ERRATA SHEET FOR SECOND PRINTING

Page	Line	Now reads	Should Read
5	Fig. 1.2	Rhombohedral: $\mathrm{a}=\mathrm{b}=\mathrm{c} . \alpha=\beta=\gamma=90$	Rhombohedral: $\mathrm{a}=\mathrm{b}=\mathrm{c} . \mathrm{a}=\mathrm{b}=\gamma \neq 90$
11	4	like ceramics, they are have	Like ceramics they possess
11		Al3C4	Al4C3
30	14	(1-1)/n	($1-1 / \mathrm{n}$)
32	21	in all cases work has to done	in all cases work has to be done
38	2	contains one electron and thus	contains one electron and thus the atom can now form four covalent bonds with other atoms.
38	$\begin{aligned} & \hline \text { Fig. } \\ & 2.10 \end{aligned}$	The b label is incorrectly placed	It should be at the same level as a, but between the two diagrams.
48	25	[i.e. Eq. (2.5)]	[i.e. Eq. (2.1)]
59	8	latter results in the a cubic ...	latter results in a cubic
60		Fig. 3.4 d	Is missing a site - top left - inside the UC
73	Fig. 3.14d	$\left(\mathrm{AlSi}_{2} \mathrm{O}_{10}\right)^{5-}$	$\left(\mathrm{AlSi}_{3} \mathrm{O}_{10}\right)^{5-}$
80	12	Effective ionic radii of the elements	Effective crystal radii of the elements
104	10	$\mathrm{N}_{\mathrm{s}}=\mathrm{CN}-\mathrm{CN}_{\mathrm{p}} / 2$	$\mathrm{N}_{\mathrm{s}}=\left[\mathrm{CN}-\mathrm{CN}_{\mathrm{p}} / 2\right]$ [\# of atoms/plane]/[2 x area of plane]
107	14	$\mathrm{Y} \approx\left(\mathrm{mD} / \mathrm{r}_{\mathrm{o}}\right)^{\mathrm{m}+3}(1 / \mathrm{n}-\mathrm{m})$	$\mathrm{Y} \approx \mathrm{mD}(\mathrm{n}-\mathrm{m}) /\left(\mathrm{r}_{\mathrm{o}}\right)^{\mathrm{m}+3}$
113	3	$\ldots 0.0178 T-2,850,000 T^{2} d T=70.61 \mathrm{~kJ} / \mathrm{mol}$	$\left.\ldots . .0 .0178 T-2,850,000 T^{-2}\right) d T=72.13 \mathrm{~kJ} / \mathrm{m}$
113	4	$\therefore H_{\mathrm{Al}_{2} \mathrm{O}_{3}}^{900}=-1675.7+70.61=-1605.0 \mathrm{~kJ} / \mathrm{m}$	$\therefore H_{\mathrm{Al}_{2} \mathrm{O}_{3}}^{900}=-1675.7+72.13=-1603.6 \mathrm{~kJ} / \mathrm{m}$
122	25	reactants are in their standard....	reactants and products are in their standard....
124	Eq.5.3	$=-2 \Delta \mathrm{G}^{\mathrm{I}} / \mathrm{zRT}$	$=+2 \Delta \mathrm{G}^{\mathrm{I}} / \mathrm{zRT}$
125	Eq.5.32	$=-\Delta \mathrm{G}^{\text {II }} / \mathrm{zRT}$	$=+\Delta \mathrm{G}^{\mathrm{II}} / \mathrm{zRT}$
125	15-27	ΔG_{FeO} at 1000 K $=-206.95$ kJmol $\Delta G_{\mathrm{Fe}_{3} \mathrm{O}_{4}}$ $=-792.6$ kJmol $\Delta G_{\mathrm{Fe}_{2} \mathrm{O}_{3}}$ $=-561.8$ kJmol	$\begin{array}{lll} \Delta G^{\circ}{ }_{\mathrm{FeO}} \text { at } 1000 \mathrm{~K} & =-206.95 \mathrm{~kJ} / \mathrm{mol} \\ \Delta G^{\circ}{ }_{\mathrm{Fe}_{3} \mathrm{O}_{4}} & =-792.6 \mathrm{~kJ} / \mathrm{mol} \\ \Delta G^{\circ}{ }_{\mathrm{Fe}_{2} \mathrm{O}_{3}} & =-561.8 \mathrm{~kJ} / \mathrm{mol} \end{array}$
130	11	$\Delta G_{\mathrm{MgO}}^{\circ}=-492.95 \mathrm{~kg} / \mathrm{mol}$	$\Delta G_{\mathrm{MgO}}^{\circ}=-492.95 \mathrm{~kg} / \mathrm{mol}$
144	6	missing	vacancies increases with increasing temperatures.
149	2	$=1.957 \times 10^{43}$ defects $/ \mathrm{mol}^{2}$	$=1.957 \times 10^{43} \mathrm{~mol}^{-2}$
155	1	App. 7A	APP. 7B
183	27	and 10 K (see Table 6.2)	and 10 R (see Table 6.2)
189	17	$\mathrm{v}_{\text {drift }}$ is given by $\lambda \mathrm{v}_{\text {net }}$	$\mathrm{v}_{\text {drift }}$ is given by $\lambda \nu_{\text {net }}$
192	32	which is the the focus of this ..	which is the focus of this ..
210	3	is simple $\sqrt{\mathrm{K}_{S}}$	is simple $\left(\mathrm{K}_{\mathrm{S}}\right)^{1 / 3}$
215	11	$\frac{z}{4} \mathrm{O}_{2}(g)+\mathrm{M}^{z+}+z e^{-1} \leftrightarrow \mathrm{MO}_{z / 2}$	$\frac{z}{4} \mathrm{O}_{2}(g)+\mathrm{M}_{\mathrm{def}}^{z+}+z e^{-1} \leftrightarrow \mathrm{MO}_{z / 2}$
225	33	$\mathrm{D}_{\mathrm{vac}}=\mathrm{D}_{\mathrm{s}} / \Lambda$	$\mathrm{D}_{\text {vac }}=\mathrm{D}_{\text {ion }} / \Lambda$
226	1	$\mathrm{D}_{\text {int }}=\mathrm{D}_{\text {tr }}=\mathrm{D}_{\text {s }}$	$\mathrm{D}_{\text {int }}=\mathrm{D}_{\text {tr }}=\mathrm{D}_{\text {ion }}$
235	14	$\begin{aligned} & \sigma_{\text {ion }}=2.4 \times 10^{-9} \mathrm{~S} / \mathrm{cm}, \sigma_{\mathrm{p}}=8.45 \times 10^{-7} \\ & \mathrm{~S} / \mathrm{cm}, \sigma_{\mathrm{n}}=3.4 \times 10^{-6} \mathrm{~S} / \mathrm{cm} . \end{aligned}$	$\begin{aligned} & \sigma_{\text {ion }}=2.6 \times 10^{-9} \mathrm{~S} / \mathrm{cm}=2.6 \times 10^{-7} \mathrm{~S} / \mathrm{m}, \sigma_{\mathrm{p}}= \\ & 8 \times 10^{-7} \mathrm{~S} / \mathrm{cm}, \sigma_{\mathrm{n}}=3.2 \times 10^{-6} \mathrm{~S} / \mathrm{cm} . \end{aligned}$
287		The strain point is defined as the	The strain point is defined as the

		temperature at which $\eta=10^{-15.5} \mathrm{~Pa} . \mathrm{s} \ldots .$. $\ldots .$. The annealing point is the temperature at which $\eta=10^{-14} \mathrm{~Pa} . \mathrm{s} \ldots \ldots$. The softening point is the temperature at which the viscosity is $\eta=10^{-8.6} \mathrm{~Pa}$.s. Finally the working point is the T at which the viscosity is $\eta=10^{5} \mathrm{~Pa}$.s ...	temperature at which $\eta=10^{-13.5} \mathrm{~Pa} . \mathrm{s}$ $\ldots . .$. The annealing point is the temperature at which $\eta=10^{-12} \mathrm{~Pa} . \mathrm{s}$ and any internal strains are reduced sufficiently within about 15 min . The softening point is the temperature at which $\eta=10^{6.6} \mathrm{~Pa}$.s. \ldots... Finally the working point is the temperature at which $\eta=10^{3} \mathrm{~Pa}$.s.
287	Fig. 9.10		y-axis needs to be corrected to match the changes made above.
287	footnot e	1 centipoise (cP) $=0.01 \mathrm{P} ; 1 \mathrm{P}=0.1 \mathrm{P}$	1 centipoise (cP) $=0.01 \mathrm{P} ; 1 \mathrm{P}=0.1 \mathrm{~Pa}^{*} \mathrm{~s}$
305	11	implying that $\lambda_{\mathrm{gb}} / \gamma_{\mathrm{sv}} \approx 1.0$	implying that $\gamma_{\mathrm{gb}} / \gamma_{\mathrm{sv}} \approx 1.0$
351	6	surface tension is $16 \mathrm{~J} / \mathrm{m}^{2}$	surface tension is $1.6 \mathrm{~J} / \mathrm{m}^{2}$
351	31	Answer: $7.2 \times 10^{-5} \mathrm{~J}$	Answer: $7.2 \times 10^{-5} \mathrm{~J}=7.2 \mu \mathrm{~J}$
405	11	$U_{\text {elas }}=\frac{1}{2} \frac{\left(1.66 \times 10^{-29}\right)\left(100 \times 10^{6}\right)}{150 \times 10^{9}}$	$U_{\text {elas }}=\frac{1}{2} \frac{\left(1.66 \times 10^{-29}\right)\left(100 \times 10^{6}\right)^{2}}{150 \times 10^{9}}$
405	26 than that over a flat surface	$\ldots . . .$. than that over a stress-free surface
474	5	$\cos \omega \mathrm{t} \cos \omega \mathrm{t}$	$\cos \omega t \sin \omega t$
478	11	all solids consist ...	all atoms consist ...
488	25	$k_{\mathrm{dip}}^{\prime}-1=\frac{N_{\mathrm{dip}} \mu_{\mathrm{dip}}^{2}}{k T \varepsilon_{0}}=\frac{(z e)^{2} N_{\mathrm{dip}} \lambda_{\mathrm{s}}^{2}}{4 k T \varepsilon_{0}}$	$k_{\mathrm{dip}}^{\prime}-1=\frac{N_{\mathrm{dip}} \mu_{\mathrm{dip}}^{2}}{3 k T \varepsilon_{0}}=\frac{(z e)^{2} N_{\mathrm{dip}} \lambda_{\mathrm{s}}^{2}}{12 k T \varepsilon_{0}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31)
502	13	$k_{\mathrm{dip}}^{\prime}-1=\frac{(z e)^{2} N_{\mathrm{dip}} \lambda_{\mathrm{s}}^{2}}{4 k T \varepsilon_{0}}$	$k_{\mathrm{dip}}^{\prime}-1=\frac{(z e)^{2} N_{\mathrm{dip}} \lambda_{\mathrm{s}}^{2}}{12 k T \varepsilon_{0}}$
523	11	$\chi_{\mathrm{mag}}=\frac{\mu_{\mathrm{ion}} \mu_{0} M_{\mathrm{sat}}}{k\left(T-T_{\mathrm{C}}\right)}=\frac{C}{T-T_{\mathrm{C}}}$	$\chi_{\mathrm{mag}}=\frac{\mu_{\mathrm{ion}} \mu_{0} M_{\mathrm{sat}}}{3 k\left(T-T_{\mathrm{C}}\right)}=\frac{C}{T-T_{\mathrm{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31)
Back cove r		$1 \mathrm{~J}=10^{-7} \mathrm{erg}$	$1 \mathrm{~J}=10^{+7} \mathrm{erg}$
Back cover	3	8.62×10^{-5} atom K	$8.62 \times 10^{-5} \mathrm{eV} /$ atom K

