-			
Page	Line	Now reads	Should Read
5	Fig. 1.2	Rhombohedral: $a=b=c$. $\alpha=\beta=\gamma=90$	Rhombohedral: $a = b = c$. $a = b = \gamma \neq 90$
11	4	like ceramics, they are have	Like ceramics they possess
11		Al3C4	Al4C3
30	14	(1-1)/n	(1 - 1/n)
32	21	in all cases work has to done	in all cases work has to be done
38	2	contains one electron and thus	contains one electron and thus the atom can
			now form four covalent bonds with other
			atoms.
38	Fig.	The b label is incorrectly placed	It should be at the same level as a, but
	2.10		between the two diagrams.
48	25	[i.e. Eq. (2.5)]	[i.e. Eq. (2.1)]
59	8	latter results in the a cubic	latter results in a cubic
60		Fig. 3.4 d	Is missing a site – top left - inside the UC
73	Fig. 3.14d	$(AlSi_2O_{10})^{3-}$	$(AlSi_3O_{10})^{3-1}$
80	12	Effective ionic radii of the elements	Effective crystal radii of the elements
104	10	$N_s = CN - CN_p/2$	$N_s = [CN - CN_p/2] [\# of atoms/plane]/[2 x]$
		с Р.	area of plane]
107	14	$Y \approx (mD/r_o)^{m+3} (1/n-m)$	$Y \approx mD(n-m)/(r_o)^{m+3}$
113	3	$0.0178T - 2.850,000T^{2}dT = 70.61 \text{ kJ/mol}$	$0.0178T - 2.850.000T^{-2})dT = 72.13 \text{ kJ/m}$
			, , , , , , -,
113	4	$\therefore H_{\text{Al}_2\text{O}_3}^{900} = -1675.7 + 70.61 = -1605.0 \text{ kJ/m}$	$\therefore H_{Al_2O_3}^{900} = -1675.7 + 72.13 = -1603.6 \text{ kJ/m}$
122	25	reactants are in their standard	reactants and products are in their
			standard
124	Eq.5.3	$= -2\Delta G^{I}/zRT$	$= + 2\Delta G^{I}/zRT$
105	1		
125	Eq.5.32	$= -\Delta G^{-1}/2R I$	$= + \Delta G^{2}/2RI$
125	13-27	ΔG_{FeO} at 1000K = -206.95 kJmol	$\Delta G^{\circ}_{\rm FeO}$ at 1000K = -206.95 kJ/mol
		$\Delta G_{\text{Fe},\Omega} = -792.6 \text{ kJmol}$	$\Delta G^{\circ}_{\mathrm{Fe}_{3}\mathrm{O}_{4}} = -792.6 \mathrm{kJ/mol}$
		AC 561.8 kImpl	$\Delta G^{\circ}_{r} = -561.8 \text{ kJ/mol}$
		$Fe_2O_3 = -301.8$ kJillo	
130	11	$\Delta G^{\circ}_{\rm MgO} = -492.95 \rm kg/mol$	$\Delta G^{\circ}_{\mathrm{MgO}} = -492.95 \mathrm{kg/mol}$
144	6	missing	vacancies increases with increasing
			temperatures.
149	2	$= 1.957 \text{ x } 10^{43} \text{ defects/mol}^2$	$= 1.957 \text{ x } 10^{43} \text{ mol}^{-2}$
155	1	App. 7A	APP. 7B
183	27	and 10 K (see Table 6.2)	and 10 R (see Table 6.2)
189	17	v_{drift} is given by λv_{net}	v_{drift} is given by λv_{net}
192	32	which is the the focus of this	which is the focus of this
210	3	is simple $\sqrt{K_s}$	is simple $(K_s)^{1/3}$
215	11	$\frac{z}{z} O(\alpha) + M^{z+} + ze^{-1} \Leftrightarrow MO$	$\frac{z}{-0} (g) + M^{z+} + ze^{-1} \Leftrightarrow MO$
		$4^{2\sqrt{5}/7}$	$4^{-2}(8)^{-1}(4)^{-1}(6)^{-$
225	33	$D_{vac} = D_s / \Lambda$	$D_{vac} = D_{ion} / \Lambda$
226	1	$D_{int} = D_{tr} = D_s$	$D_{int} = D_{tr} = D_{ion}$
235	14	$\sigma_{\rm ion} = 2.4 {\rm x} 10^{-9} {\rm S/cm}, \ \overline{\sigma_{\rm p}} = 8.45 {\rm x} 10^{-7}$	$\sigma_{\rm ion} = 2.6 \times 10^{-9} \text{S/cm} = 2.6 \times 10^{-7} \text{S/m}, \sigma_{\rm p} =$
		S/cm, $\sigma_n = 3.4 \times 10^{-6}$ S/cm.	8×10^{-7} S/cm, $\sigma_n = 3.2 \times 10^{-6}$ S/cm.
287		The strain point is defined as the	The strain point is defined as the

ERRATA SHEET FOR SECOND PRINTING

1		temperature at which $\eta = 10^{-15.5}$ Pa.s	temperature at which $\eta = 10^{-13.5}$ Pa.s
		The annealing point is the	The annealing point is the
		temperature at which $n = 10^{-14}$ Pa s	temperature at which $n = 10^{-12}$ Pa s and any
		The softening point is the temperature at	internal strains are reduced sufficiently
		which the viscosity is $n = 10^{-8.6}$ Pa s	within about 15 min. The softening point
		Finally the working point is the T at which	is the temperature at which $n = 10^{6.6}$ Pa s
		That y the working point is the T at which the viscosity is $m = 10^5$ De s	Finally the working point is the
		the viscosity is $\eta = 10$ Pa.s	10^3 De s
207	D .		temperature at which $\eta = 10$ Pa.s.
287	F1g.		y-axis needs to be corrected to match the
	9.10		changes made above.
287	footnot e	1 centipoise (cP) = $0.01P$; $1P = 0.1P$	1 centipoise (cP) = $0.01P$; $1P = 0.1$ Pa*s
305	11	implying that $\lambda_{gb}/\gamma_{sv} \approx 1.0$	implying that $\gamma_{gb}/\gamma_{sv} \approx 1.0$
351	6	surface tension is 16 J/m^2	surface tension is 1.6 J/m^2
351	31	Answer: 7.2x10 ⁻⁵ J	Answer: $7.2 \times 10^{-5} \text{ J} = 7.2 \ \mu \text{ J}$
405	11	$1(1.66 \times 10^{-29})(100 \times 10^6)$	$1 (1 (0 - 10^{-29})(100 - 10^{6})^{2})$
105		$U_{\rm elas} = \frac{1}{2} \frac{(1.00 \times 10^{-1})}{150 \times 10^{9}}$	$U_{\rm elas} = \frac{1}{2} \frac{(1.00 \times 10)}{(1.00 \times 10)}$
10.5		2 150×10	2 150×10 ³
405	26	than that over a flat surface	than that over a stress-free surface
474	5	cos ωt cos ωt	cos ωt sin ωt
478	11	all solids consist	all atoms consist
488	25	$N_{\rm T} \mu_{\rm T}^2 = (ze)^2 N_{\rm T} \lambda^2$	$N_{\rm T} \mu_{\rm T}^2 = (ze)^2 N_{\rm T} \lambda^2$
		$k'_{\rm din} - 1 = \frac{1 + dip / \ell^2 dip}{\ell^2} = \frac{(2\ell)^2 + dip / \ell_{\rm s}}{\ell^2}$	$k'_{din} - 1 = \frac{1 + dip / 2 dip}{1 + dip / 2 dip} = \frac{(2 - 2) + 1 + dip / 2 + dip}{1 + dip / 2 + dip}$
		$kT\varepsilon_0 \qquad 4kT\varepsilon_0$	$3kT\varepsilon_0$ $12kT\varepsilon_0$
			where factor of 3 comes from averaging
			over all angles. (see Eq. 15.31)
502	13	$(-2)^2 M = 1^2$	$(-2)^2 N 2^2$
		$k' - 1 = \frac{(2e) N_{dip} \lambda_s}{2}$	$k' - 1 = \frac{(2e) N_{dip} \lambda_s}{N_{s}}$
		κ_{dip} 1 – $4kT\varepsilon_{o}$	κ_{dip} 1 – $12kT\varepsilon_{o}$
		0	0
523	11		
523	11	$\chi = \frac{\mu_{\rm ion}\mu_0 M_{\rm sat}}{C}$	$\gamma = \frac{\mu_{\rm ion}\mu_0 M_{\rm sat}}{C}$
523	11	$\chi_{\rm mag} = \frac{\mu_{\rm ion} \mu_0 M_{\rm sat}}{k(T - T_{\rm C})} = \frac{C}{T - T_{\rm C}}$	$\chi_{\rm mag} = \frac{\mu_{\rm ion} \mu_0 M_{\rm sat}}{3k(T - T_{\rm C})} = \frac{C}{T - T_{\rm C}}$
523	11	$\chi_{\rm mag} = \frac{\mu_{\rm ion} \mu_0 M_{\rm sat}}{k(T - T_{\rm C})} = \frac{C}{T - T_{\rm C}}$	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging
523	11	$\chi_{\rm mag} = \frac{\mu_{\rm ion} \mu_0 M_{\rm sat}}{k(T - T_{\rm C})} = \frac{C}{T - T_{\rm C}}$	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31)
523 Back	11	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10^{+7} \text{ erg}
523 Back	11	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10^{+7} \text{ erg}
523 Back cove	11	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg
523 Back cove r Back	11	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8 62x 10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10^{+7} \text{ erg} 8.62x 10^{-5} eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{mag} = \frac{\mu_{ion} \mu_0 M_{sat}}{3k(T - T_C)} = \frac{C}{T - T_C}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{mag} = \frac{\mu_{ion} \mu_0 M_{sat}}{3k(T - T_C)} = \frac{C}{T - T_C}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10^{+7} erg 8.62x10^{-5} eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ $1J = 10^{-7} \text{ erg}$ $8.62 \times 10^{-5} \text{ atom K}$	$\chi_{mag} = \frac{\mu_{ion} \mu_0 M_{sat}}{3k(T - T_C)} = \frac{C}{T - T_C}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ $1J = 10^{-7} \text{ erg}$ $8.62 \times 10^{-5} \text{ atom K}$	$\chi_{mag} = \frac{\mu_{ion} \mu_0 M_{sat}}{3k(T - T_C)} = \frac{C}{T - T_C}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ $1 \text{J} = 10^{-7} \text{ erg}$ $8.62 \times 10^{-5} \text{ atom K}$	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_C)} = \frac{C}{T - T_C}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) $1J = 10^{+7}$ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_C)} = \frac{C}{T - T_C}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_C)} = \frac{C}{T - T_C}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K
523 Back cove r Back cover	3	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{k(T - T_{\text{C}})} = \frac{C}{T - T_{\text{C}}}$ 1J = 10 ⁻⁷ erg 8.62x10 ⁻⁵ atom K	$\chi_{\text{mag}} = \frac{\mu_{\text{ion}} \mu_0 M_{\text{sat}}}{3k(T - T_C)} = \frac{C}{T - T_C}$ where factor of 3 comes from averaging over all angles. (see Eq. 15.31) 1J = 10 ⁺⁷ erg 8.62x10 ⁻⁵ eV/atom K