AlC2 and Cr2AlC in Air 

 

This work was published in Materials Research Letters on September 1, 2013. 

Of all the MAX phases, the most resistant to oxidation in air in the 900-1400 °C temperature 

range are Ti2AlC, Ti3AlC2 and Cr2AlC. A literature review, however, shows that while many 

claim the oxidation kinetics to be parabolic, others claim them to be cubic. Whether the 

kinetics are parabolic or better is of vital practical importance. By carefully re-plotting the 

results of others and carrying out one oxidation run for § 3000 h at 1200 °C on a Ti2AlC 

sample, we conclude that the oxidation kinetics are better described by cubic kinetics and 

that even that conclusion is an approximation. Lastly we present compelling evidence that 

the rate-limiting step during the oxidation of Ti2AlC is oxygen diffusion down the alumina 

scale grain boundaries.  

Keywords: Ti2AlC, Cr2AlC, Ti3AlC2, oxidation, cubic oxidation rate. 
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A1.1 Introduction  

 

The Mn+1AXn (MAX) phases are a class of layered, machinable, early transition ternary metal 

carbides and/or nitrides, where M is an early transition metal, A is a group 13 to 16 

elements, and X is C and/or N.  These compounds are classified as thermodynamically 

stable nanolaminates having relatively high fracture toughness values (8-12 MPa¥m), and yet 

are machinable, lightweight, and relatively soft [28-32].  Some also undergo a brittle-to-

plastic transition at temperatures above 1000 °C.  Some aluminum, Al, containing MAX 

phases, notably Ti3AlC2, Ti2AlC and Cr2AlC show excellent oxidation resistance due to the 

formation of a dense and adherent alumina layer.  These ternary carbides may prove useful 

in practical applications where high temperature oxidation resistance in air is required.  

However, before they can be used it is imperative to be able to predict the oxide thicknesses 

that would form after long times at elevated temperatures.  This is in turn implies that the 

oxidation kinetics be well understood and documented.   

 

A1.2 Literature Survey 

 

The first papers to report on the oxidation of the Tin+1AlXn phases were published in 2001 

[38, 39].  In these papers, it was shown that the oxidation resulted in the formation of a rutile 

based solid solution with approximate chemistry of (Ti1-yAly)O2-y/2 , where y § 0.05 and 

alumina, Al2O3	(Figure A1.1a).  At longer times, kinetic demixing resulted in the formation 

of layers of rutile henceforth referred to as TiO2, Al2O3 and porous layers (Figure A1.1b).   
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Figure A1.1 a) Oxidation of the Tin+1AlXn phases results in the formation of a rutile based solid solution 
with approximate chemistry of (Ti1-yAly)O2-y/2 , where y § 0.05 and alumina, Al2O3. b) At longer times, 
kinetic demixing results in the formation of layers of TiO2, Al2O3 and pores [39]. c) SEM micrograph of 
Ti2AlC oxidized in air at 1200 °C for 2873 h showing a § 21 μm thick, coherent and fully dense Al2O3 
layer which conforms to the corners of the sample. 

 

The oxidation kinetics were initially found to be parabolic, but at longer times tended 

towards linear, implying that the layers were not protective over the long run.  Using 

Wagner’s formalism it was further concluded that the rate-limiting step was the inward 

diffusion of oxygen and the outward diffusion of titanium through the TiO2 layer that forms.  

In other words the oxidation reaction was presumed to be [39]:  

 2	ܶ݅ଶܥ݈ܣ	 ൅ 	7.5 ܱଶ ൌ 4 ܱܶ݅ଶ ൅ ଶܱଷ݈ܣ ൅ 2 ଶ (A1.1)ܱܥ

The C was presumed to diffuse through the rutile layer and oxidize.  As discussed below, 

when the oxide that forms is TiO2 the oxidation resistance is poor.  Fortuitously, in many 

cases, the oxide that forms is Al2O3, in which case the oxidation resistance is excellent.  In 

the remainder of this paper, the discussion will deal exclusively with oxidation that results in 

the formation of dense protective Al2O3 layers.   

 

200 μm

a) 

100 μm 

b) 

20 μm 

c)
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A1.2.1 Ti2AlC 

Following the initial work in 2001, there have been many studies that have explored the 

oxidation behavior of Ti2AlC.  In 2003, Wang and Zhou quantified the oxidation kinetics of 

Ti2AlC as cubic by heating it in air for 20 h in the 1000 °C to 1300 °C temperature range 

[42].  In other words, they concluded that the oxidation kinetics were best described by: 

 ሺ∆ܣݓ ሻଷ ൌ ݇௖ݐ (A1.2)

where ¨w is the weight gain, A, is the surface area exposed to the atmosphere, t is time and 

kc is the cubic reaction rate constant.  In this case, the overall simplified reaction is assumed 

to be: 

 

	ܶ݅ଶܥ݈ܣ	 ൅ ൬34ݔ ൅ ൰ܱଶݕ
ൌ 	 ቀ2ݔቁ݈ܣଶܱଷ 	൅ ܶ݅ଶ݈ܣଵି௫ܥଵି௬ ൅  ଶܱܥ	ݕ	

where x<0.5. 

(A1.3)

Here again, the C is presumed to diffuse through the Al2O3 layer and oxidize.  A typical 

microstructure of a Ti2AlC sample oxidized for almost 3000 h at 1200 °C is shown in Figure 

A1.1c.  Note that the reaction layer is comprised of almost pure Al2O3 and that it conforms 

to the samples’ corners.   

In 2004, Sundberg et al. reported parabolic oxidation kinetics for Ti2AlC up to 1400 °C in air 

[131].  In 2007, Byeon et al. reported that the oxidation kinetics were cubic in isothermal and 

cyclical oxidation tests at 1000, 1200, and 1400 °C [132].  Contrary to their previously 

published work in which it was claimed that the kinetics were cubic [42], in a recent review 

article, Wang and Zhou reported that Ti2AlC exhibited parabolic behavior [133].  In 2011 

Cui et al. reported parabolic rates for Ti2AlC up to 1400 °C [46].  In 2012, Yang et al. 
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reported cubic kinetics for Ti2AlC at 1200 °C [124].  Basu et al. also reported cubic oxidation 

kinetics for Ti2AlC in both air and steam in the 1000 °C to 1300 °C temperature range [47]. 

A1.2.2 Ti3AlC2 

The oxidation behavior of Ti3AlC2 has been less widely studied.  In 2003, Wang and Zhou 

reported that the kinetics were parabolic [41].  Qian et al. reported the oxidation kinetic to be 

parabolic, in the 1000-1300 °C range [134].  Lee et al. [135] reported that the oxidation 

kinetics were temperamental; some samples formed predominantly TiO2 layers, others 

formed Al2O3 layers in which case the oxidation reaction is presumably: 

 

	ܶ݅ଷܥ݈ܣଶ 	൅	൬34ݔ ൅ ൰ܱଶݕ
ൌ 	 ቀ2ݔቁ݈ܣଶܱଷ 	൅ ܶ݅ଷ݈ܣଵି௫ܥଶି௬ ൅  ଶܱܥ	ݕ	

where x<0.5. 

(A1.4)

Needless to add, the samples that formed an Al2O3 layer were quite oxidation resistant.  As 

noted above, when the oxide layers formed were TiO2-based the resulting oxidation 

resistance was poor. 

A1.2.3 Cr2AlC 

In 2007, Lin et al. reported that the oxidation kinetics for Cr2AlC in the 800-1300 °C range 

were parabolic [136].  The overall oxidation reaction was surmised to be: 

	ܥ݈ܣଶݎܥ	28  ൅ 	25 ܱଶ ൌ 14 ଶܱଷ݈ܣ ൅ ଷܥ଻ݎܥ8 ൅ 4 ଶ (A1.5)ܱܥ

In this case a continuous Cr7C3 sub-layer formed between the protective alumina layer and 

the Cr2AlC substrate (Figure A1.2).  As discussed below, the presence of this sub-layer has 

important implications and ramifications. 
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Figure A1.2 SEM micrograph of a) cross-sectioned Cr2AlC sample oxidized at 1200 °C. The outer layer is 
a Cr-containing Al2O3 and the inner layer is Cr7C3; b) of sample oxidized at 1100 °C for 35 h clearly 
showing Cr2O3 nodules (Gupta, unpublished results). This is the only MAX phase to show the 
formation of a carbide layer beneath the oxide layers formed during oxidation. 

 

At 1300 °C, the Al2O3 layer has a tendency to spall off and the oxidation resistance is 

compromised [43].  In 2008, Lee et al. further showed that the cyclic oxidation resistance of 

Cr2AlC in air to be excellent at 1000 C, good at 1100 C, intermediate at 1200 C, but poor at 

1300 °C [44].  Hajas et al. in 2011 reported parabolic oxidation kinetics for Cr2AlC thin films 

in the 1230 to 1410 °C range [137].  Most recently, in 2012, Li et al. explored the effect of 

grain size on oxidation kinetics of Cr2AlC: coarse-grained (CG) samples exhibited cubic 

oxidation kinetics at 1100 and 1200 °C, whereas fine-grained (FG) samples were less than 

parabolic at 1100 °C, and cubic at 1200 °C [138].  Also in 2012, Lee et al. showed that at 

1200 ° C, after a period of about 10 h during which there was an increase in weight, beyond 

that time the samples lost weight more or less linearly [139].   

  

10 μm  
Cr

2
AlC 

Cr
7
C

3
 A

l 2O
3  

b)

400 μm  

a) 



 182
 

A1.3 Parabolic, Cubic or Power law Kinetics 

 

The brief review of the literature of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC makes it 

amply clear that most agree on one fact, viz. the formation of an alumina layer is critical with 

endowing these compounds with their excellent oxidation resistance.  When rutile forms 

instead, the oxidation resistance is greatly diminished.  Where there is quite a bit of 

disagreement, however, is whether the kinetics are cubic or parabolic.  This distinction is of 

outmost importance, because if the kinetics are indeed parabolic, then the long term 

prognosis is not good.  However, if the kinetics are slower than parabolic, e.g. cubic or even 

better, then the oxidation resistance would be good enough for practical applications.  This 

is a crucial point that needs to be established beyond a reasonable doubt since many, 

following the lead of Wang and Zhou, also assumed parabolic oxidation kinetics.  The same 

conclusion was reached in a recent review article [133] despite the fact that Byeon et al. [132] 

and more recently Basu et al. [47] clearly showed the kinetics to be cubic.  More problematic 

is that most of the studies on the oxidation of Cr2AlC to date claim parabolic oxidation 

kinetics, including a recent review article on this compound [43, 44, 133, 136, 140].   

In the remainder of this paper we emphatically make the case that the oxidation kinetics are 

better described as cubic, and quite comparable for the three compounds.  The latter 

conclusion should not be surprising given that a dense, cohesive Al2O3-rich layer forms in all 

cases.  We make our case using a two-pronged approach.  The first is to re-plot some of the 

results of the early papers in which the authors maintained that the oxidation kinetics were 

parabolic and show that they can be better described by cubic kinetics (i.e. Eq. A1.2).  The 

second is to report on the longest oxidation experiment carried out to date on Ti2AlC at 

1200 °C that clearly show the oxidation kinetics to be cubic or near cubic.  Before 

proceeding further, we note that typically three laws have been used to describe the 
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oxidation kinetics of alumina formation in literature: parabolic, cubic, and power law given 

by, respectively: 

ଶݔ∆  ൌ ሺ′ܭ ଴ሻ (A1.6)ݐݐ

ଷݔ∆  ൌ ሺ′ܭ ଴ሻ (A1.7)ݐݐ

ݔ∆  ൌ ሺ′ܭ ଴ሻ௡ (A1.8)ݐݐ

where Δx is oxide scale thickness (μm) , to = 1 s, K’ is a constant, and n is the power law 

scale growth exponent.  In the following sections we critically assess which law best fits the 

oxidation of Ti3AlC2, Ti2AlC and Cr2AlC. 

A1.3.1 Ti2AlC and Ti3AlC2 

When the results of Wang and Zhou reported in Ref. [41] for Ti3AlC2 are re-plotted as 

(¨w/A)3 vs. t (Figure A1.3a) least squares fits of the data resulted in R2 values that were quite 

high (> 0.998).  The R2 value for the parabolic plot given by the authors (Fig. 2 in Ref. [41]) 

is around 0.98.  In other words, their own results fit a cubic law better than a parabolic one.  

It thus makes more sense to assume the kinetics to be cubic. 
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Figure A1.3 a) Replotted results from the 2003 Wang and Zhou papers on the oxidation of Ti3AlC2 and 
Ti2AlC [41, 42] showing a linear fit when (ƅw/A)3 is plotted vs. t. Least squares fit of the 1300 °C plot 
results in an R2 value of 0.998, compared to 0.98 for the parabolic fit reported in the original articles. The 
compounds and graphs are color coded for clarity. b) Oxide scale thickness (x) versus time for Ti2AlC 
held at 1200 °C for >2800 h. A power fit of the results shown yields a time exponent of 0.36, viz. cubic 
kinetics. Dashed line shows the ¨x based on a parabolic rate constant fitted to the first 100 h of 
oxidation. 

 

Also plotted in Figure A1.3a are the results by the same authors reported in Ref. [42] for 

Ti2AlC.  This side-by-side comparison makes it clear that the kinetics for both compounds 

are not only both cubic, but as importantly, of the same order of magnitude.  At 1100 °C, 

the oxidation kinetics for both ternary phases are nearly identical as they should be if in both 

cases, a dense alumina layer forms.  Given the latter it is highly unlikely that the kinetics 

would be parabolic in one case (Ti3AlC2) and cubic (Ti2AlC) in the other.  This conclusion is 

further confirmed when the post-oxidation microstructures are compared.  After 20 h 

oxidation at 1300 °C, the Al2O3 layer thickness is § 25 μm in Ti2AlC and § 14 μm in 

Ti3AlC2.  After 20 h at 1200 °C, the oxide layer thicknesses - at § 5 μm - are almost identical 

for both compounds [41, 42]. 

Furthermore, Byeon et al. showed that when commercially available Ti2AlC polycrystalline 

samples were heated in air, a continuous, adherent -Al2O3 formed [132].  They also 

concluded that the oxidation kinetics were cubic [132].  The thickness of the layer was § 15 
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μm after 25 h of isothermal oxidation at 1400 °C.  Roughly the same thickness was observed 

after 1,000 one hour cycles from ambient temperature to 1200 °C.  In both cases, the layer 

remained adherent and protective (Figure A1.4a).  

Similarly, recent results by Basu et al. [47]  on the oxidation of commercially available Ti2AlC 

samples, also showed that: i) the oxidation kinetics up to 120 h were cubic; ii) there is little 

difference between oxidation in air and in a 100 % steam environment up to 1300 °C; iii) the 

activation energy was about 270 kJ/mol; iv) the oxidation results a continuous and stable 

layer of -Al2O3, along with a thin surface layer of rutile in both environments.  The thin 

TiO2 layer, however, volatilizes by forming gaseous TiO(OH)2 in the presence of water 

vapor at temperatures >1200 °C.   

To help resolve this question, we conducted an isothermal oxidation experiment on Ti2AlC 

at 1200°C for > 2800 h.  Samples were prepared by pouring pre-reacted Ti2AlC powders 

(Kanthal, Sweden) in a graphite die that was in turn placed in a hot press and hot pressed, 

HPed, for 4 h at 1300 °C under a load corresponding to a stress of § 30 MPa and a vacuum 

of 10 -2 torr.  The resulting fully dense samples were electro-discharged machined, EDM, 

into smaller blocks and rinsed in dilute hydrochloric acid prior to testing. 
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Figure A1.4 a) Magnitude of compressive residual stress within the Al2O3 scale determined from 
luminescence-shifts as a function of time of isothermal oxidation at 1000, 1200 and 1400 °C [132]. The 
residual stresses are compressive, a function of time and temperature, and of the order of 500 MPa 
which is considered low [132]. b) Oxidation kinetics of Ti2AlC are compared with other more 
established/commercial oxidation resistant alloys. Note that if the very first oxidation cycle is omitted 
from the Ti2AlC results, its oxidation kinetics are comparable to PM2000 [132]. 

 

The initial dimensions and weights were recorded.  Samples were then loaded into a 1200 °C 

box furnace and held at temperature for 25, 100, 500, 1000, 2000, and 2873 h.  After almost 

3000 h, the resulting microstructure (Figure A1.1c) clearly shows the formation of a thin 

cohesive Al2O3 layer.  After holding at 1200 °C for up to 2873 h, the oxide layer reached a 

thickness of about 21 μm (Figure A1.1c).  Grain size was measured using the line intercept 

method on fractured surfaces (see Figure A1.9).  About 200 grains per sample were 

measured.   

When ƅx3 is plotted vs. t a straight line (not shown) is obtained.  Least squares fit of the 

results resulted in an R2 > 0.988.  To further confirm the cubic kinetics, a power law fit (Eq. 

8) of the results (Figure A1.3b) resulted in the following relationship:  

ሻ݉ߤሺ	ݔ∆  ൌ 1.2ሺ ଴ሻ଴.ଷ଺ݐݐ ܴଶ ൌ 0.99 (A1.9)
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where to = 1 s.  At 14 μm, the Al2O3 layer thickness observed after 1000 h is in very good 

agreement to the 15 μm found after 1000, 1 h cycles to 1200 °C conducted by Byeon et 

al.[132], shown in Figure A1.3b as a black square.  Based on these results and previous work, 

it is reasonable to conclude that the oxidation kinetics of Ti2AlC are indeed near cubic.  

Table A1.1 summarizes the kc values obtained from the various studies on Ti2AlC, Ti3AlC2 

and Cr2AlC. 

What is noteworthy and of great practical importance is the fact that even after this extended 

time at 1200 °C, no cracks were observed anywhere, not even at the corners (Figure A1.1c).  

One of the main reasons why the oxidation resistance of Ti2AlC is as good as it is, and so 

resistant to thermal cycling, is the excellent match in thermal expansions between it and the 

α-Al2O3 protective layer that forms.  Photoluminescence of the -Al2O3 scale indicated that 

the residual stresses formed in that layer were compressive, a function of time and 

temperature and of the order of 500 MPa (Figure A1.4a) [132].  Such residual stresses are 

considered low, and partially explain the high spallation-resistance of the -Al2O3 scale 

(Figure A1.4b).   
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Table A1.1 Summary of kc (kg3m-6s-1) values for the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC. 

Phase 1000 °C 1100 °C 1200 °C 1300 °C 1400 °C Comments and Ref. 

Ti2AlC* 2.3x10-13 1.5x10-12 1.1x10-11 2.1x10-11
 [42] 

Ti2AlC 3.3x10î13 1.9x10î12 1.0x10î11 5.1x10î11
 Air [47]  

Ti2AlC 5.6x10î13 2.0x10î12 1.2x10î11 6.0x10î11
 100 % H2O [47]  

Ti3AlC2  1.3x10-12‡ 2.6x10-12‡ 1.1x10-11‡ 6.1x10-10‡ [41] 

Cr2AlC   3.8x10-12‡ 3.2x10-11‡  [136] 

Cr2AlC CG  2.8x10î13‡ 9.7x10î12‡   [138] 

Cr2AlC FG  7.5x10î13‡ 1.47x10î11‡   [138] 

Cr2AlC  4.4x10î13‡    [139] 

* In [42], the results listed in their Table 1 are wrong. The correct values, based on the results they 
show in their Fig. 1c, are listed here and are the correct ones.  
‡ These values are calculated from the weight gain results reported in the original papers. In the 
original papers, kc was either not provided or incorrectly reported as parabolic. 

 

Figure A1.4b compares the oxidation kinetics of Ti2AlC with other more 

established/commercial oxidation resistant alloys [132].  We note in passing that 

commercially available Fe- and Ni-based Al2O3-forming alloys have relatively high CTE’s 

and typically require reactive element additions to improve their spallation resistance [141].  

Also note that if the very first oxidation cycle is omitted from the Ti2AlC results, its 

oxidation kinetics are comparable to PM2000 (Figure A1.4b). 

After heating Ti2AlC to 1200 °C, and cooling to room temperature, Cui et al. identified twins 

and stacking faults bounded by partial dislocations by TEM in surface TiO2 grains [46].  

These defects most probably formed as a result of the thermal stresses generated due to 

thermal expansion mismatches during cooling.  Cui et al. also confirmed the formation of 

Al2TiO5 above 1400 °C following the reaction: 
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 ܱܶ݅ଶ ൅ ଶܱଷ݈ܣ ൌ ଶܱܶ݅ଷ (A1.10)݈ܣ

This Al2TiO5 layer was correlated with the formation of cracks upon cooling.  These cracks 

were ascribed to thermal expansion mismatches, and as importantly to the high anisotropy 

of thermal expansion of Al2TiO5.  This compound has a thermal expansion of 10.9 x10-6 K-1 

along the a-axis, 20.5 x10-6 K-1 along b and - 2.7 x10-6 K-1 along c.  The formation of Al2TiO5 

should thus be avoided as much as possible.   

Using transmission electron microscopy, Lin et al. explored the microstructures of Ti3AlC2 

and Ti2AlC samples after oxidation in air for 10 h at 1200 °C [142].  An enrichment of Ti in 

the Al2O3 grain boundaries and Ti-rich precipitates in the Al2O3 scales were identified.  They 

also showed that Al depletion at the oxide/substrate interface was minimal, indirectly 

confirming that the diffusivity of Al in the carbides is quite fast at these temperatures.  These 

results again emphasize the close similarities of the oxidation behavior observed in both 

Ti3AlC2 and Ti2AlC. 

A1.3.2 Crack Healing 

Before discussing the oxidation of Cr2AlC, it is important to review a remarkable property of 

Ti2AlC and Ti3AlC2, namely their crack healing ability [45, 143].  Crack healing of Ti3AlC2 

was investigated by oxidizing partially pre-cracked samples.  A crack near a notch was 

introduced into the sample by tensile deformation.  After oxidation at 1100 °C in air for 2 h, 

the crack was completely healed, with oxidation products consisting primarily of -Al2O3, as 

well as some rutile TiO2 (Figure A1.5a to d).  A schematic of the process is shown in Figure 

A1.5e.  The indentation modulus and hardness of the crack-healed zone were slightly higher 

than those of the original Ti3AlC2 base material.  The preferential oxidation of Al atoms in 

Ti3AlC2 grains on the crack surface resulted in the predominance of -Al2O3 particles 

forming in a crack less than 1 μm wide.   
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Figure A1.5 After oxidation at 1100 °C in air for 2 h, crack healing of Ti3AlC2 is seen via SEM 
micrographs a) showing the formation of primarily -Al2O3, as well as some rutile TiO2; Energy 
dispersive x-ray spectroscopy (EDS) element maps of the crack region show concentrations of b) Ti, c) 
Al, and d) O as the alumina forms in the crack. A schematic of the process is shown in e [45]. 

 

In 2011, the same group [143] revisited the oxidation of Ti2AlC and carefully examined the 

morphology of the various oxide layers that form both on flat and curved surfaces or cracks.  

They found that after oxidation at 1200 °C for 16 to 100 h, the -Al2O3 particles that 

formed on flat surfaces were small ( § 1 μm), densely packed and columnar.  Those that 

formed in the cracks or cavities, on the other hand, were more equiaxed and less densely 

packed.  The rutile grains, on the other hand, exhibit a broad size distribution, ranging from 

sub-micrometer to 10 μm.  The authors also confirmed the presence of small TiO2 particles 

at the -Al2O3 ơ grain boundaries first reported by Lin et al. [142].   

Even more recently, the same group [125] showed that Ti2AlC was capable of repeatedly 

repairing damage events.  When the authors introduced Knoop indentations on the tensile 

a) b) 

e) 

c) 

d) 
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side of Ti2AlC flexural bars, the flexural strength dropped from 211±15 MPa to 152±20 

MPa.  Heating the indented bars, in air for two hours, resulted in an increase in the flexural 

strengths to 224±50 MPa, a value that was slightly higher on average than the virgin samples, 

albeit with larger scatter.  Even more impressively, after successively extending the same 

crack seven times and healing it between each fracture event, the fracture toughness dropped 

from § 6.5 MPa¥m, to about 3 MPa¥m.  It is important to note here that by the end of the 

7th cracking iteration the filled crack was of the order of 1 mm (Figure A1.6a).  As in their 

previous work, Li et al. showed that the main healing mechanism at high temperature is the 

filling of the cracks by the formation of well adhering Al2O3 layers and some TiO2 (Figure 

A1.6b to e).  The authors write in their abstract: “Self-healing ceramics have been studied for 

over 40 years to obtain some performance recovery and to prevent material failure during 

service, but so far only materials with the capability of single healing event per damage site 

have been realized.” They then proceed to show how Ti2AlC is capable of multiple healing 

events.   
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Figure A1.6 Images of fracture and crack-healing in Ti2AlC; (a) Crack path after four cycles of healing 
at 1200 °C for 2 h, and subsequent fracture. (b) Crack path after seven cycles of healing, and subsequent 
fracture. The red arrows indicate the location of remnant crack parts. (c) OM image of a crack fractured 
eight times before annealing in air at 1200 °C for 100 h showing the complete filling of the crack. (d) 
Enlarged OM image taken from (c). Two opposite fracture surfaces were covered by the same Al2O3 
layer (black) and the gap between the two surfaces was fully filled by a mixture of Al2O3 (black) and 
TiO2 (white particles). (e) SEM image of the healed-damage zone obtained using electron backscatter 
diffraction [125]. 

 

A1.3.3 Cr2AlC 

As noted above, the situation for Cr2AlC is even more muddled, since most papers claim 

parabolic kinetics [43, 44, 136, 137, 140], when as shown below they are far from parabolic.  

Figure A1.7a re-plots the results of Lin et al. [136] together with two power fits (solid lines), 

assuming cubic kinetics (dotted lines) and the parabolic rate constants reported by the 

authors (dashed lines).  The power fits result in the following relationships at 1200 °C and 

1300 °C, respectively. 

ሺ݇݃/݉ଶሻ	ݓ∆  ൌ 10ିସሺݔ1.4 ଴ሻ଴.ଷସݐݐ ܴଶ ൌ 0.986 (A1.11)

ሺ݇݃/݉ଶሻ	ݓ∆  ൌ 10ିସሺݔ8.8 ଴ሻ଴.ଶଷݐݐ ܴଶ ൌ 0.977	 (A1.12)
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When the same exercise was carried out on some recent long term oxidation (up to one year) 

results by Lee et al. [139] reproduced in Figure A1.7b, the following relationships - shown by 

the solid lines in Figure A1.7b – at 700 °C, 800 °C and 1000 °C, respectively, were obtained: 

ሻ݉ߤሺ	ݔ∆  ൌ 0.009ሺ ଴ሻ଴.ଶସݐݐ ܴଶ ൌ 0.91 (A1.13)

ሻ݉ߤሺ	ݔ∆  ൌ 0.001ሺ ଴ሻ଴.ସ଺ݐݐ ܴଶ ൌ 0.98 (A1.14)

ሻ݉ߤሺ	ݔ∆  ൌ 0.24ሺ ଴ሻ଴.ଵ଼ݐݐ ܴଶ ൌ 0.99 (A1.15)

 

 

 

Figure A1.7 a) Re-plots of the results of Lin et al. [136] together with two power fits (solid lines), 
assuming cubic kinetics (dotted lines) and the parabolic rate constants reported by Lin et al. (dashed 
lines) are shown. Cubic power fits result in time exponents of 0.34 and 0.25 for 1200 °C and 1300 °C, 
respectively. b) The same exercise in a) - carried out on data by Lee et al. [139] -results in power fits 
shown by the solid lines with time exponent values of 0.24, 0.46 and 0.18 at 700 °C, 800 °C and 1000 °C, 
respectively. With the possible exception of 800 °C, the oxidation kinetics of Cr2AlC are certainly not 
parabolic, and in most cases even better than cubic. 
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Taken in toto these results make it amply clear that, with the possible exception of oxidation 

at 800 °C, the oxidation kinetics of Cr2AlC are certainly not parabolic, and for the most part, 

not even cubic.  These results are noteworthy because they confirm that at 700 °C, 1000 °C 

and 1300 °C the oxidation kinetics are significantly slower than cubic.  In other words, the time 

exponents are significantly less than 1/3.  At 1200 °C they are close to cubic.  The results at 

800 °C are anomalous, and reflect either enhanced oxidation kinetics at 800 °C for reasons 

that are unclear and/or experimental uncertainty.  If the first point at 800 °C is ignored, the 

exponent value drops to about 0.38, which is probably more realistic.  This comment 

notwithstanding, more work at 800 °C is needed to better understand the nature of this 

possible anomaly.   

In the final analysis, the oxidation kinetics of Cr2AlC, for the most, part cannot be fit 

adequately with a simple model for the simple reason that the kinetics are initially relatively 

fast, but then slowly decrease with time to the point where the oxide layers almost stop 

getting thicker.  The best example of this state of affairs can be found in the results shown in 

Figure A1.7b.  After 30 days of oxidation at 1000 °C, the oxide thickness was 3.5 μm; in the 

next 330 days, however, the oxide thickness increased by less than 2 μm.  

Lastly, when all the results shown in Table A1.1 are plotted on an Arhennian plot (Figure 

A1.8), it is clear that the absolute values of the cubic rate constants are comparable in the 

1100 °C to 1200 °C.  However, at 507 ± 90 kJ/mol, the activation energy for the oxidation 

of Cr2AlC is roughly double the 250 ± 30 kJ/mol of the Ti2AlC and Ti3AlC2.  Why the 

activation energies are different is not clear at this time.   

Note that the results listed in Table A1.1 all assumed cubic kinetics, when in some cases, as 

discussed above, the kinetics may not have been exactly cubic.  The values listed in Table 

A1.1 are nevertheless useful because it is only by comparing them can the oxidation kinetics 

of the various materials be compared.  However, for practical purposes where predictions of 
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oxide thickness values at long times need to be made, the power law fits – with maybe the 

omission of the first 10 or so hours - are to be used instead.   

 

 

Figure A1.8 Arrhenian plot of cubic rate constants for Al2O3-forming MAX phases, Ti2AlC, Ti3AlC2 and 
Cr2AlC listed in Table A1.1. 

 

A1.3.4 Implications of the presence of Cr7C3 layer after the oxidation of Cr2AlC 

Of more than 20 MAX phases whose oxidation response in air have been studied [37, 144-

151], only one – Cr2AlC– forms a carbide layer.  This observation indirectly implies that for 

this compound C is not diffusing out as fast as the Al, which results in its accumulation at the 

substrate/oxide interface.  This in turn implies that the alumina that forms on Cr2AlC must 

be somewhat different from the one that forms on Ti2AlC.  Further evidence for the 

conclusion that the Al2O3 oxide layer that forms on Cr2AlC is different than the one that 

forms on Ti2AlC can be found in the over two orders of magnitude better corrosion 

resistance of Cr2AlC to oxidation in the presence of Na2SO4, compared to Ti2AlC or Ti3AlC2 
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[136].  Lastly, a perusal of the results listed in Table A1.1 and shown in Figure A1.8 makes it 

clear that at all temperatures < 1200 °C, Cr2AlC has better oxidation resistance.  Why this is 

the case is unclear at this time, but the dissolution of small amounts of Cr2O3 in the Al2O3 

layer that forms when Cr2AlC is oxidized [43, 136, 137, 139, 140] could play a role.  Another 

factor may be the presence of small TiO2 particles at the grain boundaries of the alumina 

that forms on Ti2AlC [39, 42, 47, 124, 125, 132, 142]. 

Note that the behavior of Cr2AlC cannot be traced to the stability of Cr7C3 relative to TiC 

since the latter is significantly more stable.  It is also unlikely that the anomalous behavior is 

associated with a low diffusivity of Al in Cr2AlC since there is no reason to believe that the 

diffusivity of Al in Cr2AlC is much different than it is in Ti2AlC, which as discussed above is 

fast enough to prevent any depletion of Al at the oxide/Ti2AlC interface.   

The presence of Cr7C3, however, is quite problematic for the simple reason that if for any 

reason the protective alumina layer is breached, the oxidation of the underlying carbide at 

high temperature would, more likely than not, be catastrophic (see Figure A1.2b).  When this 

is combined with the fact at 1200 °C, scale cracking and spalling is observed and at 1300 °C, 

the oxidation resistance deteriorates quickly as a function of cycling owing to the formation 

of voids and scale spallation [44], it follows that despite its excellent oxidation resistance, it is 

unlikely that Cr2AlC can be used at temperatures much higher than 1100 °C or even 1000 

°C.  Note the propensity for spallation can be traced to the relatively high thermal expansion 

of this compound (§ 12.8 x10-6 K-1 [152]) relative to that of the protective alumina layer that 

forms.  
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A1.4 Comparison to FeCrAl alloys 

 

It is well documented that grain size coarsening leads to a decrease in oxide scale thickness 

growth rates in FeCrAl alloys, where inward oxygen diffusion dominates [153-158].   

Naumenko et al. have shown a near cubic rate power law dependence by correlating oxide 

grain growth with the scale thickness, with a time dependence exponent ranging from 0.35 

to 0.37 in FeCrAlY [154].  Liu et al. [155] developed a mathematical model to explain the 

dependence of scale thickness on oxide grain coarsening, which was seen to follow a t1/3 

dependence in the scale layer in FeAlCrY, in good agreement with previous work by Whittle 

et al. [156].  Quadakkers et al. have criticized the use of parabolic rate calculations for 

determining the oxidation kinetics of ơ –Al2O3 in FeCrAl alloys, showing instead that they 

are better described by near cubic time dependencies with a power law fit [153].   Smeltzer et 

al. showed that the decrease in grain boundary diffusion paths over time limit the inward 

diffusion of oxygen during oxidation [159].  As the area fraction of short circuit paths 

decreases, there is an overall decrease in oxide scale growth rates.  Unsurprisingly, as 

discussed in the next section, the alumina layers formed herein are similar to those seen in 

other alumina forming materials (Figure A1.9). 
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Figure A1.9 SEM micrographs of the fracture surface of Ti2AlC after a) 25 h and b) 2873 h at 1200 °C in 
air. The oxide scale is seen to increase in grain size linearly towards the MAX phase interface. 

 

A1.5 Modelling of the Oxidation Kinetics 

 

In general, the scale thickening rate can be written as [160]: 

 
ݐ݀ݔ݀ ൌ ௘௙௙ܦ ܴܶߤ∆ ∙ (A1.16) ݔ1

where Deff, is the effective diffusion coefficient; ¨μ, the oxygen potential difference between 

the scale/gas and scale/metal interfaces and R and T have their usual meaning.   

If one assumes that the oxidation kinetics are controlled by grain boundary diffusion of 

oxygen, then [161]: 

௘௙௙ܦ  ൌ ஻ீܦ ݎ஻ீீߜ2  (A1.17)

where DGB is the oxygen grain-boundary diffusion coefficient; GB, the grain-boundary 

width; and rG, the oxide grain size.   

In general, grain coarsening kinetics can be described by [162]: 
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 ݀௠ ൌ ݀଴௠ ൅ (A1.18) ݐܭ

where K is a constant, m is the grain growth exponent and do the initial grain size.  

Combining Eqs. A1.16, A1.17, and A1.18, it can be shown that at longer times [155]: 

ଶݔ  ൎ ሺ′ܭ ଴ሻሺ௠ିଵሻ/௠ݐݐ  (A1.19)

where x is the scale thickness and K’ is a constant.  It follows that if the assumptions made 

above are correct, then the following relationship applies: 

 ݊ ൎ ሺ݉ െ 1ሻ/2݉ (A1.20)

To test this idea we measured the grain sizes of the alumina films that formed on the Ti2AlC 

sample that was oxidized for almost 3000 h.  The results are shown in Figure A1.10a. Based 

on the least squares fit of the results, m § 3.23.  According to Eq. 20, n § 0.345, which, 

coincidentally or not, is in excellent agreement with the value of 0.36 derived from the 

results shown in Figure A1.3b.  Plotting d3.23 vs. t (Figure A1.10b) results in a straight line fit, 

with intercept do = 0.93 μm, further validating the assumption - that do can be ignored at 

longer times – made in deriving Eq. (A1.19).  Whether this agreement is fortuitous or not 

must await the results of further work at different temperatures and different alumina 

forming MAX phases.  
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Figure A1.10 a) Oxide scale grain coarsening kinetics plotted with a power law fit. b) A least squares fit 
of dm vs. t results in a straight line, where the intercept is equal to dom. At  0.93 μm, do is sufficiently 
small to assume that at long times it can be ignored in Eq. A1.19 [155]. 

 

A1.6 Summary and Conclusions 

 

The oxidation resistances, in air, of the MAX phases, Ti2AlC, Ti3AlC2 and Cr2AlC are 

excellent because, in most cases, a dense, spall resistant, protective Al2O3 layer forms.  Of 

the three, and despite the fact that the oxidation kinetics of Cr2AlC at temperatures < 1200 

°C are slower than those of Ti2AlC (Figure A1.8), for practical applications Ti2AlC is by far 

the most attractive for several reasons that include: a) the higher concentration of Al as 

compared to Ti3AlC2, which is important because it increases the activity of Al at the 

substrate/oxide interface thus increasing the probability of the formation of the all-

important alumina layer; b) the excellent match between the thermal expansions of Ti2AlC 

and alumina, which in turn minimizes thermal residual stresses and concomitant propensity 

of spallation; c) lower density and, d) crack healing.  Lastly, the fact that the raw materials for 

this MAX phase are some of the lowest costing of all MAX phases cannot be 

underestimated.   
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The formation of Cr7C3 upon the oxidation of Cr2AlC is unique to this compound and 

implies that the alumina layer that forms is less pervious to C than the one that forms on 

Ti2AlC, Ti3AlC2 and other MAX phases.  The reason for this somewhat surprising result is 

unclear at this time. 

At most temperatures, the oxidation kinetics are better described as cubic than parabolic.  

This comment notwithstanding, even cubic kinetics are an approximation.  The best strategy 

to predict the time dependence of the alumina layer thickness is to fit the results to a power 

law fit.  Lastly, by measuring the grain sizes of the alumina scale, we present evidence that 

the rate-limiting step is oxygen diffusion down the alumina scale grain boundaries.  The 

agreement with power law equations derived using oxygen grain boundary diffusion 

assumptions is shown to be quite good.  Further studies at different temperatures with other 

alumina forming MAX phases are indicated at this time to further confirm these 

conclusions. 
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A2 Tensile Creep of Ti2AlC in Air in the 1000-

1150 °C Temperature Range 

 

In the secondary regime of the tensile creep of Ti2AlC, made with commercial powders with 

a grain size of 14±8 μm, the minimum creep rate is given by a power law, with a stress 

exponent of 2.5±0.3, and activation energy of 362±88 kJ/mol. Dislocation creep - with 

possibly grain boundary sliding - are presumed to be the dominant creep mechanism(s). The 

high failure strains (>15%) are attributed to substantial grain kinking near the fracture 

surface and concomitant damage tolerance. 

 

Key Words: Ti2AlC, tensile creep, high temperature, power law creep, rupture.  
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A2.1 Manuscript 

 

The Mn+1AXn (MAX) phases are a class of layered, machinable, transition ternary metal 

carbides and/or nitrides, where M is an early transition metal, A is a group 13 to 16 element, 

and X is C and/or N.  These compounds are classified as thermodynamically stable 

nanolaminates having relatively high fracture toughness (8-12 MPa¥m), and yet are 

machinable, lightweight, and relatively soft [28, 30-32, 163].  Some also undergo a brittle to 

ductile transition above 1000 °C. 

Creep, in most crystalline solids, occurs by a variety of mechanisms in three stages: a primary 

stage, where the strain rate decreases with time, a secondary or quasi-steady state, where the 

strain rate reaches a steady state or a minimum, and lastly, a tertiary stage.  Surprisingly given 

their potential as high temperature structural materials there have been very few creep 

studies on the MAX phases.  As far as we are aware, the only two papers dealing with the 

tensile creep of a MAX phase are those by Radovic et al. on the creep of Ti3SiC2 [56, 164].  

In those papers, it was shown that the minimum creep rate, ߝሶ௠௜௡, is well represented by a 

power law relation given by [165, 166]: 

ሶ௠௜௡ߝ  ൌ ܣሶ଴ߝ ൬ 0൰݊ߪߪ ሺെܴܳܶሻ (A2.1)݌ݔ݁

where Ƴ, A, n and Q are, respectively, the uniaxial applied stress, a stress-independent 

constant, stress exponent and activation energy for creep;	ߝሶ௠௜௡ = 1 s-1 and Ƴo = 1 MPa.  R 

and T have their usual meaning. 

Radovic et al. concluded that the main creep mechanism was dislocation creep, with a Q of ~ 

460, for both fine (FG) and coarse (CG) grained microstructures [56, 164].  At n = 2.0 for 

the CG and n = 1.5 for FG, the stress exponents were comparable.  The creep response was 
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found to depend on the generation and dissipation of large internal stresses during loading.  

Stresses were dissipated via delamination, cavitation, and kinking [56, 164].  Up to 4 % plastic 

strain was accommodated without the formation of observable cracks or voids.  Between 4 

% and failure, the strains were accommodated by cracks and voids.  None of the failed 

samples exhibited necking.  Zhen et al. reported similar damage mechanisms for the 

compressive creep of Ti3SiC2, and showed that at temperatures above 1000 °C, kink bands 

and dislocation arrays interact in such a way as to form deformation cells, effectively 

subgrains [58, 59].  Bao et al. found subcritical crack growth to be the dominating failure 

mechanism in bending creep of Ti3AlC2 [57]. 

Using electron backscatter diffraction and transmission electron microscopy, TEM, of post-

crept samples, Barcelo et al. [167], presented evidence for three deformation mechanisms in 

individual grains, namely: (i) basal dislocation glide, to form dislocation arrays/stacking 

faults, (ii) formation of dislocation walls of opposite sign that result in kinking of individual 

grains and, (iii) formation of mobile dislocation walls, MDW, or low angle grain boundaries, 

of the same sign that result in grain bending [167].  They also showed that the deformation 

was not uniform, with evidence showing completely undamaged grains next to heavily 

kinked grains, a characteristic of solids in which deformation is occurring with less than 5 

independent slip systems.  This response is expected for all MAX phases, especially in CG 

microstructures. 

Several studies have shown that Ti2AlC performs significantly better than Ti3SiC2 in 

oxidizing environments up to 1300 °C [40, 42, 131, 132].  The latter exhibits parabolic law 

oxidation, which transitions to linear above 925°C and exposure times longer than 30 h, 

forming silica and rutile layers [40].  In contrast, a dense inner layer of coherent alumina, ơ-

Al2O3, with a discontinuous rutile, TiO2, outer layer forms on Ti2AlC.  Wang et al. reported 

that the oxidation of Ti AlC obeyed a cubic law, with cubic rate constants, kc, increasing 
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from 2.4x10-12 to 2.1x10-11 kg3/m6/s, as the temperature increased from 1000 to 1300 °C 

[42].  Sundberg et al. also reported excellent oxidation resistance for Ti2AlC made from 

Ti2AlC pre-reacted powders.  The protective Al2O3 layer formed maintained excellent 

adhesion, even through 8000 thermal cycles to 1350 °C [42, 131].  Beyon et al. showed that 

the presence of 3 oxidation phases results in the variation between parabolic and cubic rate 

laws seen in previous work: Al2O3, TiO2, and Al2TiO5 seen at 1400 °C after 10 h [132].  

Beyon et al. also showed that the residual stresses in the Al2O3 layers were relatively low 

because of the excellent match between the thermal expansion coefficients of Ti2AlC and 

Al2O3.    

Herein, we report on the tensile creep of polycrystalline Ti2AlC samples with a grain size of 

14±8 μm, in the 1000 - 1150 °C temperature, and the 10 MPa to 40 MPa stress, ranges, 

respectively.  Whenever possible the results are compared with previous work on the creep 

of Ti3SiC2 [56, 164]. 

The processing details are described elsewhere [33, 168].  The samples were prepared by 

pouring pre-reacted Ti2AlC powders (Kanthal, Hallstahammar, Sweden) in a graphite die 

that was then placed in a hot press and hot pressed, HPed, for 4 h at 1300 °C under a load 

corresponding to a stress of § 30 MPa and a vacuum of 10-2 torr.  The resulting samples 

were fully dense, predominantly single-phase, with randomly aligned plate-like grains.  The 

length, dl, and width, dw, of the grains were measured using an optical microscope (OM) and 

the line intercept method.  The average grain size was calculated as the geometric mean value 

of the grain lengths and widths, viz. ට݀௟ଶ ∙ ݀௪య
. 

Details of the tensile creep measurements can be found elsewhere [56, 164, 168, 169].  

Electro-discharge machined dog-bone specimens SR51 (prismatic gage section: 2 × 2.5 × 12 

mm3) [168] were tested, with a final surface preparation of 600 grit polish along the loading 
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direction to remove surface defects and contamination from sample preparation.  The strain 

rate measurements were made using a laser-extensometry system (1100 series, Zygo Corp, 

Middlefield, CT) [170].  Initial loads, corresponding to a stress of 1 MPa, were applied to the 

samples prior to heating for alignment purposes.  All samples were then heated to the testing 

temperatures (1000 to 1150 °C) in  1.5 h, and held at that temperature for 2 h before the 

loads were applied.  Most samples were loaded with step load configurations over a range of 

loads corresponding to stresses that varied between 10-40 MPa, due to limited sample 

quantities.   

The fracture surfaces were examined using a scanning electron microscope, SEM (Carl Zeiss 

Supra 50VP, Germany).  Cross-sections were taken from the gauge area, and select surfaces 

that were parallel to the applied load were ground and polished for optical microscopy, and 

SEM analysis.  Some of the polished samples were etched using a 1:1:1 by volume 0.5M 

HF:0.7M HNO3:H2O solution in order to better expose the grains [171].   

The HPed samples were predominantly single phase and fully dense (Figure A2.1a).  The 

average grain size was 14±8 μm.  The average aspect ratio (dl/dw) was 4, indicating that the 

grains, like most MAX phases, are more plate-like than equiaxed (Figure A2.1a-b).  The size 

distribution is somewhat bimodal because of the presence of small grains (~ 8 Ƭm) 

entrapped between larger grains (~19 Ƭm).  The post creep microstructure in the grip 

section (Fig. 1b) was found to be identical to the as-received samples (Figure A2.1a). 
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Figure A2.1 a) OM micrographs of as-received microstructure are compared to b) SEM micrographs of 
the grip section post creep, showing minimal difference in grain size. c) plots the effect of time, t, and  
on the minimum tensile strains, min, at 1050 °C for step loads of. Inset in Fig. 1c shows a typical strain 
vs. time plot for a sample that was loaded to a load corresponding to a stress of 30 MPa at 1050 °C. 

 

Figure A2.1c plots the effect of time, t, and  on ߝሶ௠௜௡ at 1050 °C.  Inset in Figure A2.1c 

shows a typical strain vs. time plot for a sample that was loaded to a load corresponding to a 

stress of 30 MPa at 1050 °C.  As for Ti3SiC2 [56, 164], three regimes are distinguishable: 

 An initial transient regime, labeled i in inset of Figure A2.1c, where ߝ	ሶ decreases with 

t.  

 A secondary creep regime, labeled ii in inset of Figure A2.1c, in which ߝሶ is more or 

less constant with time.  In this regime, the creep rate reaches 	ߝሶ௠௜௡.   

 A tertiary creep regime, labeled iii in inset of Figure A2.1c, in which ߝሶ increases until 

failure. 

A ln-ln plot of ߝሶ௠௜௡ vs. Ƴ as a function of stress is shown in Figure A2.2a.  An Arrhenius 

plot of ߝሶ௠௜௡ is shown in Figure A2.2b.  Bilinear regression analysis of the results shown in 
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Figure A2.2a and b was carried out, assuming Eq. 1 was operative [165, 166].  The analysis, 

on the logarithmic form of Eq. A2.1, resulted in the following relationship:  

െ1ሻݏሶ௠௜௡ሺߝ  ൌ ሶ଴expሺ12.5ሻߝ ൬ 0൰2.5േ0.3ߪߪ ሺെ362േ88݌ݔ݁ ܴ݈ܶ݋݉/ܬ݇ ሻ (A2.2)

 

 

Figure A2.2 a) Ln-ln plot of ࢿሶ࢔࢏࢓ vs. stress as a function of T; b) Arrhenius plots of min. strain rate as a 
function of stress; c) Ln–ln plot of min. strain rate vs. stress assuming Q of 362 kJ/mol for Ti2AlC 
compared to Ti3SiC2 [56, 164]. Results of bilinear regression as a function of stress and temperature are 
shown as lines in each plot, the slopes of which reveal Q, n and Ƴ for the creep power law (Eq. A2.2) 

 

Figure A2.2c plots this relationship, as a dashed line.  At 30 MPa, the strains to failure, ƥf, are 

 16 % at 1100°C, and § 24% at 1000°C.  The maximum ƥf was 27 %, for a sample held at 

1100 °C that was step loaded to loads corresponding to stresses of 10, 20, and 30 MPa. 

Sections parallel to the loading direction of step loaded samples held at 1150 °C (Figure 

A2.3) show significant crack formation and damage accumulation.  This SEM micrograph is 
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representative of all samples tested.  Deformation occurs without necking in the gauge area 

(Figure A2.3).  Crack formation is almost perfectly perpendicular to the vertical loading 

direction.  All samples formed a protective Al2O3 layer - some having a discontinuous TiO2 

outer layer - with thicknesses that depended on temperature and time (see inset in Figure 

A2.3).  As noted above, that creep failure occurred without evidence of necking is again in 

agreement with the Ti3SiC2 results [164].  

 

 

Figure A2.3 Composite OM micrographs showing cross-sections of step loaded Ti2AlC at a) 1100°C 
loaded at 10-20-30 MPa for 55h to a final strain of 27% and b) 1150°C loaded at 5-10-15-20 MPa for 86h to 
a final strain of 26%. Samples do not exhibit necking, and insets show the formation of protective Al2O3 
for each sample. 

 

At 8.5±1.3 μm, the thickest Al2O3 layer observed was found on the sample held at 1150 °C 

for 86 h.  The sample also showed a sporadic, discontinuous covering of 7.5±2.7 μm thick 

TiO2.  The oxide layers were significantly thinner than the SiO2/TiO2 layers seen for Ti3SiC2 

[164].  The protective Al2O3 layer formed as shown in previous oxidation studies of Ti2AlC.  
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Note that these layers do not influence the measured values of the minimum strain rate for 

the same reasons discussed in Appendix A in Ref. [164].  

When the fractured surface of a sample held at 1100°C and 30 MPa for 3 h to a ƥf of 16 % 

was examined in the SEM (Figure A2.4) it was found to be covered with grains that were 

heavily kinked (Figure A2.4).  At 1.7±3 μm, the grain size of the fractured surface was 

significantly smaller than the initial 14±8 μm grain size (Figure A2.4b, c).  This observation is 

new and the extent of kinking is somewhat surprising, but consistent with the idea that in the 

MAX phases the major deformation mechanism at high temperatures are dislocation pileups 

and kink band formation [28].  The development of subgrains is also consistent with the 

deformation by kinking found during the compressive creep of Ti3SiC2 [59].   

Not surprisingly, the overall creep response of Ti2AlC is quite similar to that of Ti3SiC2 [56, 

164].  At 362±88 kJ/mol, Q for Ti2AlC is roughly 75% that reported for Ti3SiC2.  At 

2.5±0.4, n for Ti2AlC is comparable to Ti3SiC2.  At 30 MPa, the strains to failure, ƥf, are  16 

% at 1100°C, and § 24% at 1000°C.  Zhen et al. reported an order of magnitude increase in 

creep rates for Ti3SiC2 samples composed of sintered, commercially available pre-reacted 

powders [59].  It is therefore presumed that improved creep resistance will be achievable 

with the use of elemental powders for sample fabrication of Ti2AlC, as opposed to the 

commercial powders used herein.  
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Figure A2.4 SEM micrograph of, a) fracture surface of Ti2AlC sample held at 1100 °C and 30 MPa for 3 h 
to a final strain of 16%. The distinctive layered structure can be seen, as well as stepped grain 
boundaries. Kinks (referred by black arrows) are readily apparent at the fracture surface. Ruptured 
grains stick out of the fracture plane. A difference in grain size between b) grip section and c) fracture 
surface can be seen. 

 

The rate controlling mechanism for steady state creep of the MAX phases is believed to be a 

combination of dislocation creep and grain boundary sliding [56, 164].  Results shown here 

offer additional evidence to this conjecture.  Since ߝሶ௠௜௡ can be described by a single power 

law (Eq. A2.2; Figure A2.2 and Figure A2.3) it is fair to assume that the same thermally 

activated rate-controlling mechanisms operate over the entire range of testing temperatures 

and stresses.  As the pre-reacted Ti2AlC microstructure investigated herein consists of large 

grains with many small grains filling in the spaces between (Figure A2.1a), grain boundary 

sliding cannot be discounted as a contributing mechanism.  Results confirm a combination 

of creep and grain boundary sliding, as shown by the stepped grain surface seen in Figure 

A2.4.  Kinking occurs through the movement of mobile dislocation walls, viz. low angle 
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grain boundaries and delaminations along dislocation pileups.  It follows that the strongest 

evidence that dislocations play a role during creep is extensive kinking seen on the fracture 

surface of a crept sample (Figure A2.4).  It is unclear at this time whether the continuous 

grain refinement affects	ߝሶ ௠௜௡; further testing is required.  But given the weak dependence of 

creep on grain size [56, 164], it is reasonable to assume that such an effect would be small 

here.  Further work with varying grain sizes is needed, however.   

In summary, the tensile creep of Ti2AlC over a range of testing temperatures (1000–1150°C) 

and stresses (10–40 MPa) is comparable to that of Ti3SiC2.  At 2.5, the stress exponent for 

Ti2AlC is slightly higher than those found for CG and FG Ti3SiC2 samples.  At 363 kJ/mol, 

the activation energy, on the other hand, was found to be about 25 % lower than that for 

Ti3SiC2.  At 26%, the maximum rupture strain is more than double that reported for Ti3SiC2 

[164].  The samples also developed a dense, coherent, and quite protective Al2O3 layer.  

Substantial kinking on the post-creep fractured surface is strong evidence that dislocations 

play an important role in the creep process.   
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