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Abstract
Lattice Dynamical Studies of Select MAX Phases

Nina J. Lane
Michel W. Barsoum, PhD
James M. Rondinelli, PhD

Atomic vibrations weave into the fabric of the materials properties landscape in a diverse

multitude of ways. They play a major role in specific heat and thermodynamic properties, they

affect electronic transport as electron scatterers, they are central to thermal expansion and

high-temperature thermal stability, and they alter the intensity of scattered data in probing

the crystal structure of a material. While there are cases where the static lattice model gives

a reasonable description of materials in the solid state, there are other situations where the

assumption of immobile atoms locked into fixed sites fails dramatically. For this work, the role of

atomic motion is investigated for a group of materials known as Mn+1AXn (“MAX”) phases. They

are made up of M (a metal), A (an A-group element), and X (carbon or nitrogen) and exhibit

a unique set of properties, combining some of the most desirable attributes of ceramics and

metals. Because of their high thermal conductivity and high-temperature stability, their most

promising applications are at elevated temperatures, including nuclear reactor cladding and

heating elements. Atomic motion is central to understanding and predicting materials properties

at high temperatures, especially high-temperature damping and thermal conductivity.

The aim of this work is to investigate the lattice dynamics of select MAX phases through

first-principles phonon calculations in order to provide a foundation for modeling their high-

temperature properties. The phonon dispersions and density of states are computed. Based on

the phonon properties, the theoretical temperature-dependent atomic displacement parameters

and Raman-active modes are determined and compared to those determined experimentally
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from Raman spectroscopy and high-temperature neutron diffraction. The bond length behavior

in one of the MAX phases, Ti3GeC2, suggests correlation between the thermal motion of the Ti

and Ge atoms. A model is proposed for the effect of correlated motion on temperature-dependent

bond lengths, which serves to explain the unusual bond expansion observed through Rietveld

analysis of neutron time-of-flight data. Anharmonic effects are explore through first principles

calculations of the mode-dependent Grüneisen parameters, which suggest localization and

anharmonicity of the low-frequency phonon modes.

Out of the 20 MAX phases studied in this thesis, the Al-containing phases show the best

agreement between theory and experiment for their lattice dynamical properties. The Al-

containing phases are also some of the most promising MAX phases for industrialization because

of their high oxidation resistance and the low cost of their starting materials. This therefore

suggests that the MAX phases that are most desirable commercially may also be the most

reasonable to model at high temperatures.

This work provides a basis for understanding important phenomena associated with phonons,

interatomic bonding, and thermal vibrations in periodic systems, which is not only relevant to

the fundamental properties of MAX phases but can be extended to other crystals in the solid

state.
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Chapter 1: Introduction

This chapter introduces the main topics covered in this thesis and provides a summary of the

scope of this work, along with an outline of how the chapters are structured.

1.1 OVERVIEW

One interesting aspect of matter is that it can never be completely motionless. Although objects

that surround us may appear to be standing still, all matter is made of atoms that are bonded

together with interatomic forces and are constantly deviating from their equilibrium positions.

Thus, all atoms that make up materials are always vibrating.

The motion of atoms within materials as they move about their equilibrium positions is

a largely intuitive phenomenon. Atoms vibrate with higher amplitudes as temperature rises,

and atomic vibrations vary in frequency, direction, and amplitude among different materials

depending on the nature of their bonds. While atomic displacements can be characterized by

average amplitudes and normal mode frequencies, it is also not surprising that the motion of

atoms is often not completely random but related to the movement of their neighbors.

The dynamical behavior of atoms in a material is readily apparent in any scattering experi-

ment. Analyzing data scattered from a vibrating atom is much like photographing a fidgeting

subject – it would be convenient if the atoms would sit still! However, an understanding of

atomic vibrations and their contribution to diffraction data can go far in obtaining meaningful

results from a diffraction data set. Atomic vibrations therefore play a major role in all scattering

experiments – e.g. neutron and x-ray diffraction – regardless of what parameters are sought

from a given study. The Debye-Waller factor, which factors into the intensity as a decrease due to
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the “blurriness” of a moving atom, is essential to all diffraction data-fitting. In theory, this term

represents the mean-squared atomic displacement of an atom from its equilibrium position, but

it does not always agree with the theoretical displacement of an atom. Thus, the discrepancies

can reveal a great deal about how much a sample deviates from an “ideal” system, and/or other

experimental factors that may affect scattering.

This thesis is a materials science journey that involves experimental and theoretical tech-

niques for investigating the lattice dynamics of a unique and interesting class of nanolaminate

materials called MAX phases. These materials exhibit extraordinary – and in many cases, unique

– combinations of properties that include some of the favorable properties of ceramics and

metals. Atomic motion behavior in these phases is especially significant in considering their

damping, thermal, and electrical conductivities. Since atomic vibrations are largely governed by

interatomic forces, the study of atomic vibrations sheds light onto bonding, which is important

in these solids because their unique properties are largely due to the covalent-ionic-metallic

bonds [1].

Identifying the nature of vibrational lattice behavior can be nontrivial, but a wide range of

experimental and computational tools is currently available for probing materials at the atomic

level. In addition to diffraction experiments that yield Debye-Waller factors, inelastic scattering

measures the vibrational frequencies of certain modes that are activated by radiation. From a

modeling standpoint, first-principles calculations based on density functional theory serve as a

powerful tool in computational materials science, with the ability to theoretically investigate

materials based only on fundamental laws governing interactions between particles without the

need for empirical data. Forces within a periodic crystal can be computed through first-principles

calculations, and by analyzing the forces induced by small displacements within a system, the

lattice dynamics of a material can be described.
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In this thesis, these useful experimental and computational tools are invoked to explore the

vibrational behavior of atoms in the intriguing MAX phases as a starting point for modeling their

high-temperature properties.

1.2 SCOPE

First-principles phonon calculations provide the backbone for investigating the lattice dynamics

of MAX phases. The phonon dispersion is computed using density functional theory for ap-

proximately 20 MAX phases, and then experimental studies – mostly Raman spectroscopy and

neutron time-of-flight experiments – are used to assess the agreement of the parameters that

can be measured with those that are based on the fundamental atomic physics of a perfect, pure,

single-phase crystal. This combination of theoretical and experimental tools provides both a

physics-based model for explaining the experimentally-determined parameters, as well as a set

of physical data to show how real systems behave.

In addition to phonon calculations and comparisons of vibrational frequencies and mean-

squared displacements, a model for correlated atomic motion is proposed to explain unexpected

bond length behavior observed in high-temperature neutron diffraction. Anharmonic effects are

also computationally investigated through the mode-dependent Grüneisen parameters.

This thesis provides a number of insights into various different aspects that relate to the lattice

dynamics of MAX phases including bonding, thermal properties, thermodynamics, damping,

phonon conductivity, and defects. It is shown that the displacements of the A atoms (e.g. Si,

Ge, Sn, or Al) are strong functions of their atomic mass and the valence electron structures

of all the atoms in the materials. The quality of agreement between calculated and measured

displacements serves as an indicator of defects and anharmonicity in the interatomic potentials.

It is also postulated that the atomic motions of the A and M atoms are correlated to avoid
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collision, and a correlated motion model is invoked to explain unexpected bond length behavior

determined from Rietveld analysis of neutron diffraction data.

Of course, like any useful scientific study, this work also opens up just as many questions as

it answers. It is highly likely, and hopeful, that at least some of these questions will be eventually

answered as more tools become available and materials research progresses. An effort is made

to be critical of everything that strays from elegant physics – and of everything that doesn’t stray

and agrees too perfectly, for that matter – and it is encouraged that readers will do the same so

that materials mysteries continue to unfold.

1.3 OUTLINE

This thesis is divided into two main parts, plus additional sections in the appendices:

• Part I (Chapters 2 - 8) includes relevant background in materials science and condensed

matter physics, an overview of previous literature on select MAX phases, and the basic

underlying theory for the computational and experimental techniques presented including

important concepts behind lattice dynamics, density functional theory, neutron scattering,

and Raman spectroscopy. In addition, the experimental procedures are described, which

include sample synthesis, experimental set-up, and data analysis.

• Part II (Chapters 9 - 16) presents and discusses the results obtained by me and my

collaborators, most of which have been published in Refs [2–6]:

� Chapter 9 presents the predicted vibrational properties from first-principles calcula-

tions, including the phonon dispersion and phonon density of states.

� Chapter 10 focuses on Raman scattering experiments, including Raman spectra,

calculations of Raman-active modes and Raman frequencies from first-principles

calculations, and their relationship to bonding, mass, and elastic properties.
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� In Chapter 11, the calculated atomic displacement parameters are presented for a

large number of MAX phases, and in Chapter 12 experimental values from high-

temperature neutron time-of-flight experiments are compared with the predictions in

Chapter 11.

� Chapter 13 focuses on the temperature-dependent crystal structures, emphasizing the

bond expansions in the “conventional” (i.e., not higher-order) MAX phases, mostly

based on experimental results.

� Chapter 14 presents results on the temperature-dependent crystal structures and

atomic displacements for a higher-order “523” MAX phase, Ti5Al2C3, from HTND,

along with results for other MAX phases in the Ti–Al–C system.

� In Chapter 15, correlated motion and anharmonicity are discussed, invoking a model

to explain unexpected behavior in bond expansion observed from high-temperature

neutron diffraction.

� Finally, Chapter 16 summarizes the most important findings of this work and discusses

future directions for building upon the research in this thesis.

• Appendices A and B provide additional information that is slightly outside of the scope

of this thesis:

� Appendix A provides details on the texture, composition, and diffraction statistics for

the high-temperature neutron diffraction experiments. Additional characterization of

samples used for Raman spectroscopy is also presented.

� Appendix B includes other studies that are not directly related to lattice dynamics, but

are mentioned throughout this thesis and offer insight on the behavior of MAX phases

and MAX-related materials through combinations of first-principles calculations and
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experimental techniques. Five papers, Refs. [7–11], are included in this section.

The papers include research on low-dimensional MXenes, structure determination

of higher-order MAX phases, a first-principles study on deformation of hexagonal

close-packed metals through kink band formation, and polymorphism in the 413

phases.



7

PART

I
Background, theory and methods
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Chapter 2: Materials science and engineering

This chapter introduces materials science and engineering and discusses its importance in a

general sense. In addition, some introductory concepts related to materials are presented.

2.1 THE BASICS OF MATERIALS SCIENCE AND ENGINEERING

Everything that exists in the universe is made out of something – more specifically, some material,

or matter. The field of materials science is, in short, the study of matter. The matter that makes

up any object drives its properties, its usefulness to humans, and its performance in applications.

The interactions of human beings with the world have been largely driven by the materials that

we have used. Since the earliest ages of mankind – appropriately named the stone age – we have

evolved from the use of stones and natural materials to the smelting and casting of metals to

glass and stone-paste ceramics. Today, modern materials science includes metallurgy, advanced

ceramic materials, polymers, soft matter, nanomaterials, and an incredibly abundant landscape

of manmade materials with diverse sets of properties that allow humans to carry smartphones

and fly halfway across the world in under a day.

All objects are made of atoms, which are composed of neutrons, protons, and electrons. The

properties of matter are determined by the types of elements that make up the material and the

way in which they are arranged. Most materials that we deal with fit into a few categories based

on their chemistry, bonding, and properties. As a basic guide, the main categories are:

• Metals: The majority of elements that are solid at room temperature are metals, (see

periodic table in Fig. 2.1), and there are also many alloys and intermetallics that consist

of a number of metal elements. The atoms in metals are held together by metallic bonds,
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where a sea of electrons binds the positive cores to one another. As a result of their

bonding, they are generally ductile, good conductors of heat and electricity, and shiny.

� Examples: tin, gold, silver.

• Semiconductors: These are covalently bonded solids that are hard, brittle, and have

electrical conductivities between those of conductors and insulators. Their electrical

conductivity increases with increasing temperature, unlike metals, and impurities can

often be added to make them conduct electricity. Most modern technology – computer

chips, DVD players, phones – depends on semiconductors.

� Examples: gallium arsenide (GaAs), silicon, germanium.

• Polymers: Polymers consist of long carbon-based chains that are covalently bonded within

the chains, with weak bonding between the chains. They tend to melt at low temperatures

and have relatively low stiffnesses. Synthetic polymers are commonly known as plastics.

� Examples: polyvinyl chloride (PVC), nylon, silly putty.

• Ceramics: Nearly everything that is not a polymer, a metal, or a semiconductor is a

ceramic. With the addition of oxygen or nitrogen, metals can become ceramics. Ceramics

can be loosely defined as compounds that comprise of two or more elements, with at least

one of them being a nonmetal or a nonmetallic elemental solid. Ceramics are generally

hard and brittle, and often thermal insulators.

� Examples: glass (SiO2), table salt (NaCl).
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Figure 2.1: The periodic table of elements. In each box, from top to bottom, is the atomic number, atomic symbol, name, atomic weight,
and electron configuration. An atomic weight in parentheses indicates the mass number of the most stable isotope.
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Materials classification can get much more complicated than the classes summarized above,

especially in dealing with the advanced materials of modern materials science such as low-

dimensional materials, composites, and biomaterials. The systems and definitions that are used

to classify materials are constantly evolving.

By now we have a wide range of experimental tools to help us characterize the materials

that already exist, but these days we must go further to optimize and develop new materials.

While materials science is essentially the study of matter, materials engineering is the use of atoms

as building blocks to create new materials and alter the properties of old ones. As technology

advances, the need to optimize materials becomes ever more central. When it comes to the

engineering aspect of materials, the trial and error cycle of synthesis and characterization can be

too slow to meet growing needs. Computational materials science thus can play a major role in

guiding materials design, in both understanding the science behind different phenomena and

predicting the outcome of materials experiments.

All in all, understanding the atomic-level physics of materials is key to advancing materials

science, and experimental and theoretical techniques are both important tools in gaining insight.

2.2 IMPORTANT PHYSICAL CONCEPTS IN MATERIALS SCIENCE AND ENGINEER-
ING

2.2.1 Physical properties of materials

Each type of material has a unique set of properties that governs its response to stimuli and

surrounding environments, its interactions with other matter and radiation, and, ultimately, its

suitability for various applications.

Here, some of the different types of properties, or systems for characterizing materials, are

summarized to give a condensed picture of the materials properties landscape.
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Response of a material to stress

The way materials respond to stress is a crucial aspect in essentially any application. When stress

is applied to a material, the material responds through either reversible (elastic) deformation

or irreversible deformation, which includes fracture and plastic strain. Mechanical properties

of materials are very much related to the vibrational behavior of atoms, as the forces between

atoms are what hold them together, dictating their dynamical behavior and their response to

external forces.

Thermal expansion

When a material is heated, its volume changes. In solids, atoms vibrate around their equilibrium

positions and, as temperature increases, energy increases, leading to a rise in amplitude of

atomic vibrations. For an anharmonic potential, this corresponds to changes in the equilibrium

spacing between atoms. In most cases, materials expand upon heating.

The rate of change in dimension of a crystal along a linear direction (l) with temperature is

called the coefficient of thermal expansion, CTE, and is denoted by α:

α=
1

l

dl

dT
. (2.1)

The average CTE, α, over a range of temperatures is determined by the slope of [l(T )− l0]/l0

vs. T, where l0 is the original length (i.e. the length at some reference temperature) and l(T ) is

the length at another temperature, T .

Depending on crystal structure symmetry, the rate of expansion may be different in different

directions. For a hexagonal structure, α is different in the a and in the c direction, and the

CTE in each direction, αa and αc, can be determined by measuring a and c as a function of

temperature. In many cases – for example, with polycrystals and multiphase samples – this is not
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possible by dilatometry (simply measuring the bulk dimensions of a sample) and thus diffraction

techniques are useful for measuring the anisotropic thermal expansion in certain materials.

Electronic properties and thermal conductivity

Other important materials concepts include their response to an electric field and their ability

to transport heat. Some materials conduct electricity (metals), some do not (insulators), and

others behave somewhere in between (semiconductors). The electronic properties depend on

the energy distribution of free elections in a material and is important in determining how, or

whether, a material will transport electric current. The MAX phases studied in this thesis (see

Chapter 3) conduct both heat and electricity, which is not the case with many ceramic materials

which often behave as insulators - both thermal and electronic.

2.2.2 Crystal structures

In materials, atoms are the building blocks for engineering. The atoms that come together to

make up solids are not simply jumbled in a random configuration. Nature tends to be more

elegant, and atoms in most solids are arranged in an ordered way that periodically repeats

throughout a material.

The volume of space that repeats itself is known as the unit cell. In a primitive unit cell,

this volume is the smallest repeatable unit, but in so-called “conventional” unit cells such as

face-centered and body-centered lattices, this is not necessarily the case. The crystal structure of

a material, which defines the arrangement of atoms, can be classified by shape and symmetry.

The lattice parameters a, b, and c define the dimensions of a unit cell, and angles α, β , and γ

define the angles. There are seven lattice types (or symmetries for a, b, c, α, β , and γ) which

can be divided into 14 Bravais lattices (further classification by lattice points), and then into 230

space groups, which describe the symmetry operations for the atoms that repeat inside a unit
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cell.

There are several notations for defining these 230 space groups. The space groups can be

defined by a number, where each space group has a unique number from 1 to 230, as assigned

and published in tables by the International Union of Crystallography [12]. Another notation is

the Hermann-Mauguin notation, which describes the lattice and symmetry operators for points

on the lattice. A detailed description of these crystal structures and their formalism can be found

in a number of textbooks [13–15].

The symmetry of the arrangement of atoms is crucial to keep in mind in any structural

investigation of solids. In neutron scattering, the ordered atomic arrangement is what leads to

diffraction peaks, and the symmetry of the atoms is what defines the unique atomic sites – that

is, which atoms have the same environment in a crystal. The dynamical behavior of individual

atoms, the thermal expansion of the unit cell, and the atomic positions (among many other

factors) are all constrained and influenced by the crystal structure symmetry.
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Chapter 3: MAX phases

The materials that are the focus of the research in this thesis are ternary carbides and nitrides

known as MAX phases. This chapter introduces the crystal structure of the MAX phases, an

overview of their general properties as a class, and a review of literature to date on select phases

that are significant to this thesis.

3.1 INTRODUCTION TO MAX PHASES

The MAX phases are a group of >60 nanolaminate ternary carbides and nitrides. They have

received considerable attention since it was discovered that, as a class, they possess a unique

and remarkable combination of properties [16–19]. Their general formula is Mn+1AXn, where n

= 1, 2, or 3, M is an early transition metal, A is an A-group element – mostly from groups IIA

and IVA – and X is carbon and/or nitrogen [see Fig. 3.1(a)]. They can be further classified by

their values of n as “211’’ (n= 1), “312’’ (n= 2), and “413’’ (n= 3) phases. The MAX phases

crystallize in the hexagonal space group D4
6h, with Hermann-Mauguin notation P63/mmc, No.

194 in the International Tables. The meaning of this nomenclature is as follows:

• P - “Primitive” Bravais lattice, which means there is no additional translational symmetry

for the lattice points, and the lattice points are on the cell corners only, i.e., there are no

other face-, base-, or body-centered positions. All hexagonal space groups have a primitive

lattice.

• 63 - This is the screw-axis (rotational and translational) symmetry, where the “6” refers

to 6-fold symmetry and the “3” subscript refers to the distance for translation along the
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primary axis.∗ The notation nr describes a symmetry with a rotation by 2π/n followed

by a translation of a fraction r/n of the unit cell length along the rotation axis [0001]

(i.e. the c lattice parameter). For 63, this is rotation by π/3 (60◦) around the c axis and

translation halfway along c.

• mmc - The part after the slash refers to mirror and glide plane symmetry perpendicular to

the primary, secondary, and tertiary axes.∗ The “mm” represents mirror symmetry across

the (0001) and (101̄0) planes. The “c” denotes axial glide plane symmetry perpendicular

to the (112̄0) plane, with glide vector c/2. †

The atoms in MAX phases are arranged in alternate nanolaminate layers consisting of close-

packed layers of M and X atoms – where the X atoms fill the octahedral sites between M layers

– interleaved with layers of pure A elements [Fig. 3.1(b)]. The Wyckoff positions for the atom

sites in 211, 312, and 413 structures are listed 3.1.

The structure and chemistry of these phases lead to an unusual – yet attractive and often

unique – set of properties that bring together some of the best attributes of ceramics and metals

[16, 17, 19]. Like metals, they are excellent electric and thermal conductors, with exceptional

thermal shock resistance and damage tolerance [16, 17, 20]. Moreover, they are elastically quite

stiff and can maintain their strengths at high temperatures like ceramics, yet they are readily

machinable [21]. In some cases, they are creep [22–25], oxidation [18, 26], and fatigue [27]

resistant.
∗For hexagonal systems, the primary direction is [0001] (along the c axis), secondary is [101̄0] (along the a

axis) and the tertiary is [112̄0] (the bisector of the a and b axes).
†Although the full notation is P63/m 2/m 2/c, the number 2 may be omitted due to the fact that a 2-fold

symmetry is trivial. Therefore, the shortened symbol is typically used.
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Table 3.1: Positions of atom sites in the 211, 312, 413 (α and β polymorphs), and 523
MAX phases.

Phase Space group Atom Wyckoff x y z
M2AX, 211 P63/mmc M 4 f 1/3 2/3 zM ' 0.08

A 2d 1/3 2/3 3/4
X 2a 0 0 0

M3AX2, 312 P63/mmc MI 4 f 2/3 1/3 zMI
' 0.14

MII 2a 0 0 0
A 2b 0 0 1/4
X 4 f 1/3 2/3 zX ' 0.07

α-M4AX3, 413 P63/mmc MI 4e 0 0 zMI
' 0.16

MII 4 f 1/3 2/3 zMII
' 0.05

A 2c 1/3 2/3 1/4
X I 4 f 2/3 1/3 zX I

' 0.10
X II 2a 0 0 0

β-M4AX3, 413 P63/mmc MI 4 f 1/3 2/3 zMI
' 0.66

MII 4 f 1/3 2/3 zMII'0.05
A 2c 1/3 2/3 1/4
X I 4e 0 0 zX I

' 0.10
X II 2a 0 0 0

M5A2X3, 523 R3̄m MI 6c 0 0 zMI
' 0.72

MII 3a 0 0 0
MIII 6c 0 0 zMIII

' 0.81
A 6c 0 0 zA ' 0.10
X I 6c 0 0 zX I

' 0.36
X II 3b 0 0 1/2
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Figure 3.1: (a) Elements in the periodic table that react together to form the MAX phases,
and (b) the crystal structures and stoichiometry of 211, 312, and 413 MAX phases showing
internal z coordinates, atomic sites and a and c lattice parameters. For the periodic table
squares in (a) and the atoms in (b), red represents the M elements, blue represents the A
elements, and the black represents the X elements, which are carbon and/or nitrogen atoms
that sit inside the gray octahedra in (b).
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3.2 LITERATURE REVIEW OF SELECT MAX PHASES

This section provides a condensed literature review of relevant properties and previous work

on some of the MAX phases studied in this thesis. This is meant to give an overview of some

of the phenomena and properties associated with the phases that will be discussed throughout

this thesis. Also, one of the main purposes of this section is to set the stage for the results that

will be presented in Part II by giving an idea of what literature was previously available on the

phases studied in this work prior to the work carried out through my research.

3.2.1 211 phases: Ti2AlN, Cr2GeC, and Ti2SnC

Three of the 211 phases that are investigated through HTND and/or Raman spectroscopy in this

work are Ti2AlN, Cr2GeC, and Ti2SnC. All three phases were first discovered in the 1960s by

Jeitschko et al [28, 29].

Ti2AlN was confirmed at 1273 K in 1984 by Schuster and Bauer in their investigation of

the ternary Ti–Al–N system [30]. Later, Pietzka and Schuster determined the N content using

Dumas chromatography assuming the Ti:Al ratio to be 2:1 and found that the stoichiometry of

their phase was actually Ti2AlN0.82 [31]. In 1997, Barsoum et al. reported on the fabrication

and characterization of fully dense, predominantly single-phase bulk Ti2AlN samples [32]. In

a high-pressure XRD study, Ti2AlN was found to be more compressible along both directions

than Ti4AlN3, which has a larger fraction of Ti–N bonds [33]. This shows that that the Ti–N

bonds are less compressible than the Ti–Al bonds in Tin+1AlNn, at least when hydrostatically

compressed. Furthermore, the anisotropic compressibilities and lattice parameters of Ti2AlN

compared to Ti2AlC suggest that the higher compressibility of Ti2AlN in the a direction may be

due to N vacancies [33].

In a study of the electronic and thermal properties of Ti2AlN compared with Ti2AlC and their
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solid solutions, wet chemical analysis and EDS showed that the two different Ti2AlN samples in

that study were also nonstochiometric, with chemistries of Ti2Al1.04N0.98
‡ and Ti2AlN0.95 with an

uncertainty of ±0.03 in the stoichiometric values [34]. The latter sample had a higher electrical

resistivity and lower phonon and thermal conductivities, which was attributed to the higher

concentration of N-vacancies [34]. A study of the Ar2+ irradiation effects on nitrogen-deficient

Ti2AlNx suggested that nitrogen vacancies may be responsible for its high nuclear damage

recovery [35]. In another study of the phonon conductivities of Ti2AlN and Ti2AlC and their

solid solutions, it was proposed that vacancies on the N sites were responsible for the low

shear sound velocity in Ti2AlN as well [36]. In that study, the Ti2AlN samples were also found

to be nonstochiometric, with chemistries determined from EDS and wet chemical analysis to

be Ti2AlN0.996 and Ti1.93AlN0.975. At 8.1(±0.2) ×10−6 K−1, the average expansion of Ti2AlN

determined from HTXRD is similar to that of Ti2AlC [37]; for the direction-dependent lattice

expansions, however, the CTE of Ti2AlN determined from HTXRD is greater in the a- than

c-direction, while the opposite is true for Ti2AlC [33, 38]. This may be attributed to the stronger

Ti–N and Ti–Al bonds in Ti2AlN that have been shown in first-principles studies of bonding

[39, 40].

The ternary Cr2GeC phase was re-discovered a decade later than Ti2AlN in 2007, when

the fabrication and characterization of fully dense, predominantly single-phase Cr2GeC was

achieved [38, 41–43]. Like Ti2AlN and other MAX phases, Cr2GeC is a kinking nonlinear elastic

solid [43]. Also like Ti2AlN and other MAX phases it is stable up to quasi-hydrostatic pressures

of the order of 50 GPa, with a bulk modulus of 182±2 GPa [42]. The CTEs determined through

HTXRD in the 298 – 1073 K temperature range were some of the highest of the MAX phases

studied to date, αa = 12.9(±0.1)× 10−6 K−1 and αc = 17.6(±0.1)× 10−6 K−1 [38].

‡Where the excess Al was situated in the this sample was not understood.
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Ti2SnC is known for its high electric conductivity among the MAX phases, which has

suggested its use as reinforcement for copper and enhancing its mechanical performance without

much loss in conductivity [44–46]. Ti2SnC was also studied as a binder in diamond composites

for cutting tools [47].

Compared to the 312 MAX phases, the 211 MAX phases have not been as thoroughly charac-

terized, and even less information is available on Ti2AlN, Ti2SnC, and Cr2GeC compared to the

more widely investigated 211 phase Ti2AlC. HTND experiments are important in understanding

the bulk thermal properties of materials and the unit cell expansion. Anisotropic thermal dis-

placement can also shed light on the bonding in these solids. These two 211 phases are studied

in later chapters through both first-principles calculations, HTND, and Raman spectroscopy in

order to investigate their thermal atomic vibrations and their temperature-dependent crystal

structures.

3.2.2 312 phases: Ti3SiC2, Ti3GeC2, Ti3AlC2, and Ti3SnC2

Four other phases that are studied in this thesis are the 312 phases Ti3SiC2, Ti3GeC2, Ti3AlC2,

and Ti3SnC2. Ti3SiC2 and Ti3GeC2 were first synthesized in powder form in the 1960s [48, 49].

It was not until recently, however, that they ere fabricated and fully characterized in bulk form

as fully dense, single-phase solids [19, 20, 32].

The structure of Ti3SiC2 has since been confirmed using convergent beam electron diffraction

by Arunajatesan and Carim, who obtained lattice parameters of a = 3.06 Å and c = 17.66

Å [50]. The chemical bonding and thermal properties of Ti3SiC2 have been extensively

investigated. Following its discovery and structure verification, a neutron diffraction, ND, study

was conducted to confirm the original structure and report bond lengths and bond angles, with

lattice parameters a = 3.0575 and c = 17.6235 Å [51]. In that study, it was found that the Ti–C
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Figure 3.2: (a) Q−1 vs. temperature and (b) Arrhenius plots of lnQ−1 for 312 MAX phases
Ti3SiC2, Ti3AlC2, Ti3GeC2, and Ti3(SiAl)C2 for select frequencies, taken from Ref. [52].

distances were comparable to normal covalent distances in TiC, whereas the Ti–Si distance was

slightly larger than in a normal covalent bond and closer to the sum of metallic Ti and covalent Si

radii. Furthermore, a slight distortion of the CTi6 octahedra, indicated by the distinctly different

bond lengths for TiI–C and TiII–C, was noted. Effectively the C atoms relax in the direction of

the Si layers. This results in slightly smaller and more distorted octahedra than in TiC [51].

Another ND study of Ti3SiC2 was conducted soon after in the 298 – 1273 K temperature

range to determine its thermal properties [53]. The CTEs were determined in the a and c

direction to be 8.6(±0.1) ×10−6 K−1 and 9.7(±0.1) ×10−6 K−1, respectively, for an average

volume expansion of 8.9(±0.1)×10−6 K−1. The latter is in fairly good agreement with the values

determined from dilatometry, 10(±1) ×10−6 K−1 [16], 9.2 ×10−6 K−1 [19], and 9.1(±0.2)

×10−6 K−1 [53].

Like Ti3SiC2, Ti3AlC2 has been relatively well studied. Ti3AlC2 was discovered in 1994

[31]. Of the > 60 MAX phases known to date, Ti3AlC2 – along with another MAX phase in the

Ti–Al–C system, Ti2AlC2 – is particularly attractive in terms of high temperature applications.
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The Tin+1AlCn phases are two of the most lightweight and oxidation resistant MAX phases

[54, 55], and the accessibility and relative low cost of their raw materials render them the most

promising for up-scaling and industrialization.

Much less information is available for Ti3GeC2. A number of papers have been published

on Ti3SixGe1−xC2 solid solutions [20, 56–59] in which it was shown that both low (4–300 K)

temperature transport [58] and mechanical properties [20] are fairly insensitive to x . The

average of the expansions along the a and c directions, 8.1(±0.2) × 10−6 K−1 and 9.7(±0.2)

× 10−6 K−1, respectively, were slightly higher than the dilatometric CTE of Ti3GeC2, 7.8 × 10−6

K−1[38].

Studies on Ti3SnC2 are also scarce. It was first reported much more recently than the other

312 MAX phases in a study on thin films by Högberg et al. [60]. Bulk Ti3SnC2 was discovered

coincidently by Dubois et al. in 2007 [61] during the synthesis of Ti2SnC by introducing Fe

from the steel container, starting with a Ti:Sn:C ratio of 2:1:1 at.% and applying a two-step heat

treatment (1123 K for 1 h, then 1588 K for 4 h). The starting amount of Fe was not known

at that point. In a following study by the same group, a more controlled amount of Fe was

used, with a starting ratio of 3:1:0.6:2 at.% for Ti:Sn:Fe:C. After mixing, the powders were hot

isostatically pressed at 1423 K for 10 h using pressure of 500MPa [62]. In another study, less Fe

was used (Ti:Sn:Fe:C of 3:1:0.1:2 at.%) but the powders were heated to a higher temperature

(1723 K for 2 h) [63]. In all those studies, iron intermetallics were observed in the resultant

materials.

While the 312 phases are closely related structurally and exhibit similar properties, there

are also a number of differences in their thermal and mechanical properties that are not fully

understood. For example, the mechanical damping – or internal friction, Q−1, determined

over the 300 – 1573 K temperature range – of Ti3GeC2, Ti3SiC2, Ti3AlC2, and Ti3(SiAl)C2
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was investigated by resonant ultrasound spectroscopy [52] (see Fig. 3.2). Up to a critical

temperature, Q−1 was nearly constant, after which it increased dramatically. This critical

temperature was ∼1273 K for Ti3SiC2, Ti3AlC2, and Ti3(SiAl)C2, but only ∼623 K for Ti3GeC2.

Given the otherwise similar properties of Ti3SiC2 and Ti3GeC2, this was a surprising result.

A number of possibilities for explaining this behavior, including increases in the mobility of

dislocations and/or other defects such as vacancies in the A planes, as well as an order-disorder

transition – most probably in the A planes – were postulated [52].

One of the aims of the HTND work on the four 312 phases (presented in Chapters 12, 13,

and 15) is to shed some light on this unexpected mystery by investigating the changes in the

crystal structure as a function of temperature.

3.2.3 413 phases: Ta4AlC3 and Ti4AlN3

Although some of the numerous 211 phases (there are over 50) and 312 phases have been

extensively investigated and characterized, the 413 MAX phases are relatively new. Initially, it

was believed that Ti4AlN3 was the only 413 MAX phase [64]. In 2004, several new 413 phases

were discovered, beginning with the synthesis of Ti4SiC3 and Ti4GeC3 thin films [65, 66]. Since

then, the phases Ta4AlC3 [67–71], V4AlC3 [72, 73], Nb4AlC3 [74], and Ti4GaC3 [75] have been

synthesized in bulk form.

For most of the 413 phases, the MI and MII atoms occupy Wyckoff position 4 f and 4e,

respectively, the A atoms occupy 2c, and the X I and X II atoms are on the 2a and 4 f positions,

respectively (Table 3.1). Ta4AlC3 stands out as the only 413 MAX phase known today that exists

as two different polymorphs [67, 76? ]. The two polymorphs are referred to as α-Ta4AlC3, which

has the same stacking sequence as all the other 413 MAX phases, and β-Ta4AlC3, in which the

TaI shifts from Wyckoff position 4e to 4 f , and CI shifts from 4 f to 4e (Table 3.1). While it is



CHAPTER 3: MAX PHASES 25

most likely that the polymorphism in Ta4AlC3 is thermodynamically driven, the reasons for the

polymorphism and mechanism of any polymorphic phase transformation remain elusive. For

more information on polymorphism in Ta4AlC3, refer to the paper in Appendix B.4.

The Raman spectrum of Ti4AlN3 has been previously reported [77]. However, the vibrational

behavior associated with the Raman-active modes was not definitively identified. Also, as far

as I am aware, before the work in this thesis, the Raman spectra had not been reported for

Ta4AlC3. In Chapter 10 the Raman-active modes in both Ta4AlC3 and Ti4AlN3 from both theory

and experiment are presented, along with the calculated Raman frequencies for Nb4AlC3 for the

sake of exploring the dependence of the vibrational frequencies on reduced mass. The study of

the Raman modes in this work provide the first analysis of the displacements associated with the

Raman-active modes in the 413 phases, and shed light on the role of mass and chemistry in the

vibrational character of these phases.

3.2.4 A 523 phase: Ti5Al2C3

Another MAX phase that is studied in this thesis is a so-called “higher-order” MAX phase. Later,

in Chapter 14, I will present important results on the temperature-dependent crystal structure of

this phase that have to do with the role of octahedral stacking in bonding and atomic vibrations.

Therefore, a more in-depth description of its stacking, bonding, and symmetry will be presented

in that chapter. In addition, more detailed information on its stacking sequence and structure

determination may be found in the two papers in Appendix B.2. This section serves as an

introductory summary of background information on this phase.

The previous sections have summarized literature on select 211, 312, and 413 MAX phases

that all have the general formula Mn+1AXn. In addition to these “conventional” MAX phases,

there is also a category of higher-order MAX phases, which have been observed in MAX phase
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thin films in several studies. They were first reported in 2004 in the Ti–Si–C system (i.e. Ti5Si2C3

and Ti7Si2C5) by Palmquist et al. through transmission electron microscopy, TEM, micrographs

and additional peaks in X-ray diffraction, XRD, patterns [66]. Ti7SiC2 has since been reported

as a minority phase [78] and as epitaxial predominantly single-phase thin films [79]. To

date, higher-order phases have been observed in thin films for a number of different MAX

phase systems including Ti5Ge2C3 and Ti7GeC2 [65], (Ti,V)5Ge2C3 and (Ti,V)7Ge2C5 [80], and

Ti5Al2C3 [81]. A review of the higher-order phases in thin films can be found in by Eklund et. al.

[82].

Of interest to this thesis is the “523” phase Ti5Al2C3. Outside of thin film growth, Ti5Al2C3

was recently reported in bulk in two studies, where it was characterized using XRD studies

[8, 83]. In our study [8], the characterized sample contained 43(±2) wt.% Ti5Al2C3. In another

study [83], only a small amount of Ti5Al2C3 was observed and neither weight nor volume

fractions were reported. We note in passing that the first structure proposed by Wang et al. in

Ref. [83] is totally wrong and unsubstantiated by the results shown in that paper (see Ref. [9]).

It is also crucial to note that our paper was submitted a few weeks before that of Ref. [83]. After

our paper was published, the same group reproduced and confirmed our correct description of

the structure, working with a composition that was only 19.7 wt% Ti5Al2C3. They confirmed

the structure through convergent beam electron diffraction, and they further added that the

structure could also be described by another space group, R3̄m, which is identical in atomic

positions to our structure but has higher symmetry [84] (see Table 3.1).

For the 211 and 312 MAX phases in the Ti–Al–C system (and like all other conventional MAX

phases), Ti–C layers (Ti2C for Ti2AlC and Ti3C2 for Ti3AlC2) are interleaved between layers of Al.

The Ti5Al2C3 phase, on the other hand, consists of alternating Ti2C (“211-like”) and Ti3C2 (“312-

like”) layers interleaved between Al layers. Due to the shift in stacking sequence, three formula
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units need to be included in a unit cell. The lattice parameters are thus a=3.064(±0.002) Å

and c=48.23(±0.02) Å (see B.2.1).

While we had previously used XRD and TEM to characterize the room temperature lattice

parameters of Ti5Al2C3 and verify its stoichiometry and stacking sequence, a complete structure

refinement to determine bond lengths had not been performed until the work in this thesis.

Furthermore, its TECs had not been measured previously. So far, neither our research group nor

our colleagues have been able to synthesize phase-pure Ti5Al2C3, and the highest composition

that has been reported is 47%. This is an important phase that tends to evolve during high-

temperature processing for reasons that are unclear and difficult to anticipate. Therefore, a

comparison of its structure and properties – starting with its crystal structure – to the other MAX

phases is important for determining the effects of this secondary phase on a MAX phase sample.

The work that will be presented in Chapter 14 thus serves as the first high-temperature study

of this phase, and helps us understand its other MAX phase relatives and the role of stacking

and symmetry in their high-temperature properties.
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Chapter 4: Lattice dynamics

In the preceding chapters, elementary materials-related concepts have been summarized in

brief. The materials of interest to this thesis – MAX phases – have been introduced and some

of the previous work on these phases has been summarized. Now I will make a turn in a more

theoretical direction to provide important background on lattice dynamics theory in order to

introduce the scientific concepts behind the experimental and theoretical studies within this

thesis.

So far, crystal structures have been discussed at a basic level, with the positions of atoms

in a solid to be fixed at their positions. While materials in the solid state may be considered to

be made up of a static arrangement of atoms as a first approximation, in reality atoms are not

infinitely massive or held together by infinite forces; consequently they have a thermal energy

that causes a certain amount of motion in the vicinity of their equilibrium positions. Since atoms

in crystals experience thermal vibrations, it is important to consider dynamic effects in order to

understand finite temperature behavior. This chapter outlines the basic concepts related to lattice

dynamics, beginning with a few simple models. The theory behind phonon calculations and

their dispersion curves is discussed, along with the equations relevant to computing temperature-

dependent ADPs. Most of the information from this section can be found in various textbooks

[13–15, 85–87]. For complete derivations and further reading on lattice dynamics, refer to those

references.
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4.1 CLASSICAL THEORY OF MOLECULAR VIBRATIONS

Before introducing examples of simple periodic systems and deriving their dynamical behavior,

some basic concepts in classical harmonic theory will be introduced, including the equation of

motion and solutions for the simple harmonic oscillator, the contribution of atomic displacements

to the Hamiltonian, the harmonic approximation, and a definition of interatomic forces.

4.1.1 The simple harmonic oscillator

A good starting point for moving from static to dynamical systems is the harmonic oscillator,

which provides a simple example of how to move from the classical to the quantum model and a

good basis for understanding vibrating bodies. The simplest model that comes to mind is a body

of mass M attached to a spring with elastic constant k, which is a one-dimensional harmonic

oscillator with motion in the x direction. For this system, the classical Hamiltonian – which

describes the total energy of a system in quantum mechanics – is:

H = T +V =
p2

2M
+

Mω2u2

2
(4.1)

where T and V are the kinetic and potential energies, respectively, p is the momentum in the

x direction, and u = x − xeq is the displacement of the oscillating body from its equilibrium

position xeq. The frequency of oscillations, ω, is

ω=

r

k

M
. (4.2)

The Hamiltonian contains both the kinetic and potential energy. Here, the potential energy

is the elastic energy stored in the deformed spring. Classically, the equation of motion can be
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derived from the Hamiltonian:

ẋ =
∂H
∂ p
=

p

M
and ṗ =−∂H

∂ p
=−Mω2u (4.3)

where p is momentum, and ṗ and ẋ are the derivatives of momentum and position, respectively,

with respect to time. Taken together, the equations in Eq. 4.3 lead to

M ẍ =−Mω2u=−ku= F. (4.4)

This is just Newton’s second law, F = ma, where the force F is the elastic force. The solution

to the differential equation, Eq. 4.4, has the general form:

u(t) = a1 sin(ωt) + a2 cos(ω)t

= b1eiωt + b2e−iωt

= Acos(ωt +φ).

(4.5)

The equation forms above are equivalent, each depending on two unknown constants (a1

and a2, b1 and b2, or A and φ), which are found from initial conditions for x and p. This

introduces the general form of an isolated harmonic oscillator. Now I will move onto oscillations

for atoms that are part of a lattice, wherein the general form u(t) = Acos(ωT +φ) will be used.

4.1.2 Atomic displacements

To consider atoms as non-stationary bodies vibrating around their equilibrium positions, we may

begin with a single atom at lattice site R, whose position is denoted by ~r(R). Its mean position

is ~R, which would be equal to ~r(R) if the ion was stationary in its lattice site. However, if it is
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~r(R)
~R

~u(R)

Figure 4.1: Model of the atomic displacement of atom site R with equilibrium position
vector ~R, displacement ~u(R), and displaced position vector ~r(R).

actually deviating from its average position, then its position at a given time is

~r(R) = ~R+ ~u(R), (4.6)

where ~u(R) is the deviation of this ion from its equilibrium position on lattice site R (Fig. 4.1.

Now, considering the potential energy of a crystal, V , as the sum of the contribution from all

distinct pairs on lattice sites R and R′, V would be:

V =
1

2

∑

RR′
U(R− R′) (4.7)

where U(R− R′) is the potential between R and R′. Taking into account the fact that the atoms

are not necessarily found at their equilibrium positions [i.e., ~r(R) 6= ~R], and the potential is a
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function of their separation, then Eq.4.7 may be replaced by:

V =
1

2

∑

RR′
U(~r(R)−~r(R′))

=
1

2

∑

RR′
U(~R− ~R′+ ~u(R)− ~u(R′)). (4.8)

The potential energy therefore depends on the dynamical variables ~u(R). This shows how

the dynamical problem is governed by the Hamiltonian:

H = T +V

=
∑

R

p(R)
2M

+
1

2

∑

RR′
U(~R− ~R′+ ~u(R)− ~u(R′)) (4.9)

where T is the kinetic energy term, p(R) is the momentum of the ion at equilibrium position R,

and M is the atomic mass.

4.1.3 The harmonic approximation

Pair potentials often have forms that make it hopelessly difficult to extract an exact solution.

It is therefore necessary to resort to an approximation that relies on the fact that the atoms

do not deviate substantially from their equilibrium positions. If |~u(R)− ~u(R′)| � |~R− ~R′|, then

U(~R− ~R′ + ~u(R)− ~u(R′)) can be expanded about its equilibrium position using Taylor’s theorem:

f (x + a) =
∞
∑

n=0

f (n)(x)
n!

an

= f (x) + f ′(x)a+
f ′′(x)

2!
a2+

f ′′′(x)
3!

a3 · · · (4.10)
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Applying this to U(~R− ~R′ + ~u(R)− ~u(R′)) in Eq. 4.8, taking x as ~R− ~R′ and a as ~u(R)− ~u(R′)

gives

U(~R− ~R′+ ~u(R)− ~u(R′)) = U(~R− ~R′) +U′(~R− ~R′) · (~u(R)− ~u(R′))

+
1

2
U′′(~R− ~R′) · (~u(R)− ~u(R′))2+O(~u3) (4.11)

and, neglecting higher-order (n> 3) terms, Eq. 4.8 becomes:

V =
1

2

∑

RR′
U(~R− ~R′) + 1

2

∑

RR′
U′(~R− ~R′) · (~u(R)− ~u(R′))

+
1

4

∑

RR′
U′′(~R− ~R′) · (~u(R)− ~u(R′))2. (4.12)

The coefficient of the linear term, ~u(R), is U′(~R−~R′), which equals zero because the potential

energy is a minimum when particles are at their equilibrium positions. This also implies that

there is no net force on any atom at equilibrium. Since the linear term vanishes, and the potential

energy of the equilibrium configuration is

V0 =
1

2

∑

RR′
U(~R− ~R′), (4.13)

then the nonvanishing correction to the equilibrium potential energy is given by the quadratic

term. In the so-called harmonic approximation, the potential energy is:

V = V0+
1

4

∑

RR′

∑

α,β=x ,y,z

[uα(R)− uα(R
′)] ·Φαβ(R, R′) · [uβ(R)− uβ(R

′)]

= V0+Vharm (4.14)

where u now has a scalar form since α and β are now introduced as the Cartesian components –
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that is, the x , y , or z direction – and the Φαβ(R, R′) components are second-order tensors,

Φαβ(R, R′) =
∂ 2U(R− R′)
∂ uα(R)∂ uβ(R′)

, (4.15)

which are the second derivatives of the energy with respect to displacements of atoms from their

equilibrium positions. The harmonic part of V , Vharm, is the starting point for essentially all

lattice dynamics studies. The higher-order corrections to V are known as anharmonic terms

and can play a major role in understanding many physical phenomena outside of the harmonic

approximation. Most of the work in this thesis is in the harmonic approximation, but anharmonic

effects will be discussed in Chapter 15.

4.1.4 Interatomic forces

As we can see from Eq. 4.15, the interactions between particles are related to the forces on atoms

with atomic displacements. Assuming the validity of the harmonic approximation above, the

forces are linear functions of the displacements and do not involve higher-order terms (second,

third, or above). The force on an atom R due to the displacement of another atom R′ may be

represented by

Fα(R) =−Φαβ(R, R′)uβ(R′), (4.16)

which represents the concept that a force exerted on atom R in some direction is proportional to

the displacement of atom R′ in some other direction. Equation 4.16 represents a set of three
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linear equations, and the quantity Φ(R, R′) is a 3×3 matrix:

Φ(R, R′) =



















Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33



















. (4.17)

This is known as the force constant matrix, where the Φαβ terms represent α and β

combinations for Φαβ(R, R′) (see Eq. 4.15). The αβ subscripts refer to axis directions – for

instance, Φ12(R, R′) is the negative of the force on atom R in the x (“1”) direction when atom R′

is displaced in the y (“2”) direction.

4.2 THE DISPERSION RELATION IN PERIODIC SYSTEMS

Having introduced some concepts associated with atomic displacements, interatomic forces,

and their contributions to the Hamiltonian, the next section applies these ideas to periodic

systems. Section 4.2.1 uses an example of a linear chain of particles, which is simpler than a

three-dimensional system and instructive for obtaining a physical understanding while avoiding

many mathematical complexities. A three-dimensional lattice is considered in Sections 4.2.2

and 4.2.3, where it will be apparent that the vibrational properties of three-dimensional crystals

are also possessed – at least qualitatively – by a one-dimensional chain.

4.2.1 Lattice vibrations in a monoatomic one-dimensional chain

To consider periodic systems, let us begin with a chain of identical particles with mass M , equally

spaced a distance a apart and held together by elastic forces (Fig. 4.2). Taking two particles –

the nth and (n+m)th particles – and assuming that the forces obey Hooke’s law, then the energy

between them would simply be a function of their separation, U(r) = U(|xn+m− xn|), where x

is a scalar that represents the particle’s position along the chain. Since u� a – i.e. the atomic
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displacements are much smaller than the distances between the atoms – then U(xn+m− xn) can

be expanded in a Taylor series about the point x = ma (Eq. 4.10). Again neglecting terms of

higher order than 2 (the harmonic approximation), and given that the coefficient of the linear

term is zero, the expression for potential energy is

V = V0+
1

2

∑

n

∑

m>0

(un+m− un)
2U′′(ma), (4.18)

where

V0 =
∑

n

∑

m>0

U(ma). (4.19)

This takes into account all pairs, without counting any twice (i.e. m > 0 only). Assuming

only nearest-neighbor interaction (that is, m= 1 in Eq. 4.18), the expression for the potential

energy becomes:

V = V0+
1

2
Φ
∑

n
(un+1− un)

2. (4.20)

Now, V0 = N ·U(a) (where N is the number of atoms and U(a) is the potential energy for one

near-neighbor bond), and Φ is the second derivative of U, or the force constant (see Eq. 4.15),

evaluated at interatomic distance a.

a 
n n-1 n+1 n+2 

un-1 un un+1 un+2 un-2 

n-2 
x 

Figure 4.2: A linear chain consisting of identical particles equally spaced a distance a
apart and held together by elastic forces. The interactions are represented as springs, and
displacements are represented by u.
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Wave vector q 
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Figure 4.3: Dependence of frequency on the wave vector for longitudinal vibrations in a
one-dimensional chain.

The equation of motion (see Eq. 4.4) for a particle n can be written as:

M
d2un

d t2 = U′′(a)[un+1− 2un+ un−1] (4.21)

To solve this equation of motion, we assume the atomic displacement has the general form:

u= AL exp[−i(ωt − qna)] (4.22)

where AL is the amplitude of the longitudinal wave. Substituting this into Eq. 4.21, the solution

is

ω=

r

4U′′(a)
M

�

�

�sin
qa

2

�

�

�=ω0L

�

�

�sin
qa

2

�

�

� , (4.23)

where

ω0L =

r

4U′′(a)
M

. (4.24)

This gives the angular frequency ω as a function of wave vector q, which is known as the

dispersion relation for this simple case (Fig. 4.3).
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4.2.2 Lattice vibrations in a simple Bravais lattice

In this section, I will discuss the motion of particles in a three-dimensional simple Bravais lattice,

which is a simple case of a periodic system where atoms sit on the corners of a unit cell and

repeat throughout a material.

Equations of motion

Let the primitive vectors of the lattice be ~a1, ~a2, and ~a3. If the three-dimensional lattice is

perfect and infinite, any atom can be chosen as a reference and, choosing an arbitrary atom as a

reference, the equilibrium position of any other atom is:

r(R) = R1~a1+ R2~a2+ R3~a3 (4.25)

where R1, R2, and R3 are integers representing the position of that atom, and may be referred

to as R. As the atoms exhibit small oscillations about their lattice sites, the instantaneous

displacement of the Rth atom from its equilibrium position is denoted by ~u(R). Its components

are uα(R) where α is 1, 2, or 3, which correspond to the x-, y-, and z-directions. The kinetic

energy of an atom with mass M is given by

1

2
M(u̇1

2+ u̇2
2+ u̇3

2) =
1

2
M
∑

α

u̇2
α(R). (4.26)

The kinetic energy, T , of the lattice is thus

T =
1

2
M
∑

R

∑

α

u̇2
α(R). (4.27)

For the potential energy of the lattice, the harmonic approximation can be applied through

a Taylor expansion of V in powers of the atomic displacement and neglecting terms of orders
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higher than 2. The expression for V simplifies to:

V = V0+
∑

R,α
R′ ,β

Uαβ(RR′)uα(R)uβ(R′) (4.28)

where V0 is the potential of the equilibrium configuration of atoms.

In this approximation, the Hamiltonian H of the system can be written as:

H = T +V =
1

2
M
∑

R,α

p2
α(R) +

1

2

∑

R,α
R′ ,β

Uαβ(RR′)uα(R)uβ(R′) (4.29)

where

pα(R) = Mu̇α(R). (4.30)

From the equation of motion, you can obtain

Müα(R) =
∑

R′
Fα(R

′), (4.31)

where

Fα(R
′) =−

∑

β=1,2,3

U′′αβ(RR′)uαβ(R′), (4.32)

which means that, for example, F1(R′) is the x component of force acting on the Rth atom arising

from the displacement of atom R′ atom, summed along β , the displacement directions for atom

R′. Note that the reference to the Rth atom is implied.

Since the restoring force between two atoms will depend only on their relative separation

rather than their absolute positions, then we can write

Uαβ(RR′) = Uαβ(R− R′) = Uαβ(R
′R). (4.33)
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Because of periodicity, the general form of the displacements can be written as:

uα(R) = Aα exp[−i(ωt − q · r(R))] (4.34)

where Aα is the amplitude of the wave, independent of R. This is the same form as for the

one-dimensional chain, Eq. 4.22.

Substituting this into equation 4.31 then we get

ω2Aα =
∑

β=1,2,3

Dαβ(q)Aβ (4.35)

where Dαβ(q) is the dynamical matrix:

Dαβ(q) =
1

m

∑

R′
U′′αβ(R− R′)e−iq·[r(R′)−r(R)]. (4.36)

Since this is summed over all values of R′, D should be independent of R and can therefore

be rewritten as (for a perfect periodic crystal):

Dαβ(q) =
1

m

∑

R′
U′′αβ(R

′)e−iq·r(R′). (4.37)

Because of the periodicity of the system, the problem has been drastically simplified from

a set of differential equations (Eq. 4.31) to a set of three linear homogeneous equations with

three unknowns (Eq. 4.35).
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Solving the equations of motion

Equation 4.35 can be re-arranged and re-written as:

∑

β=1,2,3

[Dαβ(q)−ω2δαβ]Aβ = 0 (4.38)

where δαβ is the Kronecker delta function (zero if α 6= β; and equal to 1 if α= β).

For nontrivial solutions, the determinant of the coefficients must vanish and thus

�

�Dαβ(q)−ω2δαβ
�

�= 0. (4.39)

For the case of a primitive Bravais lattice with one atom per unit cell, this is a 3× 3 determi-

nant. When expanded, it gives a cubic equation in ω2 with three solutions – corresponding to

three acoustical branches – for a given value of q. This can be reduced to an eigenvalue problem

where the eigenfunction corresponding to the eigenvalue ω2
p(q) (where p is the vibrational

branch, or “band” index ∗), is denoted by ep(q) and is defined by:

D(q)ep(q) =ω
2
p(q)ep(q) (4.40)

where D(q) is a 3× 3 matrix of Dαβ (Eq. 4.37):

D(q) =











Dx x Dx y Dxz

Dy x Dy y Dyz

Dzx Dz y Dzz











(4.41)

∗for the simple Bravais lattice with three solutions, p = 1, 2, or 3.
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4.2.3 Lattice vibrations in a lattice with a basis: generalized solutions

The previous section was for a system with just one atom per unit cell. For a lattice with a basis,

and more than one atom per unit cell, the potential energy is no longer a function of only the

distance between atoms. The Hamiltonian now includes a summation over (RR′) interactions:

H = T +
1

2

∑

RR′

∑

α,βΦαβ(RR′)Uα(R)Uβ(R′). (4.42)

Here we generalize the methodology in the examples of the linear chain and the simple Bravais

lattice for lattices with more than one atom per unit cell.

The dynamical matrix

For the dynamical Hamiltonian of a lattice with a basis (Eq. 4.42), the eigenvalue problem is

now:

Dαβ(q) =
1

N
p

MRMR′

∑

RR′
Φαβ(R, R′)eiq[r(R)−r(R′)] (4.43)

where Φαβ(R, R′) is the force constant matrix (Eq. 4.15), N is the number of atoms, MR and

MR′ are the masses of atoms R and R′, respectively, and r(R)− r(R′) is their separation. In this

case, Dαβ(q) also includes (RR′) atom pairs, so the 3× 3 dynamical matrix of Eq. 4.41 is now a

3N × 3N matrix. For two atoms per unit cell, for example:

D(q) =

































Dx x(11) Dx y(11) Dxz(11) Dx x(12) Dx y(12) Dxz(12)

Dy x(11) Dy y(11) Dyz(11) Dy x(12) Dy y(12) Dyz(12)

Dzx(11) Dz y(11) Dzz(11) Dzx(12) Dz y(12) Dzz(12)

Dx x(21) Dx y(21) Dxz(21) Dx x(22) Dx y(22) Dxz(22)

Dy x(21) Dy y(21) Dyz(21) Dy x(22) Dy y(22) Dyz(22)

Dzx(21) Dz y(21) Dzz(21) Dzx(22) Dz y(22) Dzz(22)

































(4.44)
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and for a more general case where R and R′ go from atom indices 1 . . . N :

D(q) =











































Dx x(11) Dx y(11) Dxz(11) Dx x(12) Dx y(12) Dxz(12) · · · Dx x(1N) Dx y(1N) Dxz(1N)

Dy x(11) Dy y(11) Dyz(11) Dy x(12) Dy y(12) Dyz(12) · · · Dy x(1N) Dy y(1N) Dyz(1N)

Dzx(11) Dz y(11) Dzz(11) Dzx(12) Dz y(12) Dzz(12) · · · Dzx(1N) Dz y(1N) Dzz(1N)

Dx x(21) Dx y(21) Dxz(21) Dx x(22) Dx y(22) Dxz(22) · · · Dx x(2N) Dx y(2N) Dxz(2N)

Dy x(21) Dy y(21) Dyz(21) Dy x(22) Dy y(22) Dyz(22) · · · Dy x(2N) Dy y(2N) Dyz(2N)

Dzx(21) Dz y(21) Dzz(21) Dzx(22) Dz y(22) Dzz(22) · · · Dzx(2N) Dz y(2N) Dzz(2N)
...

...
...

...
...

...
. . .

...
...

...

Dx x(N1) Dx y(N1) Dxz(N1) Dx x(N2) Dx y(N2) Dxz(N2) · · · Dx x(NN) Dx y(NN) Dxz(NN)

Dy x(N1) Dy y(N1) Dyz(N1) Dy x(N2) Dy y(N2) Dyz(N2) · · · Dy x(NN) Dy y(NN) Dyz(NN)

Dzx(N1) Dz y(N1) Dzz(N1) Dzx(N2) Dz y(N2) Dzz(N2) · · · Dzx(NN) Dz y(NN) Dzz(NN)











































(4.45)

Eigenvectors of the dynamical matrix

The eigenvector problem of Eq. 4.40 can be solved numerically by diagonalization of the

dynamical matrix. The solution will give ωp(q), the dispersion relations for each band p, and

the eigenvectors, ep(q), which are normalized such that

∑

R

|ep(R)|2 = 1, (4.46)

where R= 1 . . . N . These contain the information about the relative displacements of the atoms

due to wave q, which come into the equations for the mean-squared displacement in subsequent

sections.

4.3 THE QUANTIZATION OF LATTICE VIBRATIONS

By now it is apparent that in real materials, where an atomic configuration repeats throughout

the material, atoms cannot be considered as individual harmonic oscillators because vibrations

in crystals depend on the arrangement of atoms in a periodic lattice and the forces between them

that govern their interactions. In this section, the ideas introduced in the preceding sections



CHAPTER 4: LATTICE DYNAMICS 44

q q (a) (b) 

longitudinal transverse 

Figure 4.4: Schematics of atomic displacements (red arrows) caused (a) a longitudinal
wave and (b) a transverse wave (b) with wave vector q propagating through a simple
Bravais lattice.

of this chapter are brought together to discuss topics related to quantum theory of atomic

vibrations in crystals, including the quantization of normal modes, phonon density of states, and

mean-squared atomic displacements.

4.3.1 Collective oscillations: phonons

An important concept is the idea of vibrational modes where each part of a lattice oscillates with

the same frequency. In classical mechanics, these special types of vibrational modes are called

“normal modes” and in quantum mechanics, they are quantized as “phonons.” These normal

modes are of great importance in lattice dynamics because any arbitrary vibrational motion in

a lattice can be represented as a superposition of normal modes with various frequencies. In

essence, phonons are the elementary quanta in lattice vibrations.

In sections 4.1 and 4.2, the dynamical theory of crystals and methodology for computing

the frequency dispersion of a wave by solving the equations of motion were presented. It

has been shown that a wave passing through a periodic arrangement of atoms leads to the

atoms being displaced from their equilibrium positions. Figure 4.4 illustrates the atomic

displacements in a simple Bravais lattice induced by the propagation of a longitudinal wave,

where the displacements are parallel to q, and a transverse wave, where the displacements are
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perpendicular to q. The three solutions to the equations of motion give three phonon modes

for a wave vector q: one longitudinal [Fig. 4.4(a)] and two transverse – an “up-and-down”

mode [Fig. 4.4(b)] and a “side-to-side” wave. Note that this is a system where all the atoms

are identical and periodically spaced throughout the material, so for a given wave vector, the

time-averaged displacement of each atom is equal. This is not the case for a lattice containing N

unique atoms per unit cell, where the atoms differ in potential and mass and will have different

dynamical properties, resulting in 3N bands.

4.3.2 Phonon density of states

Another useful way to represent the lattice dynamics of a crystal is through a frequency distribu-

tion of the number of phonon vibrations, which is known as the phonon density of states (DOS),

g(ω). The total and partial (only including specific atom sites) DOS are computed numerically

by choosing a q sampling mesh and solving the eigenvalue problem (Eq. 4.40). Instead of

computing ωp(q) along a q-point path, the phonon properties are computed for q-points in the

reciprocal space mesh. The density of states is a way of organizing all the frequencies for the

vibrational states and counting the number of vibrational states around ω. The phonon density

of states is then determined numerically with a form of g(ω) =
∑

q δ(ω−ω(q)), where δ is

some delta function or an effective algorithm that selects the states near ω.

4.3.3 Atomic displacements

In lattice dynamics, the eigenvectors of the dynamical matrix give the relative displacements

of the atoms in a crystal. The Cartesian components of the overall displacement of an atom

can be derived from the phonon dispersion using these eigenvectors. An eigenvector ~ep(q)

represents the relative displacement for a specific vibrational mode, or band p, due to a given

wave with wave vector q. The eigenvectors are normalized and they do not take into account



CHAPTER 4: LATTICE DYNAMICS 46

temperature, at least when working within the harmonic approximation. Of course, one would

expect the displacement amplitude to depend on temperature. This is where the normal mode

coordinate, Qp(q), comes in, which subsumes the time and temperature dependence of a wave.

Furthermore, the mass of the atoms must also be accounted for in the atomic displacement

equation. Therefore, for atom site R in the unit cell l, the displacement caused by wave vector

q for normal mode p is a function of the eigenvectors that give the relative displacement, the

normal mode coordinate that accounts for temperature, the number of atoms N and the mass of

the atom MR:

~u(Rl) =
1

p

N MR

~eR,p(q)exp [iq · r(Rl)]Q(q, p). (4.47)

Summing the contribution of all normal modes and taking a Cartesian component, α, the total

displacement in a direction α (which can be x ,y ,or z) is expressed as:

uα(Rl) =
1

p

N MR

∑

q,p
eα,R,p(q)exp [iq · r(Rl)]Q(q, p). (4.48)

From this, the velocity is u̇(Rl) and the kinetic energy of the crystal can be calculated by

summing 1
2

MR|u̇(Rl)|2 for all atoms Rl. After simplifying, the kinetic energy of the crystal

becomes:

1

2

∑

R,l

MR|u̇(Rl)|2 = 1

2

∑

q,p
ω2

p(q)|Qp(q)|2. (4.49)

Knowing that, for a harmonic oscillation, the average vibrational potential energy is equal to

the average kinetic energy, the total energy is obtained by multiplying the above by a factor of

two. Further, this equation can be solved by setting it equal to the total energy obtained based on

the ground state energy of harmonic vibrations, which is E0 =
1
2
ħhω. This energy can be changed

by integral units of the phonon energy, ħhω, such that the mean energy of each vibrational mode
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becomes

E = ħhω
�

1

2
+ n(ω, T )

�

, (4.50)

where n(ω, T ) is the phonon distribution (see below, Eq. 4.56).

Summing this over p and q and setting this total energy of the crystal equal to the righthand

side of Eq. 4.49 multiplied by two gives

ħh
2

∑

q,p
ωp(q) [1+ 2n(ω, T )] =

∑

q,p
ω2

p(q)|Qp(q)|2 (4.51)

and, solving for |Qp(q)| we get:

|Qp(q)|=
r

ħh
2

∑

q,p
[ωp(q)]

−1/2 [1+ 2n(ω, T )]1/2 . (4.52)

Plugging this back into equation 4.48, uα(Rl) is

uα(Rl) =

È

ħh
2N MR

∑

q,p
eα,R,p(q)[ωp(q)]

−1/2 exp[iq · r(Rl)] [1+ 2n(ω, T )]1/2 (4.53)

To handle the exponential portion of this equation, it can be written in terms of creation and

annihilation operators, a†
p(q) and ap(q) with thermodynamic properties

uα(Rl) =
ħh

2N MR

∑

q,p
[ωp(q)]

−1/2[ap(q)exp(−iωp(q)t+a†
p(−q)exp(iωp(q)t]exp(iq·r(Rl))eα,p,R(q)

(4.54)

and the mean-squared atomic displacement is calculated as an “expectation value” (essentially,

the weighted average) of uα(Rl) · uα(Rl) by making use of creation and annihilation opera-

tors (see Ref. [87]). Using the commutation relation of creation and annihilation operators

and expectation values of combinations of operations (e.g: [ap(q), a†
p′(q

′)] = δ(q − q′)δpp′ ,
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[ap(q), ap′(q′)] = 0), the mean-squared displacement is:

〈uα(Rl) · uα(Rl)〉= 〈|uα(R)|2〉=
ħh

2N MR

∑

q,p
ωp(q)

−1(1+ 2np(q, T ))|eα,R,p(q)|2. (4.55)

Here, the mean squared displacement is a function of the phonon dispersion ωp(q) and

eigenvectors ep(q). The temperature dependence factors in through n(ω, T), the phonon

distribution, which is given by the Bose-Einstein relation as:

n(ω, T ) =
1

exp (ħhω/kB T )− 1
. (4.56)

Here we can see that the temperature dependence of the average displacements of atoms

from their equilibrium positions can be estimated by summing all the contributions from wave

vectors and normal modes. This will be useful for comparison to experimental values from

diffraction techniques.

4.4 ANHARMONIC EFFECTS

While the average displacements are described quite well in many cases from the phonon

spectrum within the harmonic approximation, there are limitations that cannot be overcome

without taking into account anharmonic effects. Another model called the quasi-harmonic

approximation allows phonon frequencies to be volume dependent, which includes some

anharmonic effects. This model is the same as the harmonic approximation, but taking the

volume into account [88]. This model provides a relatively simple method to calculate the

thermal expansion, which is a phenomenon that caused by the anharmonicity of the atomic

potential.

The mode-dependent Grüneisen parameters can also be evaluated from first-principles
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phonon calculations at three different volumes to explore anharmonic contributions. For each

phonon (wave vector q and band p), the Grüneisen parameter, γ, which expresses the volume

dependence of the mode frequency, is calculated using the following approximation:

γp(q) = − V

ωp(q)
dω(q)

dV

' − V

2(ωp(q))2

®

ep(q)

�

�

�

�

∆D(q)
∆V

�

�

�

�

ep(q)

¸

, (4.57)

where V is the periodic cell volume and ωp(q) is the phonon frequency of the mode.

4.5 CALCULATING PHONON DISPERSIONS

It has been shown that the properties of phonons can be described in the harmonic approximation

based on one fundamental quantity, the force constant matrix (Eq. 4.15), which relates the

displacement of an atom to the force on another. Once the force constant matrix is determined,

evaluating the eigenvalues and eigenvectors of the dynamical matrix is relatively straightforward

and can be done numerically.

Since the physical meaning of the force constant matrix is the relation of the displacement

of an atom with the force on another atom, computing the phonon properties of a material

requires access to forces. One useful tool for calculating forces is first-principles calculations

based on density functional theory, which require no experimental parameters in the numeric

model and provide a reasonable description of bonding interactions for uncorrelated electron

systems. Some relevant background, theory, and details of these calculations will be provided

next in Chapter 5.
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Chapter 5: First-principles calculations based on density functional theory

Various computational methods are available for materials modeling. One important tool is the

use of calculations based on first principles, which are especially useful for materials in the solid

state and phenomena that are controlled by properties of materials on the atomic length scale.

These calculations are known as “first-principles,” or “ab initio”, calculations, which refer to the

fact that they are derived from the first principles of quantum mechanics, with no experimental

parameters used in the numerical model. While the central equations of quantum mechanics are

virtually impossible to solve explicitly, approximations and reformulations can be used to obtain

a result that converges to the solution of the Schrödinger equation. One important first-principles

method for quantum mechanical modeling that uses functionals of the electron density is known

as density functional thoery (DFT).

As outlined in Chapter 4, theoretical investigation of the dynamical properties of crystals

requires calculations of the atomic forces. First-principles calculations provide a powerful and

versatile means of accessing forces in an atomic configuration for a wide range of materials. All

the phonon calculations in this thesis rely on DFT calculations to determine the force constant

matrix, from which the phonon dispersion, phonon density of states, mean-squared atomic

displacements, Raman frequencies, and thermal expansions can be calculated. In addition, DFT

calculations have been used in this body of work∗ to predict ground state crystal structures,

elastic constants, relative polymorph stability, electronic density of states, dislocation boundary

energies, and magnetic ordering in two-dimensional materials. This chapter will summarize

relevant concepts behind these calculations.

∗Some of this work is out the scope of this thesis and is presented in the appendix.
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5.1 BASIC QUANTUM MECHANICS

The field of quantum mechanics makes it possible to describe a physical system at the atomic

level based only on its electronic structure and atomic arrangement, without the need to input

any empirical parameters. Here we walk through important topics in quantum mechanics to set

the stage for what equations must be solved to describe materials.

5.1.1 Schrödinger’s equation

The central equation of quantum mechanics is that of Erwin Schrödinger [89], who came up

with his famous equation in 1926:

ĤΨ= ÊΨ, (5.1)

where Ĥ is the Hamiltonian, Ψ is the wave function, and Ê is the energy. For a system with

N electrons (positions denoted by r) and M nuclei (positions R), the (time-independent)

wavefunction Ψ depends on the positions of all the interacting bodies:

Ψ=Ψ(r1, r2, r3, . . . , rN , R1, R2, R3, . . . , RM ) (5.2)

The Hamiltonian, Ĥ , is the sum of the kinetic and potential energy operators, T̂ and V̂ ,

respectively:

Ĥ = T̂nuc+ T̂e + V̂nuc+ V̂ee + V̂ext. (5.3)

Tnuc and T̂e are the kinetic energy operators of the nuclei (k) and the electrons (i):

T̂nuc =−
ħh

2Mk

∑

k

∇2
k, T̂e =−

ħh
2me

∑

i

∇2
i . (5.4)
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V̂nuc is the Coulomb interaction between the nuclei (k, l),

V̂nuc =
1

2

∑

k 6=l

ZkZl e
2

|Rk − Rl |
(5.5)

where Zke is the charge of a nucleus at position k. V̂ee is the corresponding term for the

electron-electron (i, j) interaction,

V̂ee =
1

2

∑

i 6= j

e2

|ri − r j|
, (5.6)

and V̂ext is the potential acting on the electrons (i) due to the nuclei (k),

V̂ext =
∑

i,k

Zke2

|ri − Rk|
. (5.7)

While there is an analytical solution for the hydrogen atom, the main problem with Schrödinger’s

equation for many-particle systems is that it is not possible, in general, to solve analytically.

Approximations must therefore be made.

5.1.2 Born-Oppenheimer approximation

To begin with, protons and neutrons in the nuclei are more than three orders of magnitude

more massive than the electrons, and thus their velocities must be much smaller. Based on

this, the motion of the nuclei and electrons may be separated and the nuclei can be treated as

“frozen”. The nuclei have zero velocities and thus the Tnuc term in Eq. 5.3 can be set to zero.

Furthermore, because the motion of the nuclei and electrons can be separated, the electronic

and nuclear problems can be solved with independent wavefunctions. With the nuclei assumed

as frozen then the Coulomb interaction between the nuclei is constant. Therefore, the Vnuc term

can be omitted in solving the Schrödinger equation and added later as a constant to the total
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energy. This separation of electronic and nuclear problems is known as the Born-Oppenheimer

approximation [90].

Adopting Hartree atomic units ħh= me = e = 1 and removing Tnuc and Vnuc in Eq. 5.3, the

Hamiltonian can now be simplified to:

H = Te +Vee +Vext

= −1
2

∑

i
∇2

i +
1
2

∑

i 6= j

1
|ri−r j | +

∑

i,k

Zk
|ri−Rk| .

(5.8)

Still, this is too complex to solve, which is where DFT comes in.

5.2 DENSITY FUNCTIONAL THEORY

The approach for solving many-particle problems with pure quantum theory lies in DFT, which

is a clever reformulation of the problem which replaces the many-particle problem (Eq. 5.8)

by many one-body problems. This is accomplished by using equations for a system of non-

interacting bodies that generate the same density as a given system of interacting bodies. Here,

an overview of the general theory and relevant equations behind DFT will be presented.

5.2.1 The Hohenberg-Kohn theorems

In 1964, Pierre Hohenberg and Walter Kohn introduced the first formulations of DFT with two

theorems, known as the Hohenberg-Kohn theorems [91]:

1. For a many-particle system, the ground state density, n0(r), uniquely determines the

potential.

• The theorem was proved by considering two systems of electrons, each trapped in

potentials v1(r) and v2(r), that give rise to the same ground state density, n0(r). It

can be shown by reductio ad absurdum that v1(r)− v2(r) = const.
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2. For an external potential Vext(r), a universal energy functional, F[n], can be defined in

terms of the density.

• Since the ground state density determines the potential and the ground state wave-

functions, then all properties in a system are also determined.

• The universal energy functional has the form: F[n] = T [n] +Vee[n].

The so-called Hohenberg-Kohn functional accounts for the aspects of the total energy that only

depend on the density and includes the kinetic energy of the electrons and the electron-electon

interactions. The total energy functional must also include a term for the external potential, and

will have the form:

E[n] = F[n] +
∫

dr Vext(r)n(r)

= T [n] +Vee[n] +
∫

drVext(r)n(r).
(5.9)

While the Hohenberg-Kohn theorems rigorously prove the existence of a functional of the

electron density that may be used to solve the Schrödinger equation, they do not provide a

construction for this functional, which is where the Kohn-Sham ansatz comes in.

5.2.2 The Kohn-Sham ansatz

Walter Kohn and Lu Jeu Sham approached this problem in 1965, introducing the concept that

the many-particle interacting system governed by the Hamiltonian (Eq. 5.8) could be replaced

by an auxiliary system that can be more easily solved. Since there was no way to uniquely create

this auxiliary system, an ansatz was made [92], resting upon two assumptions:

1. The ground state density of an auxiliary system of non-interacting particles can represent

the exact ground state density.



CHAPTER 5: FIRST-PRINCIPLES CALCULATIONS BASED ON DENSITY FUNCTIONAL THEORY 55

2. The auxiliary Hamiltonian will have the usual kinetic energy operator and an effective

local potential.†

This auxiliary system of non-interacting bodies is defined by the auxiliary Hamiltonian, Ĥaux:

Ĥaux = T̂aux+ V̂aux =−
1

2
∇2+V (r). (5.10)

In order to define the density functionals, expressions must be applied for all potentials V (r)

in some range and for the ground state with one electron in each orbital ψi(r). The density of

the auxiliary system is

n(r) =
N
∑

i=1

fi|ψi(r)|2, (5.11)

where fi is the Fermi-Dirac distribution.

The classical Coulomb interaction energy of the electron density n(r) interacting with itself

is taken to be the Hartree energy:

EHartree[n] =
1

2

∫∫

drdr ′
n(r)n(r ′)
|r − r ′| , (5.12)

where [n] denotes a functional of the density n(r), which is position-dependent.

The energy due to the interaction between electrons and the nuclei, Eext, is:

Eext[n] =

∫

dr Vextn(r). (5.13)

†This is a useful simplification that is not necessary, but is often taken as part of the Kohn-Sham approach. In
their original paper, Kohn and Sham did propose an alternative approach with non-local operator for exchange, to
which correlation effects are added.
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The Kohn-Sham approach for reformulating the interacting many-particle problem involves

rewriting the Hohenberg-Kohn total energy functional [91] (Eq. 5.9) as:

EKS[n] = EHartree[n] + Eext+ Ts[n] + Enuc+ Exc[n]

=
1

2

∫∫

drdr ′
n(r)n(r ′)
|r − r ′| +

∫

dr Vextn(r) + Ts[n] + Enuc+ Exc[n], (5.14)

where Ts is the independent-particle kinetic energy, Enuc is the energy that accounts for the

Coulomb-interaction between the nuclei, and Exc is the exchange-correlation energy, which

contains the many-particle interactions but whose general form is unknown. Exc represents the

difference between the kinetic and internal interaction energies of the true many-particle system

and the auxiliary system where the electron-electron interactions have been replaced by the

Hartree energy (Eq. 5.12).

Determining the Kohn-Sham auxiliary system for the ground state can be viewed as a problem

of energy minimization with respect to the density n(r). For a system of N electrons, the density

should integrate to exactly N :

N =

∫

dr n(r), (5.15)

which is used as a constraint in the search for the variational minimum, along with the orthonor-

malization constraints
∫

ψ∗i (r)ψ
′
j(r) = δi, j . (5.16)

The independent-particle kinetic energy, Ts, is:

Ts =
1

2

N
∑

i=1

|∇ψi|2 (5.17)
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which is already given explicitly as a functional of n(r) (Eq. 5.11). Applying the variational

principle to derive the variational equation, δEKS

δψi(0)
= 0, to Eq. 5.14 gives:

δTs

δψi(r)
=

1

2
∇2ψi(r);

δn(r)
δψi(r)

=ψi(r). (5.18)

Applying the aforementioned constraints through the Lagrange multiplier method leads to the

following Schrödinger-like equation for non-interacting particles:

Heffψi(r) = εiψi(r) (5.19)

where εi are the eigenvalues and the effective Hamiltonian is:

Heff(r) =−
1

2
∇2+Veff(r). (5.20)

The potential for the non-interacting system is Veff(r), with the following condition:

Veff = Vext(r) +Vxc(r) +

∫

dr ′
n(r ′)
|r − r ′| . (5.21)

Equations 5.19–5.21 are known as the Kohn-Sham equations. They are solved self-consistently

– that is, subject to the condition that the effective potential, Veff(r) and the density, n(r), are

consistent. Note that, for the sake of brevity, spin is not taken into account in any formulae so

far. However, the inclusion of spin is accomplished through two separate densities for spin up

and down, which are the solutions of the Kohn-Sham equation for the spin-dependent effective

potential. The effective potential accounts for spin in the exchange-correlation potential.
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Initialize guess
n(r)

(1) Calculate effective potential
Veff(r) = Vext(r) + Vxc[r] + VHartree[n]

(2) Solve KS equation
¦

1
2
∇2+Veff(r)

©

ψ(r) = εiψi(r)
nout → Vnew

(3) Calculate electron density
n(r) =

∑N
i=1 fi|ψi(r)|2

Self-
consistent?

Output quantities
Energy, forces,

stresses...

No

Yes

Figure 5.1: Schematic of the self-consistent loop for solving the Kohn-Sham equations.

The iteration scheme for the Kohn-Sham equations is summarized in the flow chart in Fig.

5.1. The most computationally intensive step is solving the Kohn-Sham equation for a given

potential, step (2) in the loop. In this step, the equations are uniquely solved with a given Vin

for an output density, nout.

After achieving convergence in the self-consistent loop of Fig. 5.1, subsequent iteration

schemes can be used to minimize the energy further – for instance, by moving the atomic

positions or adjusting the cell volume. The Kohn-Sham equations are indeed much easier to
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solve than the equations for many-particle interacting systems. However, the major caveat to

this technique is that we do not know the form of the exchange-correlation functional. It turns

out that this can be approximated reasonably well.

5.2.3 Exchange-correlation functionals

Since the true form of the exchange-correlation functional is unknown, an approximation must

be made for a functional that will lead to reasonable results. The one simple case where this

functional can be derived exactly is for a uniform electron gas. Kohn and Sham had already

pointed out in their paper [92] that the properties of a homogeneous electron gas (HEG) may

be useful for approximating real systems – atoms, molecules, solids, etc. – where the electron

density is nonuniform. In the local density approximation (LDA), the exchange-correlation

energy is calculated, at each position, as the exchange-correlation energy in a uniform electron

gas with the electron density observed at that position. The exchange-correlation functional in

the LDA is thus

ELDA
xc [n] =

∫

εHEG
xc [n(r)]. (5.22)

The exchange part of εHEG
xc is known analytically [93],

εHEG
x [n(r)] =−3(3π2)1/3

4π
n4/3, (5.23)

and the exact exchange energy functional in the LDA can be obtained as

EHEG
x = ELDA

x =−3(3π2)1/3

4π

∫

drn(r)4/3. (5.24)

The functionals for correlation are not as simple, and analytical expressions are not known

for the HEG, except in the high- and low-density limits. There are various approaches for
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representing the correlation functional in the LDA, such as that of Perdew-Wang (PW92) [94].

Since electrons in a single atom will naturally be different from electrons in a uniform gas,

the LDA approximation may appear to be a crude estimation of little value for real systems.

However, LDA has been a widely used and extremely successful approximation that has been

around for over 40 years [95–97].

In addition to the LDA, there are a number of other functionals that approximate the

exchange and correlation and correct some of the problems with the LDA. Another popular class

of functionals is the generalized gradient approximation (GGA), which takes into account the

local gradient in the electron density. The general form is

EGGA
xc [n] =

∫

f [n(r),∇(r)] n(r) dr. (5.25)

Because there is no unique way to incorporate information from the gradient of the electron

density into a functional, there are a number of distinct GGA functionals. One widely used

functional for solids is that of Perdew, Berke, and Ernzerhof (PBE) [98], which is used for the

majority of the calculations in this thesis. In addition to the PBE-GGA functional, there are

dozens of other functionals out there, many of which are particularly useful for calculations on

isolated molecules.

Even though the GGA includes more physical information than the LDA, it should not be

assumed that it is more accurate. This is not always the case, and each functional has different

strengths and weaknesses that should be taken into account when choosing an appropriate func-

tional [99–102]. Each functional is appropriate for particular parameter regimes corresponding

to different materials systems
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5.3 FIRST-PRINCIPLES PHONON CALCULATIONS

As we saw from Chapter 4, dynamical properties of materials depend on the calculation of forces

between atoms in a system. Phonon calculations are only one example out of many materials

phenomena that rely on access to atomic forces. Structure optimization, for instance, can be

carried out by minimizing the forces – that is, calculating the forces on an atomic configuration,

moving the atoms by a small amount in the direction of the forces, re-evaluating the forces, and

so forth until the forces are below a threshold. This optimization by allowing atoms to move

toward their equilibrium positions is known as relaxing the atomic positions. In the next two

subsections, force calculations from first-principles calculations are briefly described, followed

by a discussion of the methods available for first-principles phonon calculations.

5.3.1 Forces in density functional theory

There are several ways in which forces can be evaluated through first-principles calculations.

Generally, the force on an atom is described by the total energy change with respect to atomic

displacement:

Fi =−
∂ E

∂ Ri
. (5.26)

Since E = 〈Ψ|Ĥ |Ψ〉, the Hellman-Feynman theorem relates ∂ E
∂ Ri

to the expectation of the

derivative of the Hamiltonian with respect to Ri:

Fi =−
∂ E

∂ Ri
=−

*

Ψ

�

�

�

�

�

∂ Ĥ
∂ Ri

�

�

�

�

�

Ψ

+

=−
∫

dr n(r)
∂Vext(r)
∂ Ri

− ∂ Eion

∂ Ri
. (5.27)

where Eion is the energy of the ion cores. Since the wavefunctions are solved for through the

self-consistent loop for the Kohn-Shams equations (Fig. 5.1), this shows that the forces – and

therefore the phonon properties – can be accessed through DFT calculations.
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5.3.2 Methods for phonon calculations

There are two available methods for determining the force constants – and from that, the phonon

spectrum – in plane-wave-based DFT calculations. They are known as the “supercell” method,

and the “linear response” method.

The supercell method – also called the “small displacement” method, the “direct” method,

or the “frozen phonon” method – is the most straightforward method for calculating the force

constant matrix. The method involves shifting the atomic positions in a crystal by small amounts

and then calculating the forces on the other atoms [103]. Since the physical meaning of the force

constants is that they relate the displacement of an atom to the force on another atom (Eq. 4.15),

the entire force constant matrix may be computed with an appropriate set of displacements.

Since the forces on atoms extend beyond the nearest neighbor atoms in a unit cell, supercells

are constructed to account for the full range of force constants outside the primitive cell. The

choice of atomic displacements is important in obtaining meaningful results; the number of

displacements should be minimized, and so should their magnitudes so that the system is in

the harmonic regime, but they should be large enough that the numerical noise is not too high

compared to the computed forces. The number of displacements required depends on the crystal

structure and also the anharmonicity of the system. The main drawback of this method is the

need for supercells, and therefore a large number of atoms. For instance, for the smallest MAX

phase structure (the 211 structure with 12 atoms/unit cell), a 2 × 2 × 1 supercell requires

22 · 12 = 48 atoms. Furthermore, the force constant range is truncated to the edge of the

supercells. While convergence tests may be performed to converge the phonon properties to

help overcome this, special attention is needed to minimize size effects in the system.

The other phonon calculation method is the more recently developed linear response

method [104, 105], which is based on density functional perturbation theory (DFPT) . This one
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is not as straightforward to grasp in terms of physical meaning compared to the direct calculation

with the supercell method, and therefore the frozen phonon method is a nicer way to become

acquainted with phonon calculations. DFPT provides a means of computing the second derivative

of the total energy with respect to a given perturbation. Since all harmonic force constants (and

elastic constants, etc.) only involve the second derivative of energy, this method calculates the

dynamical matrix – or the reciprocal space force constant matrix (Eq. 4.45) – directly for a set

of q vectors. Due to the variational principle of density functional theory (see Eq. 5.9), the

second order change in energy depends on the first linear change in electron density. Unlike

the frozen phonon method, there are no issues with converging the phonon properties to the

size of the system. The phonon properties can be determined from the electronic wavefunctions

and eigenvalues of the undistorted crystal. However, it is computationally more expensive and

generally takes longer than the frozen phonon method. In this thesis, mainly DFPT calculations

are used; however, frozen phonon calculations are performed where convenient or necessary, for

example if there are computational limitations for DFPT.
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Chapter 6: Neutron diffraction

So far, the dynamical behavior of periodically-ordered atoms has been considered from a purely

theoretical point of view, along with a condensed discussion of other fundamental materials

properties. The next two chapters are devoted to background, theory, and physical concepts

relevant to two different types of experimental techniques, elastic scattering (this chapter on

neutron diffraction) and inelastic scattering (the next chapter on Raman spectroscopy). These

two types of scattering techniques give access to different pieces of information on physical

properties and atomic-level physics of materials in the solid state. In this thesis, they are used to

investigate the dynamical behavior of the atoms in MAX phases through parameters that will be

directly compared with results from the computational modeling through first-principles phonon

calculations, for which the underlying theory has been discussed in the previous chapters.

The focus of the present chapter is neutron diffraction. While this is only one of a number of

diffraction techniques currently available for crystal structure investigation (e.g. X-ray diffraction

and electron diffraction), neutron diffraction is the method that is most heavily used for the

experimental work in this thesis. Although there are major differences in the way beams interact

with atoms depending on the particles or waves that make up the beam, diffraction techniques

also share common qualities in their theory and mathematical descriptors. Therefore some of the

topics of this chapter will be a more broad discussion of diffraction that are applicable for other

diffraction techniques; however, in later sections emphasis will be placed on neutron scattering,

which is most relevant to the work carried out in this thesis.
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6.1 DIFFRACTION BASICS

Diffraction techniques are extremely powerful and essential tools in probing the atomic ordering

in materials. It was over 100 years ago, in 1912, that Max [von] Laue∗ and his colleagues,

Walker Friedrich and Paul Knipping, decided to irradiate a copper sulfate crystal and became

the first to observe diffraction from the crystal planes. They simultaneously demonstrated two

important things in their experiment with a CuSO4 crystal: (1) the existence of X-rays as a

potentially useful form of electromagnetic radiation for probing atoms in solids, and (2) the

fact that solids have a periodic form. The discovery immediately gained widespread attention,

and soon after was exploited by William Henry Bragg and his son William Lawrence Bragg to

develop an alternative method that gave birth to X-ray diffraction and X-ray crystallography

(see Bragg’s law, Section 6.1.2). Both von Laue and the Braggs swiftly received Nobel prizes in

1914 and 1915, respectively, and to this day, X-ray diffraction – along with neutron and electron

diffraction – has been a widely used tool among chemists, materials scientists, and physicists. It

is routinely employed and considered essential if one wants to gain some understanding of the

crystal structure of a material.

This section introduces the fundamentals concepts of diffraction, with general considerations

for the relationship between the geometry of a coherent beam and the periodic structure of a

crystal. The last part of this section discusses the different types of radiation beams typically

used for diffraction before moving onto neutron diffraction, which is the main focus of Section

6.2 and onwards.
∗At the time of the 1912 experiment, he was known as Laue; later, he went by von Laue.
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6.1.1 Diffraction fundamentals

Diffraction, by definition, is elastic, coherent scattering from a crystal with long-range order (i.e.

periodicity). Elastic scattering refers to a process where the incident and scattered radiation

have the same wavelength – that is, the beam does not change in wavelength through the

scattering process. This definition of elastic can be somewhat contradictory to other uses of the

word. In elementary physics courses, an elastic collision is taken to mean a collision in which

the total energy is conserved, but the individual bodies transfer energy through the collision. In

elastic scattering, “elastic” has a completely different meaning, and no energy is transferred to

the crystal when the beam is scattered.

6.1.2 Bragg’s law

When a beam interacts with atoms in a crystal, most combinations of wavelengths and angles

lead to destructive interference of the reflected beam, where the scattering from the atoms causes

phase shifts that interfere and cancel out. When the normal to the reflecting plane is aligned

in a certain way, however, the reflected beams are in phase and thus interfere constructively to

form a diffraction peak. The equation that governs this is known as Bragg’s law:

λ= 2dhkl sinθhkl . (6.1)

This can be visualized through Fig. 6.1, where a wave reflecting on a given plane travels

an extra distance, 2dhkl sinθhkl (twice the distance d sinθ labeled in blue), before it joins the

waves reflecting from the other planes. In order to be in phase with these other waves, this extra

distance must be equal to integer multiples of λ (labeled in green).

Bragg’s law is important because it relates the scattering angle, θ , and the wavelength, λ, to
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d dsinθ θ 

λ 

Figure 6.1: Bragg’s law.

a dimension within the crystal. The d-spacing, dhkl , is the distance between planes (hkl)† in a

crystal. Since only certain wavelengths and angles lead to constructive interference, one can

access dhkl within a crystal by measuring either the angles (for a coherent beam of constant λ)

or the wavelengths (for a constant angle) that form a peak in scattered light/neutrons/electrons.

6.1.3 Types of diffraction

Crystal structure investigation through diffraction requires the use of beams of radiation. More-

over, the wavelength of radiation should be on the order of the typical distances between atoms

in a crystal in order to obtain useful, high-resolution information on the atomic arrangement.

This is also a fundamental condition for Bragg’s law, where λ cannot be larger than the distance

d sinθ (Fig. 6.1), since n must be an integer – which is usually equal to 1 for the length scales

of the beams typically used.

The main candidates for beams are neutrons, electrons, and electromagnetic radiation in

the X-ray spectrum. While the former two are particles with a mass, the fundamental notion of

wave-particle duality allows all to be treated as waves according to the relationship between

†In hexagonal materials, planes can also be indexed by (hkil), where i indexes the direction that bisects the
vectors corresponding to the −h and −k indices. By symmetry, i =−(h+ k).
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momentum, ~p, and wave vector~k, which is given by the expression for the de Broglie wavelength:

~p = ħh~k, (6.2)

where ~p = m~v, and |~k|= 2π/λ.

Electron beams have wavelengths that are much smaller than those of X-rays and neutrons.

In the case of transmission electron spectroscopy, electrons are much smaller than interatomic

distances and pass through thin samples. However, it is not as useful for determining crystal

structures because the relationship between the intensity of the diffracted data and the crystal

structure is not as straightforward as with neutrons and X-rays and the data refinement processes

cannot be as readily automated. Furthermore, the strong interaction of electrons with matter

(due to the scattering by the positive potential inside the electron clouds) makes the scattering

more influenced by dynamical effects. Therefore, electron diffraction is generally not as reliable

for obtaining quantitative crystal structure information, and it is typically used to image long-

range atomic ordering to survey scattering in reciprocal space.

X-ray diffraction and neutron diffraction are the most common and powerful tools for

probing crystal structures. Most laboratory X-ray diffraction experiments are performed with

constant-wavelength copper Kα radiation (λ= 1.54 Å), using the scattering angle as a variable.

A range of angles is scanned – where the incident beam and detectors are simultaneously varied

to detect the elastically scattered X-rays – and the intensity of the scattered beam at each angle is

measured with an electronic detector. Another X-ray diffraction method is the use of synchotron

sources, which can produce a continuous distribution of X-ray wavelengths. This offers higher

beam intensities and more versatility in wavelengths, however they are not as accessible as

laboratory X-ray diffractometers and synchotron sources are limited so considerable advanced

planning is needed for proposing and scheduling experiments.
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Neutron diffraction is an alternative to X-ray diffraction. Neutron beams can be produced

either with a nuclear reactor or with a spallation source. Unlike X-ray diffraction, there is no

way to produce neutrons in a laboratory and so, like synchotron X-ray experiments, neutron

diffraction experiments can only be performed at limited facilities and experimental planning

must be done in order to apply for – and make good use of – neutron beam time. Neutron

diffraction is similar to X-ray diffraction in formalism and experimental technique in terms of

analogous experimental set-ups and data refinement, but there are some significant differences

in how neutrons interact with atoms that make it more advantageous in many cases.

6.2 NEUTRON DIFFRACTION

Neutron diffraction experiments are an integral part of this thesis in measuring the temperature-

dependent crystal structures and atomic displacements of atoms in situ. The rest of this

chapter focuses on neutron diffraction, although many aspects may apply to general diffraction

techniques. Background on the scattering of neutrons from a crystal, neutron scattering factors,

experimental methods (primarily time-of-flight experiments, which are used for the work in

this thesis), powder-profile refinement, and the Debye-Waller factor for atomic motion will be

discussed. Finally, the useful applications of neutron scattering and its advantages over X-ray

diffraction will be discussed

6.2.1 Neutron scattering from nuclei

There are two ways in which a neutron may be scattered by an atom: by interaction with the

nucleus, or by interacting with unpaired electrons. Since magnetism is not studied through

neutron diffraction in this thesis, only nuclear scattering will be considered in this section. Most

of the theory can be found in a number of other works [13, 106–109]. For further details on the

concepts introduced in this chapter, consult those books.
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Figure 6.2: The geometry of neutron scattering. Schematic is based on Fig. 1.1 in [106]

Formally, the neutron scattering problem is described by the scattering of a neutron, with

wave vector ~k, into a state with wave vector ~k’ by a crystal (Fig. 6.2). The direction of

propagation of the scattered neutron state is defined with respect to the incident state by the

polar angle θ and the azimuthal angle φ (Fig. 6.2). For elastic scattering, where no energy

is transferred to the crystal, the number of neutrons scattered per unit time into solid angle

dΩ = sinθdφ is

N
�

dσ

dΩ

�

dΩ, (6.3)

where N is the neutron flux defined as the number of incident neutrons per unit area per unit

time, and dσ/dΩ is the differential cross-section. The neutron cross-section, σ, is governed by
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the atom’s ability to scatter neutrons and has units of area. Since the scattering of a beam of

neutrons from an atom’s nucleus will depend on the interaction potential, V (~r), between the

neutron and the atomic nucleus, the probability (per unit time) of such a transition (~k→~k′) is

given by Fermi’s Golden rule:

Wk→k′ =
2π

ħh

�

�

�

�

∫

d~rψ∗~k′(~r)V (~r)ψ~k(~r)
�

�

�

�

2

ρ~k′(E), (6.4)

where ψ~k(~r) and ψ~k′(~r) are the normalized wave functions of the incident and scattered states,

respectively. Here ρ~k′(E) is the density of states for the scattered neutrons per unit energy range,

which is

ρ~k′(E) =
L

2π

mk

ħh2 dΩ (6.5)

for a box of volume L3. The velocity of the incident neutrons is ~v = ħh~k/m and the incident

flux of neutrons for this box is N = ~v/L3 = ħh~k/(mL3). The wave functions of the initial and

scattered states, ψ~k(~r) and ψ~k′(~r) respectively, are normalized by L−3/2 for confinement in the

box. Since σ is the inverse of the incident flux multiplied by the number of neutrons scattered

per second, it follows that:

dσ =
W~k→~k′
N =

�

m

2πħh2

�2 �
�

�

�

∫

d~r exp(−i~k′ ·~r)V (~r)exp(i~k ·~r)
�

�

�

�

2

dΩ. (6.6)

Now we consider the a single nucleus fixed at the origin of coordinates (i.e., a bound nucleus

with position ~R = 0) and turn to the potential between the nucleus and the scattered neutron,

which is a function of their separation ~r. Its exact dependence on ~r is not known in practice

but, from experimental results, we know it is a potential of extremely short range that falls

rapidly to zero beyond the nuclear dimensions. Because the latter distance is much smaller than
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the wavelength of the neutrons, the nucleus acts as a point scatterer – that is, the scattering is

isotropic and can be characterized by a single parameter, b, known as the scattering length and

is dependent on the isotope type. To represent V (~r), a Fermi pseudo-potential given by a delta

function (the only form that gives isotropic scattering) may be used, which is defined as:

V (r) =
2πħh2

m
bδ(~r). (6.7)

Substituting this into Eq. 6.6 and solving for dσ/dΩ, we get:

dσ

dΩ
=
�

m

2πħh2

�2
�

2πħh2

m

�2

|b|2
�

�

�

�

∫

d~r exp(−i~k′ ·~r)δ(~r)exp(i~k ·~r)
�

�

�

�

2

= |b|2 (6.8)

and thus the total cross-section for the rigid atom is

σ =

∫

|b|2dΩ = 4π|b|2. (6.9)

6.2.2 Neutron scattering cross-sections

Now we consider the scattering from a rigid array of N nuclei. As mentioned earlier, the

scattering is dependent on the atom isotope so we must now take into account the different

isotopes. There are two different implications of the “isotope effect”, and the total cross-section

can be subdivided into different contributions for the two types of scattering, coherent and

incoherent scattering:
�

dσ

dΩ

�

tot
=
�

dσ

dΩ

�

coh
+
�

dσ

dΩ

�

incoh
. (6.10)

The cross-sections are given in units of barn=bn=10−24cm2 and account for two ways that

the scattering from different isotopes come together. Now these two effects will be discussed
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separately.

Coherent cross-section

The first contribution to the total cross-section is due to the combined scattering from different

isotopes where there is strong interference between the waves scattered from each nucleus.

For an element such as titanium, whose naturally-occurring state contains several different

isotopes, the effective value of b, which can be distinguished now as b̄, is the average b among

the isotopes,

b̄ =
∑

j

c j b j (6.11)

where b j is the scattering length for the jth isotope and c j is its fractional abundance. The

contribution for coherent scattering comes from the average scattering potential and ends up

being proportional to b̄ of Eq. 6.11 as follows: we denote the position vector of the l th nucleus

as ~Rl and its scattering length as bl such that the interaction potential of Eq. 6.7 becomes

V (r) =
2πħh2

m

∑

l

blδ(~r − ~Rl). (6.12)

Plugging this into Eq. 6.6 gives us a term for the coherent scattering:

�

dσ

dΩ

�

coh
=

�

�

�

�

�

∑

l

bl exp(i~κ · ~Rl)

�

�

�

�

�

2

, (6.13)

where ~κ=~k− ~k′. Since
∑

l bl is b̄ of Eq. 6.11, then

�

dσ

dΩ

�

coh
= |b̄|2

�

�

�exp(i~k · ~Rl)
�

�

�

2
. (6.14)

This coherent scattering term accounts for the average scattering potential that gives inter-
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ference effects, thereby determining the intensities of the diffraction peaks.

Incoherent cross-section

In addition to coherent scattering, there is also some disordered scattering that will result from

the presence of different randomly-distributed isotopes and that contributes to the background

of the pattern, which is incoherent scattering. The incoherent cross-section is:

�

dσ

dΩ

�

incoh
= N[|b|2− |b̄|2], (6.15)

where b̄ is the term in Eq. 6.11 and |b|2 is calculated as follows:

|b|2 =
∑

j

c j|b j|2. (6.16)

Physically, the incoherent scattering term can be seen as the aspect of the “isotope effect”

that accounts for the deviations from the average potential, which are randomly distributed and

therefore cannot give interference effects.

6.2.3 Elastic nuclear scattering

Now we will consider elastic scattering from an ordered crystal. Since it is the coherent scattering

contribution that makes up the (hkl) peaks, we begin with Eq. 6.14 for the coherent scattering

cross-section. As a starting point, a Bravais lattice with one atom per unit cell leads to:

�

dσ

dΩ

�

coh
= |b̄|2

�

�

�exp(i~k ·~l)
�

�

�

2
, (6.17)
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where ~l is the lattice vector of cell l, related to the basis vectors of the unit cell ( ~a1, ~a2, and ~a3)

through integer values l1, l2, and l3 by:

~l = l1 ~a1+ l2 ~a2+ l3 ~a3. (6.18)

For a large crystal, it can be shown that

�

dσ

dΩ

�

coh
=

N(2π)3

V0
|b̄|2

∑

~τ

δ(~κ− ~τ), (6.19)

where ~τ is the reciprocal lattice vector and V0 is the volume of the unit cell, V0 = ~a1 · ( ~a2× ~a3).

This can be generalized to a material with more than one atom per unit cell as follows:

�

dσ

dΩ

�

coh
=

N(2π)3

V0

∑

~τ

δ(~κ− ~τ)|FN (~τ)|2, (6.20)

where the structure factor, |FN (~τ)|2, is defined as

FN (~τ) =
∑

d

exp(i~τ · ~d)b̄d , (6.21)

where ~d denotes the position vector of atom d in the cell and is summed for all the unique sites

in a unit cell. Keep in mind that this is assuming bound atoms with no atomic motion.

From Eq. 6.20 it is apparent that, in order for the coherent scattering term to be large, ~κ

must be equal to a reciprocal lattice vector; otherwise the terms will be out of phase with each

other and cancel out . Therefore, the following condition must be fulfilled in order for coherent

scattering (i.e. Bragg scattering) to occur:

~κ=~k− ~k′ = ~τ. (6.22)
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This is another form of Bragg’s law (Eq. 6.1), since |~κ| is related to θ (where the angle between

~k and ~k′ is given as 2θ) by |~κ|= 2|~k| sinθ , which must be equal to |~τ|, so we get

|~τ|= 2|~k| sinθ . (6.23)

It can be shown that |~τ| and |~k| are related to the wavelength and integer multiples (n) of

d-spacing by:

|~τ|= 2π

d
n and |~k|= 2π

λ
, (6.24)

and Eq. 6.23 is simply Bragg’s law, nλ= 2d sinθ .

Now let’s break down the components of the coherent scattering cross-section. We have

three main parts to Eq. 6.20:

(i) N(2π)2/V0 is simply a multiplier to account for the volume of the unit cell and the number

of atoms,

(ii) δ(~κ− ~τ) is the selection condition for Bragg scattering to occur by an (hkl) plane based

on the reciprocal lattice vector ~τ, which is essentially the wave vector form of Bragg’s law,

and

(iii) FN (~τ) is the term that accounts for the peak intensities due to the scattering based on

the properties of the atoms in the unit cell. In the static model (Eq. 6.21), this term is

governed by the scattering length of the atoms in the unit cell and their positions.

Now that the basic ideas behind coherent neutron scattering from a static crystal have been

introduced, we will introduce dynamical effects, which clearly comes into play in (iii), the

structure factor term.
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6.2.4 The Debye-Waller factor

In the dynamical model, the structure factor of Eq. 6.20 becomes:

FN (~κ) =
∑

d

b̄d exp(i~κ · ~d)exp(−Wd(~κ)), (6.25)

where the last exponential term, exp(Wd(~κ)), is known as the Debye-Waller factor that accounts

for the thermal motion correction of the structure factor (see section 4.3 of [106] for details).

Therefore, we can see that the cross-section for coherent elastic scattering by a dynamical crystal

is the static cross-section multiplied by a factor of exp(−2W (~κ)). By definition,

2Wd(~κ) = 〈(~κ · ~ud)
2〉, (6.26)

such that 2Wd is simply the mean-squared displacement of atom nucleus d multiplied by ~κ2

[86]. In structure refinement, the exponential term accounting for anisotropic thermal atomic

motion is expressed as:

Wd =−2π2(U11h2τ2
1+U22k2τ2

2+U33l2τ2
3

+ 2U23klτ2τ3+ 2U13lhτ3+ 2U12hkτ1τ2) (6.27)

where τ1, τ2 and τ3 are the edges of the unit cell in reciprocal space associated with the a, b,

and c lattice parameters, respectively; h, k, and l are the indices for a given (hkl) plane [110].

The Ui j terms are components to the Gaussian mean-squared atomic displacement matrix, and

they are known as atomic displacement parameters (ADPs). The diagonal terms U11, U22

and U33 are the mean-squared displacements in the direction of the a, b, and c lattice vectors,

respectively. The off-diagonal terms represent the orientation of the thermal motion ellipsoids.
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For hexagonal structures, due to site symmetry U23 and U13 are both equal to 0 and the equation

simplifies:

Wd =−2π2(U11h2τ2
1+U22k2τ2

2+U33l2τ2
3+ 2U12hkτ1τ2). (6.28)

For the hexagonal crystal system, these anisotropic Ui j ’s may be converted to an approximated

isotropic temperature factor Ueq given by [111]

Ueq =
1

3
(U11+U22+U33). (6.29)

This shows that the displacements of atoms from their equilibrium positions can be extracted

from the intensities of a neutron diffraction pattern depending on how much the intensity

decreases compared to the static lattice model. The Debye-Waller factor is also determined in

other types of diffraction experiments, but neutron diffraction has several advantages over X-rays

that make it more favorable for certain materials systems. These are discussed in Section 6.2.7.

6.2.5 Neutron diffraction experiments

Among the many set-ups that exist for making experimental observations through neutron

scattering, there are two main types that may be distinguished. The first type is concerned with

measuring the distribution of neutrons in space for neutrons of a constant wavelength, often

only in a single plane. The other type makes measurements of the wavelength at a fixed detector

position for polychromatic neutrons by measuring their time-of- flight (TOF).

The TOF method was mostly developed for elastic scattering by Buras and his collaborators

using the pulsed reactor at Dubna, Russia [112]. In this thesis, the neutron diffraction experi-

ments are carried out on a neutron TOF diffractometer, but it also combines position-sensitive

detectors [113]. The experimental set-up is described in more detail in Chapter 8.
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Neutron diffraction experiments are generally used for materials problems that are structural

(where knowledge on atomic positions is sought), while problems that are essentially dynamical,

where the main focus is the atomic motion, turn to inelastic neutron scattering. However, for

inelastic scattering, the information is most valuable and free of ambiguity when single crystals

are used, since the directional correlations are preserved. Single crystals for many materials

are extremely difficult to produce, especially in sizes adequate for neutron diffraction, and thus

techniques that are applicable to powdered or polycrystalline materials are extremely valuable.

Structural studies on powdered materials using profile refinement of neutron TOF data is thus an

extremely powerful and versatile technique for probing the structure. Furthermore, as I outlined

in the previous section, the Debye-Waller factors account for the atomic vibrations of the atoms

in a material and provide information about their average atomic displacements.

The peak intensities, shapes, and positions from a neutron TOF diffraction pattern reveal a

great deal of useful structural information about crystals, and the quality of results extracted

from the data depends heavily on the profile refinement of the pattern. Structural studies require

a comprehensive survey of the entire diffraction pattern rather than discrete measurements of

(hkl) intensities, and it is advantageous to have high detector coverage and a wide range of

wavelengths.

6.2.6 Profile refinement

The previous sections have outlined the relationship between the crystal structure of a material

and the pattern of scattered neutrons – that is, the rules governing the wavelengths that interfere

constructively to form a diffraction peak, and the factors that influence the peak intensities. It is

clear that the diffraction pattern of scattered neutrons is directly related to the crystal structure

of the material. In practice, in order to fit a structural model to this diffraction pattern, some
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previous knowledge (or at least a reasonable guess) of the crystal is required to postulate a

suitable initial structure based on a limited number of identifiable parameters including those

that are structural and those that are related to the instrument. The “goodness” of the fit between

the measured and calculated profile is then assessed through a least-squares analysis, using both

the instrumental and structural parameters.

This refinement strategy is known as Rietveld refinement, after Rietveld who developed the

method [114]. The method rests on the fact that the diffraction peaks in a neutron diffraction

pattern are extremely close to Gaussian in shape. The profile function includes variables that are

refined to fit the peak width and also ones that depend on the instrument to account for the

instrument alignment – for example, in my work I refined σ1 in the profile function and “DIFC”

for the instrument alignment. Mathematical descriptions of refineable parameters can be found

in Ref. [110].

The precision of an analysis can be expressed in a number of different ways. The weighted

profile R-factor, Rwp, is the most straightforward expression of the discrepancy. It is simply the

square root of the minimized quantity scaled by the weighted intensities [115]:

R2
wp =

∑

i wi(ycalc,i − yobs,i)2
∑

i wi(yobs,i)2
, (6.30)

where wi is the weight, i refers to a data point at wavelength λi, and ycalc,i and yobs,i are,

respectively, the calculated and observed intensities. Another useful concept is the expected R-

factor, Rexp, which represents the ideal model of the “best possible” Rwp that would be obtained

if the average value of (ycalc,i − yobs,i)2 was equal to the uncertainty estimate of the observed

data, σ2[yobs,i]. In this case, wi(ycalc,i − yobs,i)2 would equal one and the numerator of Eq. 6.30

would be equal to the number of degrees of freedom, N + P + C , where N is the number of data
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points, P is the number of parameters, and C is the number of the constraints. This gives an

R-factor of:

R2
exp =

N
∑

i wi(yobs,i)2
. (6.31)

A related concept is “chi squared”, or χ2, which is a statistical term that represents the

average ratio between (ycalc,i − yobs,i)2 and σ2[yobs,i], which, again, would be equal to one for

an ideal dataset. Note that it is also the ratio of Eqs. 6.30 and 6.31, given by

χ2 =
1

n

∑

i

(ycalc,i − yobs,i)2

σ2[yobs,i]
=

R2
wp

R2
exp

. (6.32)

During a refinement process, χ2 starts out large – when the model is poor – and decreases as

the model better fits the observed pattern. A good refinement strategy is of utmost importance for

obtaining meaningful results from a dataset. However, even with good statistics and minimized

differences between the observed and fitted profile, there can be more than one optimal solution,

with local minima and correlated parameters so there will always be an amount of uncertainty

in the a final profile fit. Throughout this thesis, error bars and standard deviations are used in

figures and tables to estimate statistical error. Further details on the refinement strategies are

described in Chapter 8, and the refinement statistics are presented in Appendix A.

6.2.7 Advantages over X-rays

Neutron diffraction can sometimes be considered an alternative to X-ray diffraction, where the

two techniques have similar formalism; they both involve elastic scattering where the scattered

radiation is related to the arrangement of atoms within the crystals through the spacing between

the reflection planes. However, there are fundamental differences in the way that neutrons

interact with atoms in a crystal, and consequentially there are a number of advantages of
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H C N Al Si Ti Cr Ge

Neutron coherent cross-section

X-ray [coherent] cross-section

Z
Figure 6.3: Schematic comparison of scattering cross-sections of select elements for x-rays
and neutrons. Data for neutron cross-sections is from [116].

neutrons over X-rays:

• The most relevant advantage for work with the MAX phases is that the ability of an atom

to scatter neutrons does not scale with the atomic number, Z . X-rays interact with the

electron clouds of atoms, so the scattering power of X-rays scales directly with the number

of electrons. On the other hand, neutrons interact with the nuclei of atoms, which are

typically ∼ 10−5 times the size of the atom, and therefore the wavelengths of the neutrons

are generally similar to the atomic size. As a result, there is no correlation between the

neutron scattering length and the atomic number. Figure 6.3 shows a schematic of the

relative effective X-ray scattering cross-sections (blue) and neutron coherent cross-sections

(green) of various elements that are typically present in MAX phases. While the scattering

power of X-rays scales with Z , the neutron scattering cross-section does not. This is

especially useful for carbides and nitrides, since the light C and N atoms are difficult to

resolve in X-ray diffraction because the scattering from the heavier M (e.g., Ti and Cr) and
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A (e.g., Al, Si, and Ge) atoms dominate the diffraction pattern.

• Another important advantage of neutrons is their long penetration depth in matter due to

the fact that they are uncharged particles. They are good for sampling large volumes and

therefore probing bulk properties, whereas X-rays only probe the surface and sample small

volumes.

• Neutron scattering also has no angular dependence on scattering. X-rays, on the other

hand, decay in scattering factor with increasing angles, because the wavelength of X-ray

radiation is of the order of the atom diameters and therefore most of the scattering is in

the forward (low θ , Fig. 6.1) direction.

• Finally, other important applications of neutrons include their ability to investigate mag-

netism by interacting with unpaired electrons, and also their ability to get phonon prop-

erties away form the Γ-point; however, the latter is an advantage of inelastic neutron

scattering, not diffraction, and a single crystal is required in order to measure the phonon

distribution. Further, these two advantages are not exploited in this thesis.

All in all, neutron diffraction is a powerful and versatile technique for probing the crystal

structure of materials and are especially useful for the MAX phases, with their light C and N

atoms. Results from neutron diffraction are an integral part of this thesis. The temperature-

dependent atomic displacements and crystal structures (including bond lengths and lattice

parameters) determined through Rietveld analysis of HTND TOF data will be presented for a

large number of MAX phases throughout the chapters in Part II. By supplementing the HTND

results with first-principles phonon calculations, the combined studies are useful in shedding

light on bonding, defects, atomic motion, and interatomic interactions in the MAX phases.
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Chapter 7: Raman Spectroscopy

For the elastic scattering involved in diffraction discussed in Chapter 6, the reflected waves

have the same energy as those in the incident beam. In contrast to elastic scattering, inelastic

scattering involves an energy loss due to the interaction of the beams with atoms due to

vibrational modes. This is the fundamental difference between diffraction and spectroscopy.

So, while a diffraction pattern refers to a graph where collected data all have the same energy, a

spectrum is the plot for a data set that is a function of energy.

One common inelastic scattering is Raman scattering, named after Sir Chandrasakara

Raman for his discovery of inelastic photon scattering (the Raman effect) in 1928 [117]. This

technique is used in this thesis to measure the frequencies of vibrational modes in the materials

under study. This chapter outlines some fundamental concepts behind the technique.

7.1 THE BASICS OF RAMAN SPECTROSCOPY

Raman spectroscopy is a useful experimental tool for measuring vibrational and rotational modes

in a system through the inelastic scattering of monochromatic light from a laser, usually in the

visible light range or around it in the near-ultraviolet/near-infrared ranges.

The main idea in Raman spectroscopy is that a laser hits a material and it is scattered by

phonons that change the wave vector and energy of the beam. Because the wave vector of light is

small, the energy shifts are also small but can be measured to a reasonably high resolution with

laser beams of high enough intensity and high-precision analysis of the collected light through

interferometric techniques. From these small energy shifts, the contributions from a single

phonon can be isolated to discrete values for ωp(q) (see Chapter 4). Only certain modes are
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“Raman-active”, which are those that change the crystal polarizability (see discussion in sections

below). The main disadvantage of Raman scattering over other forms of inelastic scattering

with larger energy shifts (namely, inelastic neutron scattering) is that a small change in wave

vector implies that the phonons must have wave vectors close to zero. The measurable phonons

are severely limited in reciprocal space compared to the range of wave vectors in the Brillouin

zone, the measurable phonons are effectively at k = (0,0,0), the Γ-point. But despite this

limitation, Raman spectroscopy provides an accessible and high-resolution means of measuring

the frequencies of certain Γ-point vibrational modes.

7.2 THE RAMAN EFFECT

The theoretical basis for Raman spectroscopy is the inelastic scattering of photons, the Raman

effect, whereby a photon is scattered with a different energy than before it was scattered. The

energy difference corresponds to the energy required to excite a molecule to a higher vibrational

mode. When photons from a laser beam are absorbed by molecules, the molecules are excited to

a virtual state. If they come back to their original state, then they will re-emit a photon of the

same energy as the incoming photons. This is known as Rayleigh scattering. On the other hand,

if a molecule relaxes into a vibrational state with a different energy than its original state, the

emitted photon will have a different energy than the original one.

For a vibrational state with a lower energy than the initial state [see Figs. 7.1(a) and (c)],

the emitted photon will have a higher energy than the original photon, and a phonon – with

vibrational frequency ωp and energy ħhωp corresponding to the energy difference between the

initial and final state – is absorbed into the crystal. This is anti-Stokes Raman scattering. An

upshift in energy between the initial and excited vibrational state [see Figs. 7.1(b) and (d)] leads

to an emitted photon of lower energy and an emitted phonon, which is the Stokes component
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anti-Stokes Stokes

n~q
~k

n~q′

θ

(a)
ħhn~q′ = ħhn~q+ħh~k

n~q
~k

n~q′

θ

(b)
ħhn~q′ = ħhn~q−ħh~k

∆E = ħhω
∆E = ħhω′

ħhωp

(c)

∆E = ħhω ∆E = ħhω′

ħhωp

(d)

Figure 7.1: Feynman diagram for (a) anti-Stokes and (b) Stokes scattering, and schematics
of energy levels for (c) anti-Stokes and (d) Stokes scattering. The wave vectors for a photon
with initial free-space wave vector ~q and energy ħhω are scattered through an angle θ to a
final free-space wave vector ~q′ with energy ħhω′. n~q and n~q′ are the respective wave vectors
in the crystal, where n is the index of refraction of the material. A phonon of wave vector ~k
and energy ħhωp is either absorbed [anti-Stokes, (a) and (c)] or emitted [Stokes, (b) and
(d)].

of scattered radiation.

Conservation of energy and crystal moment in a one-phonon process leads to the following

condition for the free-space (as opposed to within a crystal) wave vectors of incident and

scattered photons, ~q and ~q′, and their corresponding frequencies, ω and ω′:

ħhω′ = ħhω±ħhωp(~k). (7.1)

ωp(~k) is the frequency of the absorbed/emitted photon, and the + and - signs correspond to

anti-Stokes and Stokes scattering, respectively.

The Raman spectrum is typically represented as Raman shifts in wavenumbers with units of
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(a) A1g (b) A2u (c) E1u 

M 

M 
A 

X 

A1g(ω4)    

Figure 7.2: Schematic of three different normal modes, showing (a) A1g (Raman-active),
(b) A2u (not Raman-active), and E1u (not Raman-active).

inverse length (e.g. cm−1). The wavenumber, ∆w, is:

∆w =
�

1

λ
− 1

λ′

�

, (7.2)

where λ is the excitation wavelength, which corresponds to the energy ħhω in Fig. 7.1, and λ′

is the wavelength of the photon emitted from Raman scattering. The wavenumber therefore

corresponds to the vibrational mode of the absorbed/emitted phonon. The emitted photons will

contain both Stokes and anti-Stokes scattering, which form a symmetric spectrum above and

below 1/λ.

7.3 RAMAN-ACTIVE MODES

Having established that phonon vibrational frequencies can be determined from the energy of

photons that are emitted after a molecule relaxes to a vibrational state, we now move onto a

discussion on what kind of excited states can be activated by Raman scattering.
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In Raman scattering, light interacts with the electron clouds and bonds within a molecule, and

the ability for a molecule to exhibit a Raman effect is determined by the amount of deformation

of the electron cloud. Essentially, a vibrational mode is Raman-active if its displacements change

the molecular polarization potential, and the Raman intensity depends on the polarizability

change induced by a mode.

To take some examples, consider some vibrational modes of a 3-atom molecule, shown

in Fig. 7.2. The symmetric A1g mode [Fig. 7.2(a)] involves the simultaneous stretching and

then simultaneous compression of bonds, which will lead to a distortion in the electron clouds.

Indeed this mode is Raman-active in the MAX phases, and a schematic of this mode in the 211

phase is shown in the inset (left). The A2u mode also involves bond stretching and compression

[Fig. 7.2(b)], but in this case there is bond stretching and compression going on at the same

time and the polarizability effects on each of the bonds end up canceling out. This mode is

therefore not Raman-active. The E1u mode involves stretching of the bonds as well, but because

of the symmetry the bond stretching does not have a linear relationship with the displacements

(it exhibits only second-order effects), and this mode would not be Raman-active either. Note

that while the E1u and and A2u bonds are not Raman-active, they are in fact Infrared-(IR) active

because IR spectroscopy is based on different selection rules. Since these two modes involve

changes in dipole moment, absorption arises from the oscillations. On the other hand, the A1g

mode is not IR-active since it retains its center of symmetry.

The Raman-active modes in a crystal are a subset of the Γ-point normal modes. There

are selection rules that govern which of the normal modes are Raman-active are controlled by

symmetry. An analysis of the crystal symmetry with group theory can determine which modes

are Raman-active for interpretation of a measured Raman spectrum.

Since phonon calculations give both the vibrational frequencies and the relative displace-
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ments of phonon modes, an analysis of the phonon modes at q = 0 will also determine the

frequencies of those activated by Raman spectroscopy. Taken together, much can be revealed

about the dynamics of a crystal – not only the Γ-point vibrational character, but also the extent to

which the chosen computational method for forces (ones based on first-principles, for example)

can describe this character.
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Chapter 8: Experimental and computational procedures

In this chapter, the procedures for carrying out the experimental and computational work in this

thesis are summarized.

8.1 EXPERIMENTAL PROCEDURES

Here, a summary of the sample synthesis procedures is provided for the materials studied. The

Raman spectroscopy and high-temperature neutron diffraction experiments are also described,

along with the structure refinement strategies for the time-of-flight neutron diffraction data with

MAUD and GSAS.

8.1.1 Sample synthesis

This section includes a brief description of the sample synthesis details for the bulk, polycrys-

talline samples of Ti3SiC2, Ti3GeC2, Ti2AlN, Cr2GeC, Ta4AlC3, Ta2AlC, and Ti4AlN3 that were

used for the experiments in this work. Since most of the samples used in the studies presented

in this thesis were obtained from other sources and I did not fabricate most of them myself,

references are provided for further details. For the studies on Ti5Al2C3, one sample was used for

the XRD and TEM, and another multi-phase (Ti5Al2C3, Ti2AlC, and Ti3AlC2) sample was used

for the high-temperature neutron diffraction study.

Ti3GeC2: The Ti3GeC2 sample was fabricated by Dr. A. Ganguly [20], where stoichiometric

mixtures of Ti, Ge, and C powders were ball milled and hot pressed in a two-step process (1173

K for 3 h, then 1873 K and ∼ 45 MPa for 6 h). The sample was then annealed for 48 h in an Ar
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atmosphere at 1873 K to allow unreacted phases to react and to grow the grains. Details on the

synthesis can be found in Ref. [20].

Ti3SiC2: The Ti3SiC2 samples was obtained from Dr. T. El-Raghy [118]. Ti, SiC and graphite

were dry-mixed together in a V-blender for 2 h and cold pressed under 180 MPa into bars.

The bars were then introduced in a graphite die and hot pressed at 1873 K for 4 h to produce

coarse-grained microstructure. Further synthesis details can be found in Ref. [118].

Ti3AlC2: The Ti3AlC2 sample was also obtained from Dr. T. El-Raghy. The sample was prepared

by hot pressing, HPing, pre-reacted Ti2AlC (Kanthal, Hallstahammar, Sweden) and titanium

carbide (Alfa Aesar,Ward Hill, MA) in a 1:1 ratio to make 3:1:2 stoichiometry of Ti:Al:C. Powders

were ball milled for 24 h, placed in a graphite die, and heated in a graphite-heated hot press

under a vacuum of 10−1 Torr at a rate of 500◦C h−1 to 1400◦C. It was held for 4 h under a

pressure of ∼ 40 MPa before cooling.

Ti2AlN: The Ti2AlN sample was made by Dr. T. Scabarozi [34] by hot pressing Ti and AlN

powders. The powders were stoichiometrically weighed, ball milled for 12 h, and dried in

vacuum for 12 h at 423 K. The powder mixture was then poured and wrapped in graphite foil,

placed in a graphite die, and heated under vacuum at 10 K/min in a graphite-heated hot press

up to 1673 K and held for 8 h. During heating, ∼ 45 MPa was applied when the temperature

reached 773 K and maintained throughout the run. A more detailed synthesis description can be

found in Ref. [34].

Cr2GeC: The Cr2GeC sample was obtained from Dr. S. Amini, who fabricated the bulk,

coarse-grained sample by hot pressing elemental powders. Powders of Cr, Ge, and C were

stoichiometrically weighed and ball milled for 24 h, then dried under a mechanical vacuum for
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24 h at 403 K. The powder mixture was poured and wrapped in graphite foil, then heated in a

graphite die in a graphite-heated hot press under vacuum at 10 K/min up to 1623 K and held

for 6 h. During heating, when the temperature reached 873 K, a pressure of ∼ 45 MPa was

applied and maintained throughout the run. Further synthesis and characterization details on

that sample can be found in Ref. [43]

Ta4AlC3 and Ta2AlC: Samples of Ta4AlC3 and Ta2AlC used in the Raman study were synthe-

sized by M. Naguib by pressureless sintering [5]. Ta, Al, and C powders were mixed using ball

milling for 12 h and then cold pressed under a pressure of 500 MPa. The cold pressed billets

were then heated (10 K/min) to 1773 K for 1 h in an Ar atmosphere.

Ti4AlN3: The Ti4AlN3 sample used in the Raman study was made by hot isostatic pressing; for

details see Ref. [119].

Ti5Al2C3: To study the high-temperature structure and thermal motion of higher-order MAX

phase Ti5Al2C3, a 3-phase Ti5Al2C3 –Ti3AlC2 – Ti2AlC sample was used. The three-phase sample

was prepared by cold-pressing pre-reacted Ti2AlC powders that were commercially obtained

(Kanthal, Hallstahammar, Sweden) and sintering at 2 h under a hydrogen atmosphere.

Binary carbides, TiC and WC: In addition to the MAX phases, binary carbides were also

studied for benchmarking. Commercially obtained samples were used for TiC (Sigma Aldrich, ≤

4 mu powder, ≥ 95% purity) and WC (Alfa Aesar, 99% purity, -100+270 mesh powder).
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Figure 8.1: Experimental set-up for the High Pressure Preferred Orientation (HIPPO)
diffractometer at the Lujan Center at Los Alamos National Laboratory, showing He3 detector
bank orientations, sample changer, and sample rotation axis.

8.1.2 High-temperature neutron diffraction

Experiments on the HIPPO

High temperature neutron diffraction (HTND) experiments were conducted on the High-Pressure

Preferred Orientation Neutron diffractometer (HIPPO) [113, 120] at the Lujan Neutron Scatter-

ing Center, Los Alamos National Laboratory. For all phases studied, bulk samples were placed in

a vanadium holder, mounted in an ILL-type high-temperature vacuum furnace with a vanadium

setup (heating elements and heat shields), and heated at a rate of 200 K/min. TOF data were

collected under vacuum at selected temperature points during heating and again during cooling

to assess possible hysteresis. Temperature was measured by two type-K thermocouples inside

the ∼ 15 cm high hot zone of the furnace about 5 cm above the beam center. At each chosen

data collection temperature (see Table 8.1), neutrons were detected with 27 detector panels
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Table 8.1: Summary of temperatures, detector bank diffraction angles, and sample ro-
tation orientations around the vertical axes for each of the phases studied through high-
temperature neutron diffraction. Unless otherwise indicated, data were collected during
both heating and cooling for the temperatures listed. Further details on the instrument
set-up can also be found in the references.

Phase [Ref.] Collection temperatures (K) Diffraction angles Sample rotations
Ti3SiC2 [3] 573, 773, 973, 1373 40◦, 90◦, 144◦ 0◦, 45◦, 67.5◦, 90◦

Ti3GeC2 [3] 373, 575, 773, 873, 973, 1073, 1173,
1273

40◦, 90◦, 144◦ 0◦, 45◦, 67.5◦, 90◦

Ti3AlC2 [6] 373,† 473, 573,† 673, 773,† 873, 973,†

1073, 1173,† 1273
39◦, 60◦, 90◦, 120◦, 144◦ 0◦, 22◦, 45◦

Ti3SnC2 [121] 473, 573,† 673, 773,† 873, 973,† 1073,
1173,† 1273

39◦, 60◦, 90◦, 120◦, 144◦ 0◦, 22◦, 45◦

Cr2GeC [2] 373,† 523,† 573,† 623,† 673† 774,†

873,† 973,† 1073,† 1173,† 1273†
40◦, 90◦, 144◦ 0◦, 45◦, 67.5◦, 90◦

Ti2AlN [2] 373,? 573, 773, 973, 1173, 1373 40◦, 90◦, 144◦ 0◦, 45◦, 67.5◦, 90◦

Ti5Al2C3 [6]§ 373,† 473, 573,† 673, 773,† 873, 973,†

1073, 1173,† 1273
39◦, 60◦, 90◦, 120◦, 144◦ 0◦, 22◦, 45◦

TiC [4] 373,† 474, 573,† 673, 773,† 873, 973,†

1073, 1173,† 1273
39◦, 60◦, 90◦, 120◦, 144◦ 0◦, 22◦, 45◦

WC [4] 373,† 474, 573,† 673, 773,† 873, 973,†

1073, 1173,† 1273
39◦, 60◦, 90◦, 120◦, 144◦ 0◦

† Data collected during heating only.
? Data collected during cooling only.
§ Multi-phase sample consisting of 38(±1) wt% Ti5Al2C3, 32(±1) wt% Ti2AlC, 18(±) wt% Ti3AlC2 and 12(±) wt%
(Ti0.5Al0.5)Al.

of 3He detector tubes arranged on either three rings or five rings. The samples were measured

at a series of rotation angles around the vertical axis to allow for full texture analysis at each

temperature. Details about detector panel diffraction angles and rotation angles used for each

phase are listed in table 8.1. The count time for each sample orientation and temperature was

15 minutes per orientation, during which the temperature and orientation were constant for

data collection.

Structure refinement

The neutron data were analyzed with the Rietveld method using the General Structure Analysis

System (GSAS) [110] and Material Analysis Using Diffraction (MAUD) [122] software packages.

For the runs with Ti3GeC2, Ti3SiC2, Ti2AlN, and Cr2GeC, interference from the adjacent WNR

facility was observed in the backscattered 144◦ bank at TOF between 15 and 18 ms; this region
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was thus excluded from the refinements for those phases. Since hexagonal structures often

exhibit preferred orientation [123], texture analysis was performed for selected data-sets using

the entropy algorithm of Williams, Imhof, Matthies and Vinel (E-WIMV) [124] as implemented

in MAUD. For the GSAS analysis, the data from detectors with the same nominal diffraction

angle were integrated and subsequently the sample orientations (Table 8.1) were summed

up, therefore randomizing preferred orientation effects. A script-controlled multi-histogram

refinement against the data from the three or five detector banks was performed with GSAS.

In all cases, the crystal structure parameters from the full texture model analyzed with MAUD

agreed, within error bars, with the random texture assumed for the GSAS analysis. The weak

texture observed (see Appendix A) was smeared out by integrating the individual detector panels

of rings/banks with the same nominal detector angle and then integrating the data of each bank

recorded for the different rotations. Therefore the data was analyzed using GSAS assuming

a random texture. All additional phases found were refined in both GSAS and MAUD. See

Appendix A for results on composition, texture, and diffraction statistics for each phase.

The GSAS script-controlled refinement with the gsaslanguage [125] ensures that identical

refinement strategies were used on all compositions. The instrument alignment (DIFC parameter

in GSAS) was fixed for the backscattered (144◦) detector bank, which has the highest resolution,

and refined for other banks in all the lowest-temperature runs. For subsequent runs, DIFC

was fixed for all the banks. For the Ti3GeC2 and Ti3SiC2 samples, instrument calibration was

performed using the room temperature lattice parameters determined previously from XRD for

Ti3SiC2 (a = 3.075, c = 17.7105 [118]) and Ti3GeC2 (a = 3.090, c = 17.764 [20]). These

parameters were extrapolated to the lowest temperatures, 573 K and 373 K, respectively, using

the CTE values determined through the present HIPPO neutron diffraction study. With these

lattice parameters as internal standards, DIFC was calibrated and fixed for the subsequent runs.
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Table 8.2: Summary of secondary phases included in refinements and the refined parameters
for each phase studied. Background refers to 16 background parameters of GSAS background
function #1; DIFC is the instrument alignment parameter, which was calibrated to an
internal standard only where noted (as described in the text); σ1 is the peak width in
the fitted profile; a and c are the lattice parameters; Ui j and Uiso are the anisotropic and
isotropic thermal motion parameters, respectively; FRAC is the occupancy for a given atomic
site. Phase fractions were refined for all samples with impurities listed. Refined parameters
for secondary phases are followed by the phase(s) in brackets.

Phase [Ref.] Impurities (wt%) Refined parameters in GSAS
Ti3SiC2 [3] None Background, a, c, zTiI,zC, DIFC†, σ1, absporption,

Ui j

Ti3GeC2 [3] TiC (19.1±0.3), Ge (5.2±0.2) Background, a, c, zTiI, zC, DIFC†, σ1, absorption,
Ui j , phase fractions, Uiso[TiC, Ge], a[TiC, Ge].

Ti3AlC2 [6] TiC ( 18±1) Background, a, c, zTiI, zC, absorption, Uiso, phase
fractions, Uiso[TiC], a[TiC]

Ti3SnC2 Ti2SnC, TiC, Fe
Cr2GeC Cr2O3 (4.9±0.3), graphite (< 1) Background, a, c, zTi, DIFC, σ1, absorption, Ui j ,

phase fractions, Uiso[Cr2O3, graphite], a[Cr2O3,
graphite].

Ti2AlN None Background, a, c, zTi, DIFC, σ1, absorption, Ui j ,
phase fractions, FRACN.

Ti5Al2C3 [6] Ti2AlC (32±1) wt%), Ti3AlC2 (18±1),
Ti0.5Al0.5)Al (12±1)

Background, a, c, zTiI, zTiII, zC, absorption,
Uiso, phase fractions, Uiso[Ti3AlC2, Ti2AlC,
Ti0.5Al0.5)Al], a[Ti3AlC2, Ti2AlC, Ti0.5Al0.5)Al],
c[Ti3AlC2, Ti2AlC], FRACTi[Ti0.5Al0.5)Al]

TiC [4] None Background, DIFC, Uiso, a, absorption.
WC [4] None Background, DIFC, Ui j , a,c absorption.
† Calibrated to an internal standard.
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Refined parameters were generally 16 background parameters of GSAS background function

#1, phase fraction of additional phases, lattice parameters, atom positions with symmetry

constraints, instrument alignment (DIFC, only for the first run), peak width (σ1 in the profile

function), absorption, scale factor, and thermal motion parameters. The refined parameters are

listed in Table 8.2 for each of the phases studied.

8.1.3 Raman spectroscopy

The Raman spectroscopy measurements reported in this thesis were carried out by M. Naguib.

Raman spectra were collected from bulk samples at ambient temperatures using a Renishaw

inVia spectrometer (Peltier-cooled CCD array detector). Argon ion laser radiation (514.5 nm)

was focused to a spot size of ∼1 mm with an incident power of 2.0±0.8 mW. The peak positions

and full width at half maximum (FWHM) were obtained from Lorentzian peak fitting. The

experimental resolution of the peak positions is ≤1 cm−1.

8.2 COMPUTATIONAL DETAILS

In order to calculate the phonon spectrum, the force constant matrix must be computed. Earlier

chapters address considerations for computing the phonon spectrum and atomic displacements

(see Chapter 4) and relevant background on first-principles calculations (Chapter 5). This section

summarizes the parameters used in the first-principles calculations, including details about the

functionals, potentials, and k-point mesh.

8.2.1 First-principles phonon calculations on pure MAX phases

For phonon calculations, 2×2×1 supercells were used, which consisted of 24, 32, and 48 atoms

for the 211, 312, and 413 phases, respectively. For TaC and TiC, 2× 2× 2 supercells consisting

of 64 atoms were used. For WC, a 2× 2× 2 supercell with 8 atoms was used. First-principles
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calculations based on DFT were performed using the projector-augmented wave (PAW) method

[126], as implemented in the VASP code [127–129]. The exchange-correlation function used

was the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) [98]. The

plane-wave cutoff was set to 500 eV, and the total energy was converged to 10−8 eV with a

Γ-centered k-point grid of 6× 6× 4.

Real-space force constants in the supercells were calculated using density functional pertur-

bation theory (DFPT) [104] implemented in the VASP code. The frequencies were calculated

from the force constants using the Phonopy code [130, 131]. The displacements of atoms from

their equilibrium positions, Ui j, are calculated according to Eq. 4.55 using the eigenvectors,

eα,R,p(q) and phonon frequencies, ωp(q), determined from the diagonalization of the force

constant matrix.

8.2.2 Phonon calculations on vacancies

To explore the effect of vacancies on thermal motion, the ADPs are also calculated for a 2×2×1

Ti3GeC2 supercell with one vacant Ge site, representing a material with 12.5% ordered vacancies.

The break in symmetry results in 35 single displacements and the frozen phonon method was

used to compute the forces induced by finite displacement through the Hellmann-Feynman

theorem. The frequencies are calculated from the force constants using the phonopy code, and

the temperature-dependent 〈u2〉 values are calculated from Eq. 4.55.
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Chapter 9: First-principles phonon calculations

Before presenting any experimental findings, a summary of the predicted lattice dynamics

for select MAX phases will be presented. This chapter provides an overview of results from

first-principles phonon calculations in the harmonic approximation. Table 9.1 shows a summary

of the phases studied in this thesis through first- principles phonon calculations, including the

methods that were employed for the theoretical and experimental results presented.

Table 9.1: Materials studied in this thesis through first principles phonon calculations. The
theoretical and experimental studies performed are summarized for each phase, including
phonon band structures, phonon partial density of states (PDOS), Raman frequencies,
calculations of the atomic displacement parameters (ADPs), volume-dependent phonon
calculations in the quasi-harmonic approximation (QHA), the Grüneisen parameter, high-
temperature neutron diffraction (HTND), and x-ray diffraction (XRD).

Theoretical studies Experimental studies
Phase band PDOS Raman ADPs QHA Grün HTND XRD Raman
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In all cases, first-principles phonon calculations were carried out for the phases summarized,

but different representations of the phonon modes are presented – e.g. phonon density of

states, Raman-active frequencies, mean-squared displacements – depending on the experimental

comparison or trends sought. In this chapter, the phonon band structures and site-projected

partial density of states are presented for select MAX phases. In subsequent chapters, the Raman

frequencies (Chapter 10), atomic displacement parameters (Chapters 11 and 12), temperature-

dependent volumes from the quasi-harmonic approximation (Chapter 13), and mode-dependent

Grüneisen parameters (Chapter 15) will be presented, along with relevant experimental results.

9.1 PHONON BAND STRUCTURES AND VIBRATIONAL MODES

Figure 9.1: The brillouin zone for P63/mmc, labeling high-symmetry points and paths.

The phonon band structure is a useful way of representing the lattice dynamics of a periodic

system because the phonon frequencies can be represented as a set of normal modes of a

wave vector, k. In a three-dimensional periodic system of atoms, atomic vibrations cause wave

propagations throughout the lattice. Therefore, wave vector coordinates (see Fig. 9.1) can

often be more useful than real-space coordinates of the particles for investigating the nature

of vibrations in a material. From the first-principles phonon calculations (see Section 4.2), the

frequency dispersion of the normal modes can be computed along a k-point path as a phonon
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Figure 9.2: (a) Phonon band structure of Ti3SiC2 and schematics of vibrational modes
associated with the eigenvectors for select q-points corresponding to k vectors M [(b) and
(c)] and K [(d) and (e)] in the low-frequency bands. The red atoms and arrows represent
Ti; green corresponds to Si, and black corresponds to C.
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Figure 9.3: (a) Phonon band structure of Ti3GeC2 and schematics of vibrational modes
associated with the eigenvectors for select q-points corresponding to k vectors M [(b) and
(c)] and K [(d) and (e)] in the low-frequency bands. The red atoms and arrows represent
Ti; blue corresponds to Ge, and black corresponds to C



CHAPTER 9: FIRST-PRINCIPLES PHONON CALCULATIONS 104

band structure.
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Figure 9.4: (a) Phonon band structures calculated from first-principles phonon calculations
for select 312 MAX phases, (a) Ti3AlC2 and (b) Ti3SnC2
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Figure 9.5: Phonon band structures calculated from first-principles phonon calculations for
select 413 MAX phases, (a) Ti4AlN3 and (b) Ta4AlC3.

Figures 9.2(a) and 9.3(a) show the phonon band structure for Ti3SiC2 and Ti3GeC2, re-

spectively, along the path Γ(0,0,0) → M(1
2
, 0, 0) → K(1

3
, 1

3
, 0) → Γ(0,0,0) → A(0,0, 1

2
) →

L(1
2
, 0, 1

2
)→ H(1

3
, 1

3
, 1

2
)→ Γ(0,0,0). The band structure along Γ→ M → K → Γ is similar to

that along Γ→ L → H → Γ, indicating that the phonons are not very dispersive along the z
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axis. Both structures exhibit similar features in their phonon band structures, especially for

the higher-frequency optical bands above 17 eV. This is because those bands correspond to the

vibrational modes of the carbon atom, which have the same environment in both materials

(i.e. within Ti3C2 octahedra). The low-frequency bands, however, exhibit variations in their

frequency dispersions, indicating differences in vibrational character of the A element, Si and Ge.

Figures 9.2(b)-(e) and 9.3(b)-(e) show the real-space displacements corresponding to the

eigenvectors for select q-points on the low-frequency phonon bands, which are indeed governed

primarily by the motion of the Ti (red) and Si (green) or Ge (blue) atoms. The carbon atoms

participate in some of the modes, but the amplitudes are considerably lower than those of the

Ti and Si/Ge atoms. Note that unlike the Raman-active modes, which will be discussed in

Chapter 10, these are for wave vectors away from the Γ point that involve motion which is not

constrained to one plane and may have imaginary components that lead to nonlinear motion,

such as the orbiting motion at K [Figs. 9.2(d), 9.2(e), 9.3(d), and 9.3(e)].

The most prominent differences between the phonon band structures of Ti3SiC2 and Ti3GeC2

are in the low-frequency bands at the M and K points. The M -point low-frequency bands

in Ti3SiC2 are degenerate at M [Figs 9.2(b) and (c)] whereas the corresponding modes in

Ti3GeC2 [Figs 9.3(b) and (c)] split off into two distinct frequencies. On the other hand, at the K

point the low-frequency bands in the Ti3GeC2 band structure [Figs. 9.3(d) and (e)] are closer

together than those in the Ti3SiC2 band structure [Figs. 9.2(d) and (e)]. This suggests different

interactions between the phonon bands for each of the two structures, which is in line with

the correlated motion that will be presented in Chapter 15. These real-space displacements

a high-symmetry points will serve as a useful tool for understanding correlation effects in

atomic motion. Furthermore, in a general sense the real-space displacements such as the ones

shown play a major role in predicting mean-squared atomic displacements of atoms in select
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MAX phases (Chapter 12) because their sum enters the equation for 〈|U|2〉 to account for the

differences in interatomic forces.

Phonon band structures for two other 312 phases, Ti3AlC2 and Ti3SnC2, are shown in Figs.

9.4(a) and (b), respectively. Again, the high-frequency phonon modes are similar to those in

Ti3SiC2 (Fig. 9.2) and Ti3GeC2 (Fig. 9.3), while the low-frequency modes vary between the

four phases. The bands with the lowest frequencies correspond to those in Ti3SnC2, which

includes a flattened band in addition to the two low-frequency bands typical of the other three

312 phases. This is likely associated with the higher mass of Sn that leads to lower-frequency A

atom vibrations and causes the degenerate phonon states to split into different states.

Figures 9.5(a) and (b) show the phonon band structures for two of the 413 phases, Ti4AlN3

and Ta4AlC3, respectively. The high-frequency bands are slightly depressed in the nitride Ti4AlN3

compared to Ta4AlC3, while the low-frequency bands in Ta4AlC3 are significantly lower than

those in Ti4AlN3. This is also observed in Ti2AlN and Ta2AlC [Figs. 9.6(a) and (c), respectively].

The high-frequency bands correspond to the C or N atom vibrations, and are lower in the nitrides.

Since C and N are comparable in mass, this suggests that the M -N bonds should be stiffer than

the M -C bonds, at least in defect-free materials. The decrease in frequency for the lower bands

is a result of the heavier 5d Ta atom, whose vibrational frequency is lower than the frequency

corresponding to the lighter Ti atom. The flat band at ∼10 THz in the Ta4AlC3 [Fig. 9.5(b)] and

Ta2AlC [Fig. 9.6(c)] band structures also result from the higher mass of Ta, since the modes

dominated by the Ta vibrations split from the Al modes and lead to a localized Al band. This

flattened band corresponds to modes involving Al vibrations along the z direction. On the other

hand, for the vibrational modes in all the other phases shown in Figs. 9.4, 9.5, 9.6, which

contain lighter 3d metals (i.e. Ti and Cr), the Ti/Cr atoms are similar in mass to the A atoms

and thus overlap with the A vibrational modes. This leads to dispersive low-frequency bands
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Figure 9.6: (a) Phonon band structures calculated from first-principles phonon calculations
for select 211 MAX phases, (a) Ti2AlN, (b) Ti2AlC, (c) Ta2AlC, and (d) Cr2GeC.
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Figure 9.7: Partial phonon density of states of select Mn+1AXn phases: 211 phases (a)
Ti2AlN and (b) Cr2GeC; 312 phases (c) Ti3SiC2 and (d) Ti3GeC2; and the 413 phases (e)
Ti4AlN3, (f) α-Ta4AlC3 and β-Ta4AlC3.

that are shared by the M and A atoms – that is, the phonon modes involve the simultaneous

vibrations of the M and A atoms.

The fact that the lack of overlap between the M and A vibrational frequencies in the Ta-

containing MAX phases leads to such different dispersions for the lower bands in their phonon

band structures [Figs. 9.5(b) and 9.6(c)] illustrates the importance of mass in the vibrational

behavior of these phases. This is also evidenced by the experimental and calculated Raman

frequencies in Ti4AlN3 and Ta4AlC3, which will be discussed in Chapter 10.

9.2 PHONON PARTIAL DENSITY OF STATES

The phonon behavior of atoms can also be projected onto a site-dependent phonon partial

density of states (PDOS), which represents the number of vibrational modes for each site as a
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function of frequency. Figures 9.7(c)-(d) show the phonon PDOS for the two 312 phases in Figs

9.2 and 9.3, respectively, along with two 211 MAX phases, Ti2AlN and Cr2GeC [(a) and (b),

respecitvely], and the 413 phases Ti4AlN3 (d) and α- and β -Ta4AlC3 [(e) and (f)]. See Appendix

B.4 for further details on the differences between the α and β polymorphs of Ta4AlC3.

These phases were chosen because of the availability of materials for experimental studies

– specifically high-temperature neutron diffraction – which will be presented and discussed in

Chapter 12. For now, they serve as a useful tool for understanding thermal conductivity and

bonding within the MAX phases, at least from a theoretical standpoint within the harmonic

approximation and for pure, defect-free crystals.

From the phonon partial density of states, it can be seen that the phonon frequencies of

the Ge states are lower than those of the Al and Si states since Ge is heavier. Furthermore, the

spread of the Si and Al states [Figs. 9.7(b), (c) and (d)] indicates more decoupling of the x − y

and z vibrational states, since the eigenvectors of the dynamical matrix for the lower-frequency

states correspond to atomic vibrations within the basal plane (x− y), while the higher-frequency

states are vibrations perpendicular to the basal plane (z). In Ti3SiC2, the Si atom vibrating

within the basal plane, represented by peak between 3 and 6 THz, is highly localized. Note that

in Ref. [132], where a 4× 4× 1 supercell was used, this band is even narrower. This localized

peak manifests itself as a higher degree of anisotropy for Si thermal vibrations than for Ge as

determined by first-principles calculations, which will be discussed in the following section.

As indicated by the spread of the phonon dispersions discussed in the previous section, in

the MAX phases with the lighter 3d metals, Ti and Cr, the M and A phonon states show a broad

overlap. In Figs. 9.7(a)-(e), the A atom vibrations (red PDOS curves) are generally lower in

frequency than the M atom vibrations (green and blue PDOS curves). On the other hand, in the

Ta4AlC3 polymorphs [Figs. 9.7(f) and (g)], the heavy Ta atoms are much lower in frequency
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than the Al states. This leads to a localized Al state, which manifests in the band structures as a

flattened band at around 10 THz [Fig. 9.5(b)].

There are a few interesting features in the set of phonon PDOS plots. First of all, the PDOS

curve for the Al atom in Ti2AlN is the same as that in Ti4AlN3, showing that the vibrational

behavior of Al is not affected by the stacking of the Ti-N octahedra – a result that is not

surprising. Similarly, the Ti PDOS plots for Ti3SiC2 and Ti3GeC2 are also similar, indicating

that the chemistry of the A atom does not affect the Ti vibrations. On the other hand, the large

difference in mass between Ti and Ta not only leads to a different PDOS curve for the Ta and

Ti atoms themselves [Figs. 9.7(e) and (f), respectively], but also causes the Al PDOS curve

to be dramatically different in shape. This is a strong indicator of correlation of the M and

A vibrations, and also the importance of M atom mass in the vibrational behavior. To further

explore these phenomena from an experimental standpoint, the Raman-active modes are studied

in the next chapter for Ti4AlN3 and Ta4AlC3, among other relevant 211 and 312 phases.

9.3 SUMMARY

In this chapter, the theoretical results of the first-principles phonon calculations are presented,

including phonon band structures and phonon PDOS plots. It was shown that the low-frequency

bands correspond primarily to the M and A atom vibrations. The high-frequency bands are

similar among all the carbides and all the nitrides because they are primarily controlled by C or

N atom vibrations. Schematics of the displacements associated with the low-frequency modes at

select q-points are shown for Ti3SiC2 and Ti3GeC2. The differences in their low-frequency bands

suggest different vibrational character of the M and A atoms. It is also shown that changing the

A atom element affects the phonon PDOS for the M element, and vice versa, especially when

there are considerable differences in mass.
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Chapter 10: Theory and experiment: Raman-active modes

Calculations of the phonon band structures provide useful theoretical tools for representing the

dynamical behavior of materials. When it comes to actually measuring the phonon dispersion,

however, the task is challenging, especially with materials systems such as the MAX phases

where pure, single-crystal samples are not easily accessible. An experimental technique that

gives a portion of the experimental phonon dispersion picture is Raman spectroscopy, which

provides information about the vibrational frequencies of certain Γ-point modes (as discussed

in Chapter 7). Even though this is far from capturing the entire dispersion of phonon bands,

it provides a few data-points in the phonon frequency dispersion that may be compared with

the phonon band structure calculated from first-principles calculations. This chapter focuses on

calculated and measured Raman frequencies and their relationship to mass and bond stiffness in

select MAX phases.

10.1 RAMAN-ACTIVE MODE CALCULATIONS

Of all the vibrational phonon modes for a material, only some are Raman-active. The highest-

symmetry modes are at the Γ point, and those are the only modes that can be Raman-active.

There are 3N phonon bands, where N is the number of atoms in a unit cell. Even with some of

them being degenerate at the Γ point, there are still only a few of the 3N Γ-point phonon modes

that are Raman-active, which are governed by symmetry rules in group theory (see Chapter 7).

The Γ-point frequencies are computed through the first principles phonon calculations, as

presented in chapter 9, and group theory rules are used to determined which of the modes

are Raman-active. The eigenvectors of the phonon modes give the direction and relative
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Table 10.1: Raman-active modes for 211, 312, and 413 MAX phases showing number of
modes for each irreducible representation and the atoms involved in each vibrational mode,
where the yellow 3 represents allowed vibrations and a gray 7 represents no vibrations in
that mode.

Irr. Rep:
E2g E1g A1g

21
1

Number of modes: 2 1 1
Atoms M (4 f ) 3 3 3

involved A (2d) 3 7 7

(Wyckoff): X (2a) 7 7 7
31

2
Number of modes: 3 2 2

Atoms MI (4 f ) 3 3 3

involved MII (2a) 7 7 7

(Wyckoff): A (2b) 3 7 7

X (4 f ) 3 3 3

41
3

Number of modes: 4 3 3
Atoms MI (4e) 3 3 3

involved MII (4 f ) 3 3 3

(Wyckoff): A (2c) 3 7 7

X I (4 f ) 3 3 3

X II (2a) 7 7 7

displacement amplitudes associated with each of the normal modes. An example of the phonon

band structure and Raman frequency selection is shown for the 413 phase Ti4AlN3 in Fig. 10.1,

which has the highest number of bands and Raman-active modes (discussed below). Also shown

on the right is the site-projected phonon DOS, which illustrates which atoms are involved in the

range of vibrational frequencies. The circles mark the frequencies of the ten Raman-active modes,

where three of them are in the high-wavenumber region corresponding to N atom vibrations

(purple markers), and the other seven correspond to Ti and Al vibrations (red, blue, and green

markers).

Table 10.1 lists the number of Raman-active modes for each irreducible representation and

the atoms involved in the 211, 312, and 413 Raman modes. Note that the check marks and x

marks only indicate whether the atoms are allowed to vibrate in that mode due to symmetry
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Figure 10.1: Phonon band structure of Ti4AlN3 with markers at the Γ-point Raman-active
modes. Right panel shows the phonon site-projected density of states.

based on their Wyckoff positions and do not indicate their amplitudes of vibration, which vary

from mode to mode. Schematics of the Raman-active modes in 211, 312, and 413 phases are

shown in in Figs. 10.2, 10.3, and 10.4, respectively. Summaries of their modes and the atoms

involved are presented in Table 10.1.

In the 211 phases, with 8 atoms/unit cell, there are a total of 3N = 24 vibrational modes,

out of which four are Raman active. Three are only Raman-active modes (A1g + 2E2g) and one

is both Raman- and infrared-active (E1g) [41, 77, 133]. Because of the symmetry of the Wyckoff

positions, no first-order Raman-active modes in the 211 phases are associated with vibrations of
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the X sublattice. The 312 phases, on the other hand, have a total of seven Raman-active modes

(2A1g + 2E1g + 3E2g), out of which six are observed experimentally [41, 77, 134]. There are

ten Raman-active modes (3A1g + 3E1g + 4E2g) in the 413 phases, where the A1g and E1g modes

involve the MI, MII, and X II layers and the E2g modes involve the MI, MII, A, and X II layers (Fig.

10.4). Note that the schematic in Fig. 10.4 is consistent with the phonon PDOS in Fig. 10.1,

where the high-wavenumber bands correspond to NI vibrations. Indeed, modes ω1−ω7 involve

the M and A atoms primarily, while modes ω8−ω10 involve vibrations of the X atoms.

10.2 EXPERIMENTAL RAMAN SPECTRA COMPARED TO THEORY

The phases studied experimentally in this thesis are the 413 phases Ti4AlN3 and Ta4AlC3, the 312

phase Ti3SnC2, and the 211 phases Ti2SnC and Ta2AlC. These phases are of interest because the

Ta-containing phases involve heavy M atoms (Ta), while the Sn-containing phases contain heavy

A atoms (Sn). The 413 phase Ti4AlN3 is also studied mostly for benchmarking and validation of

our methodology, even though the Raman spectrum for that phase had been previously reported.

The Raman spectra and comparisons between theory and experiment in the following

subsections are divided into two groups:

• Section 10.2.1: The first of the two sections will focus on the 413 phases Ti4AlN3 and the

Ta4AlC3 polymorphs, along with the related 211 phase Ta2AlC.

• Section 10.2.2: The next section will focus on the Sn-containing phases Ti3SnC2 and

Ti2SnC.
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Figure 10.2: Schematics of the atomic displacements associated with the Raman-active
modes in 211 M2AX phases.
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Figure 10.3: Schematics of the atomic displacements associated with the Raman-active
modes in 312 M3AX2 phases.
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Figure 10.4: Schematics of the atomic displacements associated with the Raman-active
modes in 413 M4AX3 phases.
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Figure 10.5: First-order Raman spectra of (a) Ta4AlC3, (b) Ti4AlN3, and (c) Ta2AlC from
this work, where the red markers below represent the calculated frequencies. Also shown
for comparison are the Raman spectra of (d) Ti2AlC, (e) Ti2Al(C0.5N0.5), and (f) Ti2AlN
from Ref. [135].

10.2.1 First-order Raman scattering of Ti4AlN3, Ta4AlC3, and Ta2AlC

In this section, the results for two 413 MAX phases, Ta4AlC3 and Ti4AlN3, are reported and

the displacements associated with their modes are investigated. The 211 phase Ta2AlC is also

studied for benchmarking. The main purpose of this study was to analyze the symmetry of

each of the observed Raman modes in the 413 MAX phases – which had never been previously

reported – and to present the Raman spectrum of α-Ta4AlC3 for the first time. Furthermore,

I performed DFT calculations on both α-Ta4AlC3 and β-Ta4AlC3 to compare the vibrational

behavior of the two polymorphs, even though β-Ta4AlC3 was not available for experimental

investigation. Details on sample synthesis and experimental procedures for Raman scattering

are summarized Sections 8.1.1 and 8.1.3, respectively. Further sample characterization through
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Table 10.2: Experimental and theoretical wavenumbers, ω, in cm−1, symmetry assignment,
and FWHM of the Raman modes of the 413 phases. Values in parentheses are from Ref.
[77].

Ti4AlN3 Nb4AlC3 α-Ta4AlC3 β-Ta4AlC3

Mode Irr. Rep. ωexpt FWHMexpt ωcalc ωcalc ωexpt FWHMexpt ωcalc ωcalc

ω1 E2g - - 95 82 - - 65 44
ω2 E1g 132 (132) 8.4 (9.7) 138 106 - - 80 68
ω3 E2g 181 (181) 7.3 (7.6) 179 158 115 2.3 123 120
ω4 A1g 211 (208) 13.3 (5.5) 219 169 123 4.8 127 125
ω5 E1g 236 (235) 13.3 (9.4) 229 176 132 9.5 128 123
ω6 E2g - - 229 182 188 19.0 173 179
ω7 A1g 387 (386) 18.9 (11.2) 370 291 211 6.5 212 201
ω8 A1g 546 (539) 46.8 (9.3) 563 626 629 21.5 637 637
ω9 E2g 563 (563) 9.5 (7.9) 582 610 657 19.3 641 627
ω10 E1g 596 (592) 42.4 (10.6) 581 612 685 27.8 643 627

XRD can be found in Appendix A.2, and HRTEM of the stacking sequence can also be found in

the paper in Appendix B.4.

I will also present the calculated Raman-active modes of two other MAX phases relevant to

this work, Nb4AlC3, Ti4AlN3. The calculated phonon energies for the ten Raman-active modes in

Ti4AlN3, α-Ta4AlC3 and β-Ta4AlC3 are listed in Table 10.2, along with the experimental fitted

positions for the Raman modes of Ti4AlN3 and α-Ta4AlC3. Table 10.3 lists the calculated and

measured wavenumbers of the Raman bands for Ta2AlC, along with those from Ref. [41]. Also

listed for comparison are the Raman frequencies for Ti2AlC calculated in this thesis, along with

experimental and calculated values from Refs [135]. Good agreement is found between the

experimental and calculated values, with differences in wavenumber between experimental and

calculated band positions of less than 10%. For Ti4AlN3, there is good agreement between the

experimental Raman peak positions determined herein and those reported in Ref. [77] with

wavenumber differences below 2%. It should be noted that some of the calculated frequencies

and the assignment of the modes for Ti4AlN3 are different in Ref. [77]; the updated values are

listed herein.



CHAPTER 10: THEORY AND EXPERIMENT: RAMAN-ACTIVE MODES 119

Table 10.3: Experimental and theoretical wavenumbers, ω, in cm−1, symmetry assignment,
and FWHM of the Raman modes of Ta2AlC and Ti2AlC. Values in parentheses are from Ref.
[41]; values in brackets are from Ref. [77].

Ta2AlC Ti2AlC
Mode Irr. Rep. ωexpt FWHMexpt ωcalc ωexpt FWHMexpt ωcalc

ω1 E2g 117 (118) 4.37 114 (115) [150] [13] 146 (151) [149]
ω2 E2g 186 (188) 7.45 182 (185) [268] [10] 266 (256) [262]
ω3 E1g 131 (130) 15.05 130 (132) [262] [6] 266 (270) [248]
ω4 A1g 197 (199) 11.95 203 (199) [365] [12] 360 (366) [387]

Assuming a FWHM of ∼10 cm−1, and considering the instrumental resolution, Raman modes

less than ∼10 cm−1 apart from each other may appear as one broad band. On the basis of these

assumptions, first principles calculations predict four distinct modes for Ta4AlC3, and seven for

Ti4AlN3 in the 100-800 cm−1 range. For Ta2AlC, there are four calculated Raman-active modes.

This is generally consistent with the measured data. From the Raman spectra of the two

413 phases [Figs. 10.5(a) and (b)], it is clear that Ti4AlN3 and Ta4AlC3 differ largely in band

positions.In Ti4AlN3, there is a band at 546 cm−1 (reported at 539 cm−1 in [77]) that is lower

than the calculated value for the predicted A1g mode (ω8,calc = 563cm−1), which involves

primarily the longitudinal antiparallel displacements of the NI atoms. In Ta4AlC3, the three

high-wavenumber Raman bands assigned to ω8, ω9, and ω10 are wider spread and located

at higher wavenumbers. In both cases, the middle band in the group of three [labeled ω9 in

Figs. 10.5(a) and (b)] has the highest intensity. A possible explanation is defects such as N

or C vacancies, leading to a local decrease in molecular symmetry resulting in peak splitting,

broadening of the Raman signature, or higher-order scattering. This is consistent with the

assignment of the modes, where ω8−ω10 correspond primarily to the vibration of the C or N

atoms (Fig. 10.4).

The wavenumbers of all four Raman bands in Ta2AlC [41] are all significantly lower than

those of Ti2AlC [77, 135] [compare Figs. 10.5(c) and (d)], which differs only in the M element
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Figure 10.6: Plots of ω vs.
p

1/mred for the 413 phases, where mred is the reduced mass:
(a) shows modes ω1−ω7 using the reduced mass for M and A atoms. Modes ω8−ω10 are
shown using the reduced mass of (b) M and A atoms and (c) M and X atoms. Open symbols
and the lines correspond to calculated values; solid symbols represent experimental values.
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(i.e. Ta is replaced by Ti). Note that in Ta2AlC the frequency of ω3 is so depressed that it falls

below that of ω2, which is because the 1g modes (ω3 and ω4) only involve the M atoms and

are therefore severely affected by the mass of M (i.e. the heavy mass of Ta). On the other hand,

the 2g modes (ω1 and ω2) involve both M and A (see Table 10.1), so the common Al element

between Ti2AlC and Ta2 AlC cause their frequencies to be similar.

Like the 211 phases, the low-wavenumber Raman bands in the 413 phases (ω1 through ω7)

are lower in Ta4AlC3 than in Ti4AlN3. Again, at least some of this difference can be attributed

to the larger atomic mass of Ta compared with Ti (as discussed below). On the other hand,

modes ω8, ω9, and ω10 are at higher wavenumbers in Ta4AlC3 than in Ti4AlN3, which implies,

as discussed below, that other factors other than mass alone contribute to the differences.

To further explore this aspect, the frequencies of the Raman-active modes in Nb4AlC3 are

calculated, for which the mass of the M element, Nb, is between that of Ti and Ta. The values

obtained from ab initio phonon calculations are shown in Table 10.2. To understand the effects

of mass and bonding and distinguish between the two factors,we begin with the basic equation

for the frequency of a bond, assuming harmonic oscillation given by ω=
p

k/m, where k is the

bond stiffness and m is the mass. For a two-body system, m can be represented by the reduced

mass:

mred =
1

1
m1
+ 1

m2

(10.1)

and, therefore,

ω=

È

k

mred
=

r

k
�

1

m1
+

1

m2

�

(10.2)

In Figs 10.6(a) and (b), the vibrational frequency of each mode is plotted as a function
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of
p

1/mred. The reduced mass, corresponding to the M and A atoms, is used as a first

approximation, because the low wavenumber Raman-active modes involve these two atoms

(see Fig. 10.4). According to Eqn. 10.2, if the bond stiffness does not change with mass, then

the dependence would be linear with a slope of k. For ω1 −ω7, the plots are close to linear

with positive slopes, indicating that mass differences are responsible for at least some of the

differences in frequencies.

The same plot for ω8 −ω10 [Fig. 10.6(b)] shows a different trend, with a negative slope

for ω versus
q

1
mred

in all cases. It is thus clear that the nature of the features associated with

these Raman-active modes cannot be represented by the harmonic oscillation governed by the

M -A bonds with a constant bond stiffness. Taking into account that these vibrational modes

involve primarily the X atoms (Fig. 10.4), this result is not surprising. However, using the

same model, a plot of ω versus
q

1
mred

, where now the masses considered are those of the M

and X atoms, is also nonlinear [Fig. 10.6(c)]. More importantly, the overall slope is again

negative, which implies that in this case, bond stiffness is much more a function of chemistry

than mass. Furthermore, the results imply the following order for the bond stiffness values:

Ta–C>Nb–C>Ti–N. This is consistent with what is known about the M–X bonds. For example,

TaC has the highest melting point of these compound, with the melting points of TaC, NbC, and

TiN at 3983, 3600, and 2949 ◦C, respectively [136].

In addition to the measured Raman spectrum and calculated Raman bands for α-Ta4AlC3, I

also carried out first principles calculations on β -Ta4AlC3 to predict its Raman-active modes. The

atomic displacements associated with the ten Raman-active modes are shown in Fig. 10.4 for

α-Ta4AlC3 and the calculated wavenumbers are listed in Table 10.2 for both polymorphs. The

calculated displacements associated with the Raman-active modes in β-Ta4AlC3 (not shown)

were found to be essentially the same as α-Ta4AlC3, except for slight differences in the MII atom
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displacement at ω1. The only major differences in wavenumber are in the modes at ω9 (E2g)

and ω10 (E1g), which occur at lower wavenumbers for β-Ta4AlC3. Both these modes primarily

involve the shear vibrations of the X I atoms within the basal plane. Because ω9 and ω10 are

predicted to occur at lower wavenumbers in β -Ta4AlC3, the wavenumber of these modes relative

to the longitudinal mode at ω8 (A1g) would also be reversed, where ω8 is predicted to be higher

than ω9 and ω10 in β -Ta4AlC3. This could be indicated experimentally by a difference in shape,

relative intensity, or frequency for the three high-wavenumber bands in β-Ta4AlC3 compared

with α-Ta4AlC3.

10.2.2 First-order Raman scattering of Ti3SnC2 and Ti2SnC
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Figure 10.7: First order Raman spectra of (a) Ti2SnC, and (b) Ti3SnC2. The red vertical
lines represent the calculated frequencies of the Raman-active moods for each phase.

Along with the 211 and 413 Ta-containing MAX phases, the 211 and 312 Sn-containing

phases are studied. Whereas the former contain heavy M elements, the latter have heavy A
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Table 10.4: Experimental and theoretical wavenumbers, ω, in cm1, symmetry assignment,
and FWHM of the Raman modes of Ti2SnC.

Mode Irr. Rep. ωexpt FWHMexpt ωcalc

ω1 E2g 140.4 7.4 139
ω2 E2g 247.0 22.3

242
ω3 E1g 247
ω4 A1g 347.4 27.2 342

Table 10.5: Experimental and theoretical wavenumbers, ω, in cm1, symmetry assignment,
and FWHM of the Raman modes of Ti3SnC2 and Ti3SiC2. Values in parentheses are from
Ref. [77];values in brackets are from Ref. [135];all other values are from this work.

Ti3SnC2 Ti3SiC2

Mode Irr. Rep. ωexpt FWHMexpt ωcalc ωexpt FWHMexpt ωcalc

ω1 E2g - - 63 (159) (10.5) 129 (145) [129]
ω2 E1g 176.3 4.0

174 (226) (5.0) 190 (217) [190]
ω3 E2g 171 (279) (5.6) 221 (253) [222]
ω4 A1g 273.8 16.8 263 (301) (N/A) 274 (301) [273]
ω5a

† E2g - - 601 (625) (5.5) 611 (590) [610]
ω5b

† E1g - - 601 - (5.5) 611 (622) [611]
ω6 A1g 645.0 10.9 635 (673) (4.7) 667 (657) [666]

† There are two modes at ω5; nomenclature of modes is chosen to be consistent with that used
in previous literature [77, 135].

elements. Table 10.4 lists the measured and calculated Raman frequencies of Ti2SnC. The Raman

spectrum is shown in Fig. 10.7(a), where the red markers represent the calculated frequencies.

The agreement between the calculated and measured frequencies is excellent. Since the Sn

atoms are heavier than Al, the frequencies for Ti2SnC are lower than for Ti2AlC (see Table 10.3).

Although the A atoms only participate in modes with frequencies of ω1 and ω2 (see Fig. 10.2),

this applies to all four of the modes – even the ones that involve only the M atoms, ω3 and ω4 –

which demonstrates that the M vibrational behavior is affected by the A atom mass and that the

M and A vibrational behavior is coupled.

The effect of mass is also apparent from the 312 phase Ti3SnC2 compared to other 312

phases. Table 10.5 lists the calculated and experimental Raman frequencies for Ti3SnC2, along
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with the experimental and calculated frequencies for Ti3SiC2 from previous work [77, 135] and

calculated frequencies from this work for comparison with Ti3SnC2. The Raman spectrum for

Ti3SnC2 is also shown in Fig. 10.7(b). In Ti3SnC2, the frequencies of ω1 and ω3 are significantly

depressed compared to Ti3SiC2 while the differences between the two phases for ω4-ω6 are

not as severe. Note that ω2 in Ti3SiC2 is lower than ω3, which is also the case with most of

the other 312 phases [135]; however, in Ti3SnC2 ω3 <ω2. This is because for the 312 phases,

the A atoms do not participate in the 1g vibrational modes (see Table 10.1), so the effect of the

A-atom mass on ω2 ( with irreducible representation E1g) is not as drastic as the effect on the

E2g modes, ω1 and ω3, which involve heavy Sn vibrations (blue atoms in Fig. 10.3).

Another interesting observation regarding the theoretical A and M interaction is that there is

a greater difference between Ti3SiC2 and Ti3SnC2 for calculated ω6 (667 vs. 635 cm−1) than

for ω5 (611 vs. 601 cm−1). This is a subtle distinction, but it is in line with the directions of

the displacements associated with the modes and the atoms involved. Since the E1gand A1g

modes in the 312 phases only involve the MI and X atoms (see Table 10.1), this implies that

the A1g mode, ω6, is more affected by the A atom than the E1g mode, ω5. Since the difference

between the two modes is that the A1g mode involves vibrations along the c axis while the E1g

involves vibrations within the basal planes (see Fig. 10.2), this demonstrates that the vibrations

of TiI – the Ti atom adjacent to A – along the c axis are constrained by the A atom vibrations.

Experimentally, there is no peak corresponding to the calculated frequency of the E1g mode in

Ti3SnC2 (Fig. 10.7), which may be because the mode actually occurs at higher frequencies and

merges with ω6. This idea is further supported by the fact that the ω5a peak in Ti3SiC2 occurs

at a higher frequency than that predicted.
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10.3 SUMMARY

In this chapter, an overview of the number of Raman modes, their irreducible representations,

and the atoms involved was first presented for 211, 312, and 413 MAX phases. The Raman

frequencies measured through Raman spectroscopy lend credibility to theoretical phonon fre-

quencies, serving as reference points for the frequencies of select Γ-point modes to validate

the DFT calculations. The calculated and experimental Raman frequencies were presented for

Ta2AlC, Ti2SnC, Ti3SnC2, Ta4AlC3, Ti4AlN3. It was shown that the low-frequency modes in both

the Sn- and Ta-containing phases are much lower when compared to the Si- and Ti-containing

phases, respectively, because of the increase in mass. The effects of mass and bond stiffness

are discussed based on the relationship between the Raman frequencies and the reduce masses

for atom pairs. In the 413 phases, it is shown that mass plays a large role in the differences

in vibrational frequencies between the different chemistries, while the high-frequency modes –

which are governed primarily by the motion of the C or N atoms – include stiffness effects that

must account for the observed Raman frequency differences.
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Chapter 11: Predicted mean-squared atomic displacement parameters

Raman spectroscopy provides information about the vibrational frequencies for the normal

modes that are activated by light around the visible spectrum, but it does not describe the

equilibrium thermal vibrations for atoms, nor does it give information about the vibrational

amplitudes of the atoms. Indeed first-principles phonon calculations can be supplemented

with experimental frequencies to provide information about the atomic vibrations involved – as

shown in Chapter 10 – but the Raman spectrum itself does not provide any direct experimental

measurements of the atomic displacements. Furthermore, while the phonon partial density

of states serves to decompose the phonon modes into site-dependent representations of the

number of phonon states and their distribution with energy, it does not give any information

about the actual real-space motion of the atoms. Because the position of an atom and its average

displacement is information that is readily accessible through diffraction techniques – i.e., from

the Debye-Waller factor – it is instructive to compute the average amplitude of each atom as

well. From the first principles phonon calculations, each mode – that is, each frequency and

q-point, ω(q) – has an eigenvector that can be represented as real-space vibrational behavior,

such as the schematics shown at the bottom of Figs. 9.2 and 9.3.

In this chapter, the predicted equivalent isotropic and anisotropic temperature-dependent

ADPs are presented for select 312 M3AX2 and 211 M2AX phases. The dependences of the

thermal motion parameters on the mass and valence electron configuration for both the M and

A elements are also explored. This chapter is purely theoretical and discusses only the calculated

mean-squared displacements for ideal, defect-free, single-phase, stoichiometric crystals. This

theoretical study sets the stage for discussing the experimentally observed atomic motion, which
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(a) (b)

U11(R) = 〈|ux(R)|2〉
U22(R) = 〈|uy(R)|2〉
U33(R) = 〈|uz(R)|2〉

R

R+ u(R, t)

uz(t)

uy(t)

ux(t)

~u(t) p

U11
p

U22

p

U33

Figure 11.1: (a) Model of the atomic displacement of atom site R at time t, ~u(R), and
its Cartesian components, ux , uy and uz. (b) Schematic of the mean-squared atomic
displacement parameters of atom site R, which are the time-averaged squared Cartesian
components of ~u(t).

will be introduced in later chapters.

11.1 NOTATIONS FOR ADPS

In Chapter 4, the theory behind the computation of the mean-squared displacement parameters

was summarized. An equation was derived for computing the the mean-squared atomic dis-

placement from phonon calculations (Eq. 4.55), which gave 〈|uα(R)|2〉 in terms of the phonon

frequencies and eigenvectors. The Cartesian component, α, is the projection of the vector ~u onto

the x ,y , or z axis. A schematic is shown in Fig. 11.1(a) and for an instantaneous displacement

~u(t) for atom R.

From neutron diffraction, the anisotropic Debye-Waller factor is given by a tensor U whose

diagonal terms, U11, U22, and U33, give the mean-squared displacements along the a, b and

c axes, respectively [Fig. 11.1(b)]. Since a=b for hexagonal crystals, the displacement is

equivalent in any direction within the basal plans, so U11 = U22 = 〈|ux |2〉 = 〈|uy |2〉. Also, the

displacement along the c axis is equal to the z component of ~u so U33 = 〈|uz|2〉. Note that a
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lower case U denotes a displacement in units of length, while an upper case U is a mean-squared

value in units of length squared (e.g. Å2).

In the remainder of this thesis, the notation Ui j is used for consistency. The values of U11

and U33 presented in this chapter are therefore 〈|uα|2〉 calculated from Eq. 4.55 for α = x and z,

respectively. In addition, Ueq is calculated from U11 and U33 with equation 6.29. It is computed

in this way (rather by the averaging of ~u in all directions, for example) for comparison with the

Debye-Waller factor.

11.2 PREDICTED TEMPERATURE-DEPENDENT ATOMIC DISPLACEMENT PARAME-
TERS

Although atomic displacements in the hexagonal MAX phases occur at different amplitudes

in different directions, a good starting point is the equivalent isotropic mean-squared atomic

displacements, Ueq, which represent the square of the average displacement of a given atom

site from its equilibrium position, Ueq = 〈|~u|2〉. The temperature dependences of the calculated

equivalent isotropic thermal motion parameters are shown in Fig. 11.2 for the four 312 carbides,

Ti3AlC2, Ti3SiC2, Ti3GeC2, and Ti3SnC2. To date, there are only five known MAX phases with

312 stoichiometry, the missing one being Ta3AlC2. The four Ti-containing 312 phases are chosen

for this theoretical investigation to in order to work with a set of phases that differ only in

the A atoms. Note that all four of these phases are also measured experimentally through

high-temperature neutron diffraction, which will be discussed in Chapter 12. All these phases

differ only in their A element, where Si, Ge, and Sn have the same valence election configurations

but significantly different masses. Al is next to Si in the periodic table with one fewer electron

than the other elements.

For the two Ti atoms and the C atom, the mean-squared atomic displacements are similar.

Given that the four phases have common elements in all three of those sites, this is not entirely
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Figure 11.2: Temperature dependence of the equivalent isotropic atomic displacement
parameters determined by first-principles phonon calculations for the 312 phases Ti3AlC2,
Ti3SiC2, Ti3GeC2, and Ti3SnC2 showing Ueq for (a) TiI, (b) TiII, (c) A, and (d) C .

surprising. However, this robustness of the ADPs with variations in chemistry of neighboring

atoms is not at all a rule, and it will be later shown that this is not true of all MAX phases atoms.

As we have seen in the previous chapters, the motion of an atom does not only depend on the

atom itself; if that were the case, lattice dynamics could be described by a bunch of independent

harmonic oscillators. It is the potential between interacting bodies that controls the bonding and

is one of the major components of the Hamiltonian that governs dynamical behavior in solids.

Therefore, the fact that the mean-squared atomic displacement of the Ti and C do not vary

significantly with variations in the A element is telling of the bonding in Ti and C and shows that

they are more or less rigid units that are the last to compromise in terms of ADPs. Further, the
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Figure 11.3: Temperature-dependence of the equivalent isotropic atomic displacement
parameters determined by first-principles phonon calculations for select M2AC phases
showing Ueq for (a) the M atoms, (b) the A atoms, and (c) C .

ADPs for the Ti and C sites are considerably lower than those of the A elements [Fig. 11.2(c)].

This shows that the bonding between the A and Ti elements is weaker than the Ti-C bonds.

Considering the Ti-C octahedra as rigid tightly-bound blocks relative to the A elements, whose

bonding to the Ti atoms is analogous to a flexible spring, any changes in the spring constant

(interatomic potential) as the A element changes will be more severely felt by the A element

since the Ti-C units are so sturdy.

Turning to the ADPs of the A atoms, it is readily apparent that, in all cases, their amplitudes

of vibration are the highest of all the atoms in all cases, and by a significant factor (' 3 times)

[Fig. 11.2 (c)]. As mentioned, the phenomenon is due to the weak bonding in the A atom (at

least relative to that between Ti and C) that makes its motion less constrained. This has been

observed before in the MAX phases, where previous reports have shown that the A elements

“rattle” within the structure [1]. It is this rattling effect that is believed to be responsible for the

low phonon conductivities of the MAX phases comprised of elements heavier than Al, despite

their high specific stiffness values and high Debye temperatures [1, 58, 59]. The experimental

work in this thesis also supports this, as will be discussed in the next chapter.
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Figure 11.4: Temperature-dependence of the anisotropic atomic displacement parameters,
Ui j , determined by first-principles phonon calculations for the 312 phases Ti3AlC2, Ti3SiC2,
Ti3GeC2, and Ti3SnC2, showing U11 and U33 for TiI [(a) and (b)], TiII [(c) and (d)], the A
elements [(e) and (f)], and C [(g) and (h)].
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In addition to the four 312 phases, eight 211 phases were studied as well. The equivalent

isotropic ADPs for these phases shown in Fig. 11.3. Here we observe the same overall trend as

with the 312 phases, where the displacement amplitudes of the A elements [Fig. 11.3(b)] are

higher than those of the other atoms. Since there is a more diverse set of chemistries among the

211 phases studied, the spread of the M ADPs [Figs. 11.3(a)] is greater than for the ADPs of the

Ti atoms in the 312 phases, which are nearly equivalent [Figs 11.2(a) and(b)]; however, the

ADPs of the M and C atoms in the 211 phases are similar to one another and their variations with

respect to chemistry are less drastic than the differences in Ueq among the different chemistries

for the A atom. Furthermore, the fact that Ueq for the C atom varies despite the common X

element chemistry – where, on the other hand, the 312 phases share common Ti atoms in the M

site – shows that the motion of X is coupled to that of M .

Another important consideration in the MAX phase crystal structure is that it is highly

anisotropic. In contrast to, say, a cubic crystal structure, the environment for a given atom can be

quite different in one direction than another. In terms of the crystal structure, the symmetry in

the x and y direction differs drastically from that in the z direction. Therefore the overall atomic

displacements within the basal planes – which is expressed as U11 – should be distinguished from

that along the c direction, U33. These Ui j parameters are the anisotropic mean-squared atomic

displacement parameters, which are plotted in Figs. 11.4 and 11.5 for all the atoms in the 312

and 211 phases, respectively, under study. Here, we find that the thermal motion behaviors of

the M and C atoms are more or less the same in the a and c direction. The A elements all show

a highly anisotropic atomic motion behavior with U11 > U33, indicating higher amplitudes of

vibration within the basal planes than perpendicular to them. This suggests that the bonding of

the A elements to one another is weaker than their interactions with the M atoms, which is what

could lead to less constrained motion in the direction of the other A atoms than in the direction
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Figure 11.5: Temperature-dependence of the anisotropic atomic displacement parameters,
Ui j, determined by first-principles phonon calculations for select 211 phases showing U11
and U33 for the M elements [(a) and (b)], the A elements, [(c) and (d)], and C [(e) and
(f)].
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of the M -C octahedra. In fact, in the z direction, the mean-squared displacements of the A atoms

are comparable to the displacements of the M atoms. In effect, the dynamical behaviors of the A

and M atoms occupy equal portions of the distances between them. Interestingly, the Si and Al

atoms in the 312 phases have the same mean-squared displacement in the x-y direction [Fig.

11.4(e)] but the Al atom exhibits a higher amplitude of displacement than along z than Si and

thus has the highest isotropic ADP [Fig. 11.2(c)]. Moreover, the amplitude in the z direction

apparently increases with decreasing mass, at least when comparing those in the same periodic

table group (it is the higher for Sn than for Ge and Si), which implies that it is more related to

the constraints from the Ti than the interactions of the A atoms with one another. This is also

supported by the environment in either direction dictated by the atomic arrangement.

Because of the extensive sample of phases studied, it is difficult to compare the ADPs between

different phases from the temperature-dependent graphs in Figs. 11.2-11.5. The next section

therefore focuses on just a single ADP at 1000◦C for each phase studied to assess variations with

chemistry.

11.3 TRENDS WITH MASS AND ELECTRON CONFIGURATIONS OF THE M AND

A ATOMS

To better understand how the theoretical atomic motion plays into the structure, chemistry, and

bonding of these materials, it is useful to consider the relationship between the ADPs to other

properties and phenomena in the studied phases. This can first be accomplished by exploring

the trends in the ADPs with variations in chemistry for the M sites and the A sites independently,

focusing on only carbides to reduce the number of free variables by keeping X constant. Table

11.1 presents the M and A elements that make up the Mn+1AXn phases. They are grouped into

columns according to their group in the periodic table (and also their electron configuration),

and they are arranged by row according to their period in the periodic table (wherein there is a
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Table 11.1: Elements that can exist as M and A atoms in the Mn+1AXn phases, arranged by
valence electron configuration and row, or period, in the periodic table.

M atoms A atoms

valence e configuration valence e configuration

d1s2 d2s2 d3s2 d5s1 s2 s2p1 s2p2 s2p3 s2p4

pe
ri

od

3d Sc Ti V Cr

pe
ri

od

3s Al Si P S
4d Zr Nb Mo 4s Ga Ge As
5d Hf Ta 5s Cd In Sn

6s Tl Pb

significant increase in mass from top to bottom). This serves as a guide for assessing the ADPs in

relation to the chemistry of the phases.

Comparing the mean-squared isotropic displacement of the A atoms in Fig. 11.2 with one

another, they increase in order of mass: UAl < USi < UGe < USn. This is because the mean-

squared displacement is inversely proportional to the mass of the atom and proportional to

the phonon frequencies of the normal modes. Fig. 11.6 shows U11 and U33 plotted against

the s period of the A atoms for the three 312 phases in group 14. Indeed, the ADPs of the A

elements decrease with increasing s period, which corresponds to increasing atomic mass, but

the decrease in amplitude is only within the basal planes (U11); the displacement along the z

direction shows a slight increase with mass. While the increase in U33 with A atom period is

slight, this does suggest that the mass effects play a different role in the A-A interaction, which is

within the basal plane, than the M -A interaction along the z direction.

Despite the clear trends in mass for the predicted ADPs, it is worth noting that the way

that temperature is accounted for in this model is through an assumed distribution of the

phonon population as a function of the phonon frequency for each band. The mass effects are

incorporated within the harmonic model – that is, through the kinetic energy term and its effect

on the frequency in the harmonic potential. Under these restrictions, the calculations predict
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Figure 11.6: Dependence of atomic displacement parameters at 1273 K on A atom period
(row) for 312 phases with common M atoms and A atoms with the same valence electron
configuration. U11 (blue squares) and U33 (red circles) are shown for (a) the TiI atoms and
(b) the A atoms.

the mass to be inversely proportional to displacement but there are inevitably anharmonic

interactions between atoms that are neglected in approximating the interatomic potential in this

model. If the interatomic potential plays a considerably larger role than mass – especially if it

has major contributions from higher-order terms – then this may not be the true state of affairs

in real systems, which will be discussed in more detail in the next chapter. For now, it is fair

to say that the predictions of decreased vibrational amplitudes for heavier atoms is based on a

primitive model that cannot truly describe systems with anharmonic interactions.

In addition to the strong trend predicted for the Ueq dependence on mass, the Al atom

apparently rattles more than Si [Fig. 11.2(c)], which is not a mass effect since Al and Si

are similar in that respect. Given that Al is the only atom with a different valence electron

configuration from the other three, this could be related to the coupling between electronic

structure and dynamical behavior of the ion cores; however, given the small extent of the

difference tween UAl and USi, more MAX phase stoichiometries should be included in comparisons

before making any conclusions.

Fig. 11.7 plots the ADPs of the M and A atoms against A atom valence electron configuration



CHAPTER 11: PREDICTED MEAN-SQUARED ATOMIC DISPLACEMENT PARAMETERS 138

 0

 0.01

 0.02

 0.03

 0.04

 0.05

s
2
p

1
s
2
p

2
s
2
p

3

U
 (
Å

2
)

A atom valence electron configuration

(a) M atoms

U11, V2AC
U33, V2AC

V2GaC V2GeC V2AsC

Ueq, Ti3AC2
Ueq, Ti3AC2

Ti3AlC2 Ti3SiC2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

s
2
p

1
s
2
p

2
s
2
p

3

U
 (
Å

2
)

A atom valence electron configuration

(b) A atoms

V2GaC

V2GeC

V2AsC

Ti3AlC2 Ti3SiC2

Figure 11.7: Dependence of equivalent isotropic atomic displacement parameters at 1273
K on A atom valence electron configuration for phases with common M atoms and with A
atoms in the same row in the periodic table. The values for the V2AC phases are represented
by solid symbols; the ADPs of the Ti3AC2 phases are open symbols. The anisotropic ADPs U11
(blue squares) and U33 (red circles) are plotted for (a) the M atoms and (b) the A atoms.

for the two Ti-containing 312 phases with A elements in the 3s row (Al and Si) along with three

V-containing 211 phases with A elements in in the 4s row (Ga, Ge, and As). Note that the two

sets of phases – the 211 V2AC phases and the 312 Ti3AC2 phases – do not have any common

elements (except carbon), but the valence electron configurations for the A elements are the

same for common x axis values and only the general trends are being compared for the sake of

determining the role of the valence electron configuration.

As discussed, the decrease in U from Al to Si in the 312 phases [open squares in Fig. 11.7(b)]

is slight, and only within the basal planes (i.e. only for U33). However, the decrease in U33

for the A elements in the V-containing 211 phases [filled blue squares in Fig. 11.7(b)] is more

pronounced, suggesting that, in these phases, the addition of p electrons leads to a decrease in

the amplitudes of the A atom displacements. Since the ADPs generally are not largely affected

by n (that is, there should be little difference between the U values for atoms in a 312 and 211

phase with the same chemistry), reasons for the differences likely stem from mass or valence

electron configuration of the M atom, and the correlation of these factors with the valence
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electrons of the A atoms. Interestingly, the a lattice parameters in the V-containing 211 phases

increase with p electrons, while the c parameter decreases – that is, V2GaC has the lowest a

parameter and highest c parameter.

Figures 11.6 and 11.7 demonstrate that the anisotropic ADPs vary with A atom valence

electron configuration and mass. It has been shown that increases in mass and valence electrons

both lead to more isotropic displacements with lower amplitudes. Now we move onto the effect

of variations in M atom, keeping A occupied with Al since it is one of the most common A

elements.

Figure 11.8 plots U11 and U33 as a function of the valence electron configuration of the M

atoms in the 3d row (Ti, V, and Cr) for Al-containing 211 phases. Despite the M atom being the

site to vary in chemistry, the M vibrations are not affected by the M atom electron configuration;

however, it does affect the A atom thermal motion, as more valence electrons lead to more

isotropic thermal motion behavior and smaller amplitudes. The density of Cr2AlC is significantly

higher than the other two, as the lattice parameters are much smaller, so the more constrained

motion is in line with the decrease in U11 for Al.
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The fact that the M valence electron plays such a large role in the A atom motion shows,

again, that the M -A interactions greatly influence the “rattling” effect of the A atom. On the

other hand, variations with M atom mass does not play a major role, as shown in Fig. 11.9 for

group 5 M atoms V, Nb, and Ta. Even though the M atoms in the three phases are drastically

different in mass, the ADPs do not show any systematic variations. This further supports the

notion that the role of bonding between M and A is a large factor in the movement of the A

atom, whereas the mass of the M atom does not strongly influence the forces in the crystal that

would factor into the A displacements.

All in all, the phonon calculations predict that the A elements, being the most weakly bonded

within the crystal, should vibrate with the highest amplitude and within the basal plane. Both

the mass and electron configuration of the A elements govern their displacements, and the ADPs

are predicted to increase with decreasing mass and fewer valence electrons. The predictions

also suggest that the M atom electron configuration influences the A atom motion as well, but

the mass of the M atom does not have a large role in the vibrational character.

The next chapter will present the results for the ADPs of several of the phases studied in this
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chapter, as determined from Rietveld analysis of high-temperature neutron diffraction data. The

results will be compared to the predictions outlined herein to help draw general conclusions

about MAX phase lattice dynamics, to validate both the theoretical and experimental procedures,

and to test the behavior of the real systems against the theoretical ones of this chapter.

11.4 SUMMARY

This chapter presented results for the mean-squared atomic displacements determined from

first-principles phonon calculations. First, the temperature-dependent isotropic and anisotropic

ADPs were plotted for four 312 phases and a large number of 211 phases. Then, the ADPs at

1273 K were plotted against either A valence electron configuration, A-atom mass, M valence

electron configuration, or M -atom mass for select sets of phases. It was shown that the ADPs of

the A atoms are predicted to be higher in amplitude and more anisotropic for the phases with

fewer A or M atom valence electrons or with lighter A atoms. The mass of the M atoms, on the

other hand, does not play a large role in the calculated ADPs.
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Chapter 12: Theory and experiment: atomic displacement parameters

It has been shown in the previous chapter that the mean-squared atomic displacements can be

used to spot trends in lattice dynamics with variations in chemical bonding and atomic mass. In

this chapter, ADPs are determined experimentally from high-temperature neutron diffraction

(see section 8.1.2 for experimental details) and those values are then compared with the DFT

results presented in Chapter 11

Along with MAX phases, titanium carbide, TiC, and tungsten carbide, WC, are also studied

with first-principles calculations and HTND for benchmarking and as validation for the experi-

mental and theoretical methodologies. TiC is chosen for its similarity in chemistry to the MAX

phases studied in this work, and WC is studied to test our methodology on a hexagonal system.

WC crystallizes in a hexagonal structure with space group P6̄m2. Both TiC and WC were mea-

sured on the same neutron diffractometer as the MAX phases. The same data refinement strategy

is also used. Tantalum carbide, TaC, is also studied with first-principles phonon calculations

for comparison with another recent HTND paper in which its ADPs were reported in order to

evaluate our results against neutron diffraction data from another diffractometer [137].

12.1 BINARY CARBIDES

I begin this study on the relatively simple systems, TiC and TaC, which have cubic NaCl-

type structures (space group Fm3̄m). For TiC, temperature dependence of the mean-squared

displacements calculated from first-principles phonon calculations is compared with those

obtained from HTND. For cubic structures, the thermal motion is represented as an isotropic

ADP, Uiso, which is the mean square of the displacement of an atom in all directions. Figures
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Figure 12.1: Temperature dependence of mean-squared displacement parameters in select
binary carbides showing values calculated from first principles calculations (lines) and
experimental values from HTND (markers): (a) Uiso for Ti and C atoms in TiC, (b) Uiso for
Ta and C in TaC, where the markers show the average Uiso for Ta and C from Ref. [137] and,
(c) Uiso for W and C atoms in WC. Insets show the crystal structures for each phase. (a)-(c)
are plotted with a full scale to coincide with those of all other figures in this chapter. (d),
(e), and (f) show the shaded regions in (a), (b), and (c), respectively. In (a) and (c), error
bars are typically smaller than the symbols.
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12.1(a) and (b) show that the calculated temperature dependencies of Uiso (lines) are close to

the experimental values determined from the HTND carried out in this work (symbols), lending

credibility to the methodology for this cubic binary system. Both prediction and experiment

show nearly the same ADPs for both atoms. However, the y axis limits have been chosen to

be identical for the MAX phase figures, where all ADP plots are shown from 0 to 0.05 Å2 for

comparison. I also plot to their full scales [yellow shaded in regions in Figs. 12.1(a) and (b)] in

Figs. 12.1(e) and (f).

Clearly, there are some discrepancies between the measured and calculated values, even for

these relatively simple systems. In TiC, for instance, theory predicts that Uiso should be larger

for C than for Ti, while the opposite is observed experimentally (see Fig. 12.1(d). Reasons

for this are not clear, but may be related to the relatively weak scattering power of Ti (σc =
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1.485b [116]) compared to C (σc = 5.551b [116]). It is important to note, however, that when

compared to the full ADP scales we deal with for the A atom “rattlers” in the MAX phases, the

differences between theory and experiment for these binaries are small (<3% of the full 0.05 Å2

scale).

For TaC, the calculated mean-squared displacements are compared with a recent HTND

study by Nakamura and Yashima [137], where the isotropic ADPs were estimated from Rietveld

refinement of HTND data on single phase TaC. Since the error bars for Uiso were large in that

study, the final refinement assumed UTa = UC. Herein the atomic isotropic thermal displacement

values are predicted individually for Ta and C, shown in Fig. 12.1(b) by the blue solid line and

black dashed line, respectively. The predicted ADPs for Ta and C are averaged to yield average

isotropic ADPs, also shown in Fig. 12.1(b) (gray dotted line), which are compared with the

average Uiso values determined from the study in Ref. [137] (gray circles).

The predicted and experimental ADP values for TaC are in good agreement, but on this

instrument (in the experimental study in Ref. [137]) the temperature dependence shows a more

nonlinear behavior at lower temperatures. Note that the error bars in this study, shown in Fig.

12.1(e), are considerably higher than those for TiC measured on HIPPO [Fig. 12.1(d)], where

the error bars are smaller than the symbols. The extent by which the experimental parameters

deviate from the predicted values provide a reference point for the precision of the calculations

and the errors involved for simple, single-phase cubic systems on the medium resolution neutron

diffractometers used for these studies.

To compare the overall amplitudes of vibration of the W and C atoms, the anisotropic ADPs,

Ui j, were converted to equivalent thermal displacement parameters, Ueq, assuming equation

6.29. Figure 12.1(c) plots the temperature dependence of the Ueq values calculated from

first-principles phonon calculations for W (solid blue line) and C (dashed black line). The



CHAPTER 12: THEORY AND EXPERIMENT: ATOMIC DISPLACEMENT PARAMETERS 146

experimental values are represented by blue squares and open circles for W and C, respectively.

The agreement between theory and experiment is excellent, with C showing slightly higher

amplitudes of vibration in both the predicted and measured results. To study the directional

amplitudes of vibration, the anisotropic ADPs, Ui j , are plotted in Figs. 12.2(a) and 12.2(b) for

W and C, respectively. Again, the main plots are to the same scale as the rest of the graphs in

this chapter, but the zoomed in regions are shown in the insets. Generally, the predicted values

agree well with the experimentally determined ADPs. For C [Fig. 12.2(b)], the anisotropy is

reversed for theory and experiment, i.e., U11 > U33 according to predictions, while the opposite

is observed from the HTND experiments. However, in general, the calculated values show

relatively isotropic behavior (U11/U33 = 1.1), so this may be an indication of the uncertainty

in the degree of anisotropy for both experimental and theoretical ADPs when the differences

between U11 and U33 are small.
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Figure 12.3: High-temperature 99% probability thermal ellipsoids for (a) Ti3SiC2 at 1100◦C,
(b) Ti3GeC2 at 1000◦C, (c) Ti2AlN at 1100◦C, and (d) Cr2GeC at 1000 ◦C [2], as deter-
mined through Rietveld analysis of the high-temperature neutron diffraction on the HIPPO
diffractometer. Note that all four structures are drawn to the same scale.
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Figure 12.4: Temperature evolution of anisotropic ADPs U11 (blue) and U33 (red) of (a)
Ti, (b) Al, and, (c) N atoms in Ti2AlN. Solid lines show DFT predictions; markers show
experimental values determined from HTND. Error bars are typically smaller than the
symbols.

From the results shown in Figs. 12.1 and 12.2, it is evident that for the binary carbides,

experimental and first-principles phonon calculations agree reasonably well. Having established

a baseline for error, I now move onto the MAX phases, the real focus of this thesis.

12.2 MAX PHASES

To represent the anisotropic thermal motion obtained experimentally through HTND, the thermal

ellipsoids at the highest measured temperatures for each phase are displayed in Fig. 12.3. Indeed,

the anisotropic thermal motion shown by the thermal ellipsoids in Fig. 12.3 are in agreement

with previous reports of the A-group elements in MAX phases acting as “rattlers” in the structure

[1], and with the series of first-principles calculations in Chapter 11. It is this rattling effect that

is believed to be responsible for the low phonon conductivities of the MAX phases, despite their

high specific stiffness values and high Debye temperatures [1, 58, 59]. However, it should be

noted that the reasons for the higher phonon conductivity of the Al-containing phases, which

also exhibit this “rattler” effect, are not clear at this time.

The neutron diffraction results show that the Ge atom in Ti3GeC2 is even more of a “rattler”
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Figure 12.5: Temperature evolution of anisotropic ADPs U11 (blue) and U33 of (a) Cr, (b) Ge,
and (c) C atoms in Cr2GeC. Solid lines show DFT predictions; markers show experimental
values determined from HTND. Error bars are typically smaller than the symbols.

than Si in Ti3SiC2. It is significant to note that the major differences between the motion in the

two isostrucutral 312 phases structures (Fig. 12.3(a) and (b)) is the extent to which the Ge

ellipsoids are flattened relative to those of Si. Note that the TiII atoms in Ti3GeC2 also flatten

along the basal planes with increasing temperature. The latter conclusion is in accordance

with the fact that the phonon conductivity of Ti3GeC2 at room temperature is negligible [1, 58]

despite having a Young’s modulus of over 340 GPa [52, 58]. Since the strongest bonds are

between the M and X atoms in the M2X layers, the smallest vibration amplitudes are associated

with M and X atoms. The large amplitude of vibration of the Si, Al, and Ge atoms indicate

that, in addition to being weakly bonded to one another within the basal plane, they are also

relatively weakly bonded to their respective M atoms, in line with the “rattler” effect discussed

above.

Next, the temperature-dependences of the experimentally-determined ADPs are plotted with

the predicted values from first principles calculations. Figures 12.4-12.9 show the ADPs for the

five select MAX phases studied through HTND, including two 211 phases (Figs. 12.4 and 12.5),

three 312 phases (Figs. 12.6, 12.7, and 12.8), and one 413 phase (Fig. 12.9). Values determined
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from first-principles phonon calculations (solid lines) are shown along with experimental values

from Rietveld analysis of neutron time-of-flight data. The statistical uncertainties of the refined

parameters result in error bars typically of the size of the symbols due to the scale used. In most

cases where there is observed experimental scatter the error bars are visibly larger, as in TiI and

TiII in Ti3GeC2 [Figs. 12.8(a) and (b), respectively] and TiI, TiII, Al, and NI in Ti4AlN3 [Figs.

12.9(a)–(d)]. It should be noted that in some cases the observed scatter is greater than the error

bars, indicating systematic errors such as parameter correlations, which we could not avoid in

our refinement model.

Based on the totality of these results it is reasonable to conclude that for this relatively

diverse set of MAX phases, qualitative agreement between the calculated and measured ADPs is

achieved. In all cases, both the DFT predictions and HTND measurements show that the A atom

vibrates with the highest amplitude, and vibrates more within the basal plane, i.e., U11 > U33.

This is in line with the notion of the A-group elements acting as “rattlers” which is consistent

with the low phonon conductivity of many MAX phases [1, 58, 59].

With a few exceptions, when the experiments show that U11 > U33, theory shows the same.

This is especially true of the cases where there is a large difference between the Ui j values,

i.e., large anisotropy, mostly of the A atoms, such as in Figs. 12.4(b) (Al in Ti2AlN), 12.5(b)

(Ge in Cr2GeC), 12.5(c) (C in Cr2GeC), 12.7(c) (Si in Ti3SiC2), 12.8(c) (Ge in Ti3GeC2), and

12.9(c) (Al in Ti4AlN3). Most of the discrepancies, on the other hand, occur for atoms with

nearly isotropic thermal motion, i.e., for which the differences between the predicted Ui j values

are small, such as in Figs. 12.5(a) (Cr in Cr2GeC), 12.7(a) and 12.7(b) (Ti in Ti3SiC2), 12.8(a)

and 12.8(b) (Ti in Ti3GeC2), and 12.9(a) (Ti in Ti4AlN3). It should be noted that Ti and Cr are

both relatively weak neutron scatterers (for Ti, σc = 1.485b; for Cr, σc = 1.66b) [116] and,

therefore, other errors could influence the refined Ui j values in the data analysis. A relatively
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Figure 12.6: Temperature evolution of anisotropic ADPs U11 (blue) and U33 of (a) TiI,
(b) TiII, (c) Al, and (d) C atoms in Ti3AlC2. Solid lines show DFT predictions; markers
show experimental values determined from HTND. Error bars are typically smaller than the
symbols.
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Figure 12.7: Temperature evolution of anisotropic ADPs U11 (blue) and U33 of (a) TiI,
(b) TiII, (c) Si, and (d) C atoms in Ti3SiC2. Solid lines show DFT predictions; markers
show experimental values determined from HTND. Error bars are typically smaller than the
symbols.
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weak scattering power of an element translates to fewer constraints of the structural parameters

of those atoms by the experimental diffraction data, manifesting itself as deviations such as

larger error bars and more scatter of the values for thermal motion as a function of temperature.

For all cases where there is qualitative agreement between predicted and calculated values, the

atoms are relatively good neutron scatterers (σc > 2b for Si, Ge, and C).

In general, the anisotropy of the calculated average thermal motion agrees with the HTND

data, at least for the A atoms. Beyond the agreement in the general trends, there are some slight

differences hinting at phenomena that are not accounted for in the harmonic approximation of

our Rietveld model and DFT calculations. Focusing on the ADPs of A-group elements, since they

are the highest, it is interesting that both Al-containing phases (Ti2AlN, Fig. 12.4; Ti4AlN3, Fig.

12.9) generally show good agreement between theory and experiment, where the anisotropy

is well represented by our calculations, with a small offset in magnitude for Ti2AlN. On the

other hand, in both Ge-containing phases (Cr2GeC, Fig. 12.5; Ti3GeC2, Fig. 12.8), U11 for Ge

is experimentally observed to be higher than calculated, while U33 shows excellent agreement

with first-principles calculations. The reverse is true for Si in Ti3SiC2 (Fig. 12.7), where U33

determined experimentally is higher than the calculated values, while U11 agrees well with

first-principles calculations.

From the phonon partial density of states in Chapter 9 (Fig. 9.7), it can be seen that the

phonon frequencies of the Ge states are lower than those of the Al and Si states since Ge is

heavier. Furthermore, as discussed in section 9.2, the spread of the Si and Al states indicates more

delocalization. The localized peak in Ti3SiC2 manifests itself as a higher degree of anisotropy for

Si thermal vibrations than for Ge, as determined by first-principles calculations [compare Figs.

12.7(c) and 12.8(c)]. Experimentally this is not observed, which suggests either anharmonic

effects that are not accounted for in this model, discrepancies in our force calculations due to
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assumptions within DFT, or defects in Ti3GeC2 (likely Ge vacancies or stacking faults) that may

cause the vibrations to shift in amplitude and direction.

Looking more closely at the two 312 phases studied (Ti3SiC2 in Fig. 12.7; Ti3GeC2 in Fig.

12.8), the phonon calculations predict that Si exhibits the highest amplitude of vibration, while

this was not observed from the HTND experiments. This is apparent from the thermal ellipsoid

representation of the displacements (Fig. 12.10). While the calculated displacements (right)

clearly show that thermal vibrations of the Si atom (top) should be larger than the Ge (bottom),

the Ui js determined from HTND (left) show that the Ge ellipsoids are more “flattened” and

have a higher amplitude within the basal plane. The reason for this state of affairs is unclear

at this time. Sources for the discrepancies observed likely come from experimental conditions

that are not taken into account in the first-principles phonon calculations herein such as defects

which are most likely in the A layer. Recent experimental studies on Ti3GeC2 thin films have

suggested samples to be Ge-deficient [139], which was also postulated to be responsible for the

high damping measured through RUS [52]. To explore this, the estimated ADPs for Ti3GeC2

with 12.4% ordered Ge vacancies are shown in Fig. 12.8 as dashed lines. From these results, it is

clear that vacancies on the A site could lead to a shift in the temperature-dependent ADPs, which

is more in line with those observed experimentally – most notably, an increase in the U11 to U33

ratio for Ge. From the HTND experiments, U11/U33 for Ge is 3.2, while the ratio predicted by

DFT calculations is 2.7 for a perfect crystal and 3.1 for one containing 12.5% vacancies.

12.3 SUMMARY

In this chapter, the mean-squared atomic displacements determined from Rietveld analysis of

HTND data are compared with values determined from first-principles phonon calculations. First,

data was presented for the cubic NaCl-type binary carbides, TiN and TaC, to benchmark our
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methodology and assess the error for cubic, single-phase randomly oriented powders. WC was

also tested to benchmark a single-phase binary hexagonal carbide. Relatively good agreement

was found for these phases, with systematic offsets in the temperature-dependent ADPs. Next,

the results were presented for the anisotropic displacements of the atoms in the MAX phases.

The ADPs from both theory and experiment showed that the A atom vibrates with the highest

amplitude, anisotropically with U11 > U33. Qualitatively, this trend was observed for all cases,

but beyond the general trends there were discrepancies between the experimental and theoretical

values that were minor in some cases and more severe in others. Generally, the Al atoms showed

the best agreement while the Ge atoms showed the worst. It was proposed that Ge atoms may

play a role in the unexpectedly high ADP of Ge; this idea was supported by first-principles

phonon calculations on a Ge-deficient supercell of Ti3GeC2.



159

Chapter 13: Temperature-dependent crystal structures of 211 and 312 phases

Another important set of parameters that come out of the HTND experiments are the atomic

positions and lattice parameters. From these, the interatomic distances, bond expansions, volume

expansions, and anisotropic CTEs can be determined as well. These temperature-dependent

structural parameters help shed light on bonding within the MAX phases, as they can serve as

indicators of charge transfer through distortion of octahedra and differences in bond strains.

This chapter summarizes the temperature-dependent crystal structures for two 211 phases

(Ti2AlN and Cr2GeC) and four 312 phases (Ti3SiC2, and Ti3GeC2, Ti3SnC2, and Ti3AlC2)

determined from HTND. The purpose of this chapter is to introduce the general behavior of the

M -A bonds compared to the M -X bonds in conventional MAX phases.

13.1 Ti2AlN AND Cr2GeC

The lattice parameters and unit cell volumes calculated from the HTND data are listed in

Table 13.1, along with experimental room temperature values from other studies. The thermal

strains, ∆L/L0, of the lattice parameters and interatomic distances are plotted as a function

of temperature in Figs. 13.1(a) and (b) for Ti2AlN and Cr2GeC, respectively. The CTEs in

the a- and c-directions, respectively, are 10.3(±0.2) × 10−6 K−1 and 9.3(±0.2) × 10−6 K−1

for Ti2AlN and 12.8(±0.3)× 10−6 K−1 and 14.6(±0.3)× 10−6 K−1 for Cr2GeC. The unit cell

volume expansions, henceforth referred to as bulk expansions, are 10.0(±0.2)× 10−6 K−1 for

Ti2AlN and 13.4(±0.2)× 10−6 K−1 for Cr2GeC. The bond lengths calculated from the structure

refinement with Rietveld analysis of the HTND data are summarized in Table 13.2. The bond

lengths increase linearly with temperature (Fig. ??.
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Figure 13.1: Thermal expansions of lattice parameters and selected interatomic distances
in, (a) Ti2AlN and, (b) Cr2GeC determined from high temperature neutron diffraction.
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In both cases the largest relative expansion is seen in the M–A, (Ti–Al or Cr–Ge) bonds, and

the smallest relative expansions are observed in the M–X (Ti–N or Cr–C) bonds. For comparison,

Fig. 13.2(a) plots the temperature dependence of the Ti–N bond in Ti2AlN, along with the Ti–N

bonds in TiN [140] and in Ti4AlN3 [138]. Figure 13.2(b) shows the structure and nomenclature

of the atoms for the Ti4AlN3 structure. The Ti–N bonds in TiN are extrapolated from the room

temperature Ti–N bond length, 2.12 Å, assuming a CTE of 9.23× 10−6 K−1 [140].

The CTEs for Ti2AlN – determined from Fig. 13.1, 10.3(±0.2)× 10−6 K−1 and 9.3(±0.2)×

10−6 K−1 in the a- and c-directions, respectively, with a bulk expansion of 10.0(±0.2)× 10−6

K−1 – are larger than previously reported values determined by HTXRD, 8.6× 10−6 K−1 and

7.0× 10−6 K−1, respectively [37]. They are, however, more in line with more recent HTXRD

results, 10.6× 10−6 K−1 and 9.7× 10−6 K−1 in the a- and c-directions, respectively [38]. At

8.8× 10−6 K−1, the dilatometric CTE is lower than the bulk expansion determined herein [37].
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Table 13.1: Summary of lattice parameters and unit cell volumes obtained from Rietveld
refinements of HTND data for Ti2AlN and Cr2GeC, and room temperature values reported
in Refs. [28, 33, 43, 141]. Numbers in parentheses are estimated standard deviations in the
last significant figure of the refined parameter.

Ti2AlN Cr2GeC
T (◦C) a (Å) c(Å) Volume Å3) a (Å) c (Å) Volume (Å3)
RT [33], [43] 2.986(3) 13.60(2) 105.0(5) 2.952(2) 12.108(4) 91.35 (6)
RT [28],[141] 2.991 13.619 – 2.951 12.08 91.08
100 2.99029(2)† 13.6134(2)† 105.421(2)† 2.94812(3) 12.1183(2) 91.215(2)
300 2.99577(2) 13.6361(2) 105.984(2) 2.95440(3) 12.1491(2) 91.842(2)
500 3.00113(3) 13.6590(2) 106.542(2) 2.96208(3) 12.1854(2) 92.590 (2)
700 3.00733(3) 13.6848(2) 107.185(2) 2.97042(3) 12.2252(2) 93.416(2)
900 3.01400(3) 13.7115(2) 107.871(2) 2.97357(3) 12.2569(2) 94.135(2)
1000 – – – 2.97798(3) 12.2789(2) 94.586(2)
1100 3.02138(3) 13.7407(3) 108.631(2) – – –
† Measurement taken during cooling.

Table 13.2: Summary of bond lengths, Å, in Ti2AlN and Cr2GeC from Rietveld refinements
of HTND Data. Numbers in parentheses are estimated standard deviations in the last
significant figure of the refined parameter.

Ti2AlN Cr2GeC
T (◦C) Ti–Al Ti–N Ti–Ti/Al–Al Cr–Ge Cr–C Cr–Cr/Ge–Ge
100 2.8201(4)† 2.08748(27)† 2.99029(2)† 2.6142(7) 1.9975(5) 2.94812(3)
300 2.8259(4) 2.09058(28) 2.99577(2) 2.6209(7) 2.0017(5) 2.95440(3)
500 2.8325(4) 2.09302(30) 3.00114(3) 2.6292(8) 2.0064(6) 2.96208(3)
700 2.8394(5) 2.09626(32) 3.00734(3) 2.6381(10) 2.0117(7) 2.97042(3)
900 2.8471 (5) 2.09938(34) 3.01401(3) 2.6472(10) 2.0153(7) 2.97357(3)
1000 – – – 2.6513(11) 2.0187(8) 2.97798(3)
1100 2.8552(6) 2.1031(4) 3.02139(3) – – –
† Measurement taken during cooling.
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It should be noted that the CTE measured using dilatometry measures the expansion of the

whole sample, including the secondary phases, while diffraction measures the expansion of

the individual phases. A recent HTND study on the phase stability of Ti2AlN at temperatures

up to 1800◦C gave a CTE of 12.7× 10−6 K−1 and 11.5× 10−6 K−1 in the a- and c- directions,

respectively, over the 25-1800◦C temperature range [142]. The differences in CTE are likely

due to either secondary phases or possibly variations in the N-content. Note that in all cases,

αa > αc. In the case of TiN, it has been shown that the CTE of N-deficient TiNx is lower than

that of stoichiometric TiN.[136, 140, 142]. Since refinement of the N site in our sample led to

97% occupancy, and neutrons interact strongly with N, which has a neutron coherent scattering

length of 11.01 fm [116], it is reasonable to conclude that there is a higher N-site vacancy
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concentration in our samples than those used in Refs. [142] or [38]. The XRD study in Ref.

[37] included ∼10-15 vol. % secondary phases, which may have affected the CTE values due

to grain-grain interactions. Note that no secondary phases were detected in the Ti2AlN sample

tested herein, lending credibility to the CTE values obtained in this work. Also, in the previous

dilatometric and HTXRD studies, preferred orientation may have affected the results, whereas

herein the texture has been shown to be mild (see Fig. A.3) and can be ruled out as a factor.

These comments notwithstanding, a systematic study in which the CTEs are measured as a

function of vacancy concentration is indicated and should be carried out.

For Cr2GeC, on the other hand, with αa = 12.8(±0.3)×10−6 K−1 and αc = 14.6(±0.3)×10−6

K−1, the CTE is higher in the c-direction. αc is slightly lower than the CTE previously reported

from HTXRD (αc = 17.6(±0.2)× 10−6 K−1 [38]), while the a lattice expansion is the same,

within error bars, as that from HTXRD (αa = 12.9(±0.1)× 10−6 K−1 [38]). The average CTE

from HTXRD, assuming αave =
2
3
αa +

1
3
αc , is c = 14.5× 10−6 K−1 [38], which is slightly higher

than the 13.4(±0.3)×10−6 K−1 bulk expansion reported herein. Regardless of the exact values of

the CTE, these results confirm, once again, that the Cr-containing MAX phases have anomalously

high CTEs as compared to other MAX phases. Also, the lattice parameters of Cr2GeC are slightly

smaller than expected, which may be because of the secondary phases that constrain the unit

cell, or more likely instrument alignment (since no internal standard was used for calibration).

The interatomic distances between the Ti and N atoms as a function of temperature in Ti2AlN

are compared to the same bonds in TiN and Ti4AlN3 in Fig. 13.2. The Ti–N bond length in

Ti2AlN (2.085 Å, extrapolated to room temperature from the HTND data) is significantly shorter

than that in stoichiometric TiN (2.12Å), and is slightly higher than the Ti–N bond of the Ti layers

nearest to the Al-layer in Ti4AlN3, determined from a HTND experiment [138]. Taken together,

the thermal expansions of the various Ti–N bonds are comparable. However, a more detailed
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look shows that the expansions of the Ti–N bonds in Ti2AlN were the lowest and comparable to

those in the binary.

Overall, a comparison of these two phases demonstrates how the different chemistries play

into the changes of the crystal structures with temperature. While both are 211 MAX phases

with the same crystal structure, they share no common elements and therefore have completely

different interatomic interactions throughout the material. One significant difference between

the two phases is their relative thermal expansions – that is, the anisotropy is reversed between

the two. However, it is important to note here that despite the differences in the overall lattice

expansion in different directions, the expansion of the M–A bonds relative to the M–X bonds

is qualitatively similar, with the M–A bonds exhibiting the highest rate of expansion of all the

bonds in the material in both cases. This, again, is an indication of the weaker M–A bond relative

to the M–X bond and is generally observed in the MAX phases as a class. It will later be shown

that situations where there are deviations from this trend may indicate disorder or other bonding

intricacies. Such cases will be discussed in Chapters 14 and 15 on the higher-order MAX phase

and correlated motion in Ti3GeC2, respectively.

13.2 Ti3AlC2, Ti3SiC2, Ti3GeC2, AND Ti3SnC2

The 312 phases have more atoms in a unit cell than the 211 phases and therefore have more

symmetry-equivalent sites and more bonds of different lengths throughout the crystal structure.

This section will give a brief overview of the general trends in crystal expansions and temperature-

dependent bond lengths in the 312 phases. A more in-depth study of Ti3SiC2 and Ti3GeC2

will be presented in Chapter 15, where more information on the temperature-dependent bond

lengths may be found.

Unlike the 211 phases, the 312 phases have two distinct Ti sites – TiI, which is adjacent to the
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A layers, and TiII, which is sandwiched between the Ti–C octahedra above and below [see Fig.

13.3(e)]. The temperature-dependent Ti–C bond lengths are shown in Figs. 13.3(a)–(d). For all

the 312 structures, the TiI-C bonds are shorter than, while the TiII-C bonds are longer than, the

Ti-C distance in TiC. This has been confirmed by first-principles calculations and other diffraction

studies and is related to the charge transfer involved in the bonding intricacies, where the TiI

atom tends to relax toward the A-atom plane. Also plotted for comparison in Figs. 13.3(b), (c),

and (d) are the Ti-C distances in the TiC secondary phases present in the samples (red triangles).

In Figs. 13.3(a) and (b), the Ti-C bond lengths for the 211 secondary phase is also plotted (green

squares). Generally, the Ti–C bond lengths in the 211 phases and in TiC fall between the TiI and

TiII bond lengths in the 312 phases.

From the results shown in Figs. 13.3(c) and (d) for the Ti3GeC2 and Ti3SiC2 HTND ex-

periments, the CTE of the impurity TiC phase, in both Ti3GeC2 and Ti3SiC2, is estimated to

be 8.5(±0.1)× 10−6 K−1. These values are higher than the 7.0× 10−6 K−1 (Ref. [143]) or

7.4×10−6 K−1 (Ref. [140]) reported for near-stoichiometric TiC in previous studies. The reason

for this state of affairs is not totally clear at this time, but could be due to either the fact that

the TiC in the ternaries is nonstoichiometric and/or the result of thermal residual stresses. The

measured TiC lattice parameters suggest it was stoichiometric.

Turning to all the bonds in the 312 phases [Figs. 13.4(a)-(d)], the Ti–A bonds in Ti3AlC2 [Fig.

13.4(a)], Ti3SnC2 [Fig. 13.4(b)], Ti3SiC2 [Fig. 13.4(d)] expand at a higher rate than the Ti–C

bonds in the material, where the lattice expansion rates are in between the expansions of the

Ti–C and Ti–A bonds. In Ti3GeC2, however, there is a strikingly different behavior. The highest

expansion is for the TiII–C bond, which typically is more rigid than the Ti–A bonds. Further, the

TiI–Ge bond apparently stays constant with temperature [black diamonds in Fig. 13.4(c)]. I will

come back to this unexpected behavior in Chapter 15, where I will argue that this has to do
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with the atomic motion behavior of the Ge atoms in the structure that may also have to do with

anharmonic terms in the Ti–Ge interactions. For now, it is assumed that the bond expansion

behavior in the other three 312 phases [Figs. 13.4(a), (b), and (d)] represent “normal” MAX

phase behavior.

13.3 SUMMARY

In this chapter, the temperature-dependent crystal structures of Ti2AlN, Cr2GeC, Ti3SiC2,

Ti3GeC2, Ti3SnC2, and Ti3AlC2 were presented, as determined form Rietveld analysis of high-

temperature neutron diffraction data. In the 211 phases, Ti2AlN and Cr2GeC, the M -A bonds

showed the highest expansion. In all the 312 phases, the TiI bonds, which involve the Ti atom

adjacent to the Al layer, were shorter than the TiII bonds. In Ti3GeC2, the TiII exhibited a

nonlinear increase in length, in conjunction with a Ti–Ge bond that was apparently constant

with temperature.
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Chapter 14: Temperature-dependent crystal structure of Ti5Al2C3

In the previous chapter, I summarized the temperature dependencies of the bond lengths and

lattice parameters of some 211 and 312 phases. Now, I turn to a slightly more complex structure.

The focus of this chapter is on an interesting case of a “higher-order” MAX phase, Ti5Al2C3, with

a stacking sequence that alternates between 211 and 312 (see Fig. 14.1). This investigation

involves the use of first-principles calculations to model the atomic displacements of the atoms

in the structures as well as high-temperature neutron diffraction to measure their temperature-

dependent crystal structures. The main purpose of this case study is to assess the effect of

stacking sequence on the dynamical behavior of atoms and the expansions of the bonds in

the structure. The results presented in this chapter also suggest that the Ti–Al bonds serve to

compensate for other disorder in the system, which is demonstrated through the behavior of the

Ti–Al bonds compared to the Ti–C bond behavior. Further, this work shows that the agreement

between theory and experiment for the Ti–Al–C system is very good, even in such a complex

multiphase system.

For the study presented in this chapter, a sample containing Ti5Al2C3 [38(±1) wt.%], Ti2AlC

[32(±1) wt. %], Ti3AlC2 [18(±1) wt. %], and (Ti0.5Al0.5)Al [12(±1) wt.% was used. Only

the results on the crystal structure of the phases are presented here; further information on the

diffraction statistics, texture, and composition can be found in Appendix A.1.3. Most of the work

presented in this chapter was published in Ref. [6]. In addition to this paper, I have written two

additional papers on the Ti5AlC2 phase that are included in Appendix B.2.
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14.1 TEMPERATURE-DEPENDENT CRYSTAL STRUCTURES OF Ti3AlC2, Ti2AlC,
AND Ti5Al2C3

The temperature-dependent expansions of the lattice parameters and interatomic distances in

Ti5Al2C3, Ti3AlC2, and Ti2AlC are shown in Figs. 14.3(a), (b), and (c), respectively. In Fig.

14.3(b), the parameters for the predominantly single-phase Ti3AlC2 sample are also plotted as

open symbols, where the a and c expansions are both lower than in the multiphase sample. The

anisotropic TEC values are listed in Table 14.1, along with those from previous studies for Ti2AlC

[37] and Ti3AlC2 [38, 144, 145].

To further compare the thermal expansions of the 3 phases, the temperature dependencies

of (∆V/Vo)1/3 – where ∆V is the change in unit cell at temperature T as compared to that at

the reference temperature, 25◦C (extrapolated), V0 – are plotted in Fig 14.3(d), where the slope

yields αav. Also plotted are the results for (Ti0.5Al0.5)Al, an impurity phase in the sample (see

Appendix A.1.3). For Ti2AlC, αav = 9.2(±0.1) × 10−6 K−1; for Ti3AlC2, αav = 9.0(±0.1) × 10−6

K−1; for Ti5Al2C3 αav = 9.3(±0.1) × 10−6 K−1. It is thus clear from Fig. 14.3(d) that the TECs

of the three MAX phases are almost identical within the error bars.

The absolute values of the c and a lattice parameters [Figs. 14.4(a) and (b), Table 14.2]

are also comparable, but it is apparent that Ti3AlC2 has the highest a lattice parameter and

Ti2AlC has the lowest, with that of Ti5Al2C3 falling in between. The same is true of the c lattice

parameters, after normalizing it by three to account for the three formula units in Ti5Al2C3 [Fig.

14.4(b)].

The temperature dependences of the absolute values of the Ti–C and Al–Ti bonds are shown

in Figs. 14.4(c) and (d), respectively. The bonds in Ti2AlC, Ti3AlC2 and Ti5Al2C3 are shown in

black, red, and blue, respectively. Note that the absolute range for the scale is the same for the

three graphs shown in Figs. 14.4(a), 14.4(c) and 14.4(d). The extrapolated room temperature
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with the refined atomic position z parameters.
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Figure 14.2: Temperature dependence of isotropic thermal displacement parameter Uiso
during heating and cooling for atoms in (a) Ti5Al2C3, (b) Ti3AlC2, and (c) Ti2AlC. Errors
are typically smaller than symbols size.

values for all bonds are also listed in Table 14.3, along with their expansion rates.

Due to the overlap of peaks in our data set we were unable to determine the anisotropic

displacements as was done in our previous HTND studies [2–4, 53, 138]. Instead, we examine

the isotropic ADPs, Uiso, which represent the mean-squared displacements of the atoms from

their equilibrium positions. Figures 14.2(a), (b), and (c) show the temperature dependence of

Uiso for the unique Ti (red), Al (blue), and C (black) atoms in Ti5Al2C3, Ti3AlC2, and Ti2AlC,

respectively. In Fig. 14.2(b) the values for predominantly single-phase Ti3AlC2 are shown for

comparison’s sake.

The values calculated with first-principles phonon calculations are shown as lines. In both

experimental and calculated results, the Al atom shows the highest amplitude. Figure 14.5

compares the experimental and calculated values of Uiso for the Al atoms in all three phases

Ti5Al2C3, Ti3AlC2 and Ti2AlC in the multiphase sample, along with Uiso for pure Ti3AlC2.

Also shown are the experimental Ueq values for the Al-containing phases Ti2AlN and Ti4AlN3,

determined from in previous HTND studies [2, 138], along with calculated values for those
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Table 14.1: Thermal expansions from HTND for Ti–Al–C phases in the multiphase sample,
along with those from other studies [37, 38, 144–147] determined through HTXRD and
dilatometry. Numbers in parentheses are estimated standard deviations in the last significant
digit of the refined parameters.

Phase αa αc αav Anisotropy Ref.
(10−6 K−1) (10−6 K−1) (10−6 K−1) (αc/αa)

Ti5Al2C3 9.1(1)† 9.8(1)† 9.3(1)† 1.08(3)† This work
Ti2AlC 9.0(1)† 9.6(1)† 9.2(1)† 1.07(3)† This work

7.1(3)a 10.0(5)a 8.1(5)a,b; 8.2(2)c 1.41(4) Ref. [37]
Ti3AlC2 8.6(1)† 9.7(1)† 9.0(1)† 1.13(3)† This work

7.6(1) 9.0(1) 8.1(1) 1.18(3) This work
8.3(1)a 11.1(1)a 9.2(1)a,b; 7.9(5)c 1.33(1)a Ref. [38]
- - 9.0(2)c - Ref. [145]
8.5 10.2 9.2b 1.2 Ref. [144]

(Ti0.5Al0.5)Al 10.7(1)† 11.5(1)† 11.0(1) † 1.074(3)† This work
γ-TiAl - - 10.0 - Ref. [146]

9.77 9.26 - - Ref. [147]

† Multi-phase sample.
a High-temperature XRD.
b Assuming αav = (2/3αa + 1/3αc) = V−1/3

0 dV 1/3/dT
c Dilatometry

phases from Ref. [4]. The Uiso values for Al in the three Ti–Al–C phases are similar to each

other, and slightly higher than Ueq of for Al in the Ti–Al–N phases, which is consistent with the

values determined from first-principles calculations. Note that the calculated Uiso curves for Al

in Ti5Al2C3, Ti2AlC, and Ti3AlC2 in Fig. 14.2 lie essentially on top of one another, and those for

Al in Ti2AlN and Ti4AlN3 are similar as well, but smaller than those of the carbide phases.

14.2 DISCUSSION

14.2.1 Lattice parameters, expansions, and anisotropies

Not surprising, the measured a- and scaled c-parameters of the 523 phase are in between

those of the 211 and 312 phases [Fig. 14.4(b)]. This is also consistent with the values from

our first-principles calculations (Table 14.2). Our lattice parameters are in good agreement
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with literature values for Ti2AlC [8, 33, 37], Ti5Al2C3 [8], and Ti3AlC2 [8, 31]. Their order

of increase is likely due to intricacies in charge transfer involved in bonding. The fact that

the a lattice parameter scales with the number of Ti–C bonds is consistent with first principles

calculations [8].

The overall expansions of the three MAX phases in the multiphase sample are, within their

error bars, nearly equivalent (Table 14.1). The a and c lattice expansions are qualitatively

comparable, with the a lattice parameters and their thermal expansions all within 1% of each

other [Fig. 14.4(a)]. Consistent with previous studies, the expansion in the c direction is greater

than along the a. However, for reasons discussed below, in the present study the degree of

anisotropy is significantly lower than in Refs. [37, 38, 145] (Table 14.1). We now consider each

of the phases separately.

Ti2AlC: The TECs along the a- and c-direction for the Ti2AlC sample measured herein –

8.9(±0.1) × 10−6 K−1and 9.6(±0.1) × 10−6 K−1respectively [Fig. 14.3(c)] – fall in between

those reported previously for Ti2AlC (Ref. [37]). The reason(s) for the discrepancy is unknown

at this time but could very well reflect differences in chemistry. Recent work in the literature

suggests that Ti2AlC exists over a range of stoichiometries. For example, Bai et al. recently

reported the existence of a Ti2AlCx phase where x was as low as 0.69 [148, 149]. Herein, it is

more likely than not that the Ti2AlC is Al-deficient since it is believed that the loss of Al is what

triggers the transformation to the 523 and possibly the 312 phase.

Ti3AlC2: The TEC values measured herein for the 312 phase depended on sample. The

predominantly single-phase Ti3AlC2 sample has a lower expansion in both directions, resulting

in a statistically significant lower αav of 8.1(±0.1) × 10−6 K−1(Fig. 14.3). At 9.0(±0.1) × 10−6
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Table 14.2: Temperature-dependent a and c lattice parameters from Rietveld refinement of
neutron diffraction data collected during heating and cooling. Numbers in parentheses are
estimated standard deviations in the last significant figure of the refined parameters. Room
temperature values are extrapolated to 25◦C from linear interpolation.

Ti5Al2C3 Ti2AlC Ti3AlC2

Temp. (◦C) a (Å) c (Å) a (Å) c (Å) a (Å) c (Å)
RT (Ref.[31]) - - - - 3.0753 18.578
RT (Ref. [33]) - - 3.065(4) 13.71(3) - -
RT (Ref. [37]) - - 3.051 13.637 - -
RT (Ref. [8]) 3.064(2) 48.23(2) 3.063 13.645 3.060 18.66
RT (Ref. [8])a 3.068 48.186 3.067 13.75 3.083 18.661
RTb 3.05678(6) 48.189(1) 3.05405(7) 13.6422(5) 3.06186(8) 18.4994(8)
100 3.05926(6) 48.237(1) 3.05656(7) 13.6551(5) 3.06424(8) 18.5172(8)
200 3.06184(6) 48.280(1) 3.05912(7) 13.6669(4) 3.06667(8) 18.5331(8)
300 3.06419(6) 48.317(1) 3.06141(7) 13.6777(5) 3.06887(8) 18.5483(8)
400 3.06642(6) 48.354(1) 3.06353(7) 13.6879(4) 3.07108(8) 18.5617(8)
500 3.06911(6) 48.400(1) 3.06627(7) 13.7006(4) 3.07359(8) 18.5803(8)
600 3.07208(6) 48.449(1) 3.06920(7) 13.7145(4) 3.07635(8) 18.5991(8)
700 3.07501(6) 48.497(1) 3.07206(7) 13.7280(4) 3.07908(8) 18.6184(8)
800 3.07814(6) 48.554(1) 3.07510(7) 13.7431(5) 3.08213(8) 18.6380(8)
900 3.08141(6) 48.608(2) 3.07825(7) 13.7581(5) 3.08519(8) 18.6587(9)
1000 3.08460(6) 48.667(2) 3.08126(7) 13.7743(5) 3.08818(8) 18.6811(9)
800c 3.07876(6) 48.559(2) 3.07552(7) 13.7453(5) 3.08264(9) 18.6404(9)
600c 3.07301(6) 48.459(2) 3.06978(7) 13.7180(5) 3.07730(9) 18.6025(9)
400c 3.06770(6) 48.368(2) 3.06460(7) 13.6922(5) 3.07200(9) 18.5684(9)
200c 3.06239(6) 48.279(2) 3.05928(7) 13.6672(5) 3.06712(9) 18.5337(9)

a Calculated from first principles.
b Extrapolated value
c Data collected during cooling

K−1, αav for the 312 phase in the multiphase sample is about 10% higher than in the single

phase one.

Ti5Al2C3: Since this is the first report on the effect of temperature on the lattice parameters of

the 523 phase, there are no previous results to compare them with. However, the fact that αav

of this phase is very comparable to the 211 and 312 phases is not surprising and is consistent

with the fact that the former is comprised of the same building blocks as the latter.

Lastly, a few remarks on the expansions. The ability to measure phase sensitive TECs is
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an advantage of HTND, as compared to other methods such as dilatometry, that require pure

phases to measure their volume TEC. However, it is important to appreciate that the TEC values

measured herein per force are less anisotropic than those one would measure in loose powders.

In the latter case, the solid is free to expand, whereas when the measurement is made on bulk

solids, residual stresses can accrue and reduce the values of the thermal expansions in various

directions. The effect is best appreciated when the TECs in the a and c directions are compared

with those measured on powder Ti2AlC samples [38].

14.2.2 Bond lengths

While the overall expansions and anisotropies in the three MAX-like phases are comparable, the

most interesting aspect of this work is the relationship between bond length evolution and the

stacking of the octahedra among the three phases. In the literature, it is fairly well established,

both experimentally and theoretically, that the M–C bonds adjacent to the A layers (i.e. TiI-C in

Fig. 14.1) are shorter than those in the stoichiometric binary MX , while the ones that are not,

(viz. TiII–C, in Fig. 14.1) are longer. Figure 14.4(c) and the Ti–C lengths in Table 14.3 are fully

consistent with this general conclusion. Not surprisingly, the Ti–C bond lengths in the 211 slab in

the 523 phase are almost identical to those of the 211 phase [Fig. 14.4(c)]. Similarly, the Ti–C

bond lengths in the 312 phase are very similar to those of the 312 slabs in the 523 phase [Fig.

14.4(c)]. This applies not only to the absolute Ti–C bond lengths values but also their thermal

expansions, which are also quite comparable [Fig. 14.1(c)]. It should be noted that the longest

bonds in the 312-stacked octahedra in Ti5Al2C3 are slightly shorter than rTiII−C in Ti3AlC2, while

the Ti–C bonds in the 211-stacked octahedra in Ti5Al2C3 are slightly longer than those in Ti2AlC

[Fig. 14.4(c)]. This suggests that the structure is slightly more uniform than the individual

211- and 312-stacked phases due to the interleaved nature of the stacking sequences. These
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Table 14.3: Interatomic distances in Ti5AlC2, Ti2AlC, and Ti3AlC2 in the multiphase sample
from Rietveld refinement of neutron diffraction data collected during heating and cooling,
along with their expansions. All values are extrapolated to 25◦C from linear interpolation.

Phase Bond Bond length Bond expansion†

(Å) (10−6 K−1)
Ti5Al2C3 Al–TiI 2.878(2) 14.6(1)

Al–TiIII 2.848(4) 5.5(4)
TiI–CI 2.079(2) 8.8(1)
TiII–CI 2.1779(8) 8.1(1)
TiIII–CIII 2.106(1) 10.0(1)

Ti2AlC Al–Ti 2.873(1) 10.8(1)
Ti–C 2.1008(7) 7.7(1)

Ti3AlC2 Al–TiI 2.854(2) 11.8(1)
TiI–C 2.087(2) 6.8(1)
TiII–C 2.182(1) 8.8(1)

† Bond expansion: L−1 · d L/dT from least-squares fit of ∆L/L0 vs. T .

comments notwithstanding, it is clear from Fig. 14.4(c) that the same structural units behave

similarly. These results are gratifying because they indirectly validate our Rietveld analysis.

The situation for the Ti-Al bonds is not as clear. Since the difference between the 211 and

312 phases is the number of Ti–C octahedra between Al layers, it is expected that the only the

Ti–C bonds would be significantly affected by the change in Ti–C stacking while the Al–Ti bonds

should be similar among the three phases. However, we find that the Al–Ti bonds are clearly

affected by stoichiometry [Fig. 14.4(d)]: rTi−Al is significantly longer in the 211 phase [black

diamonds in Fig. 14.4(d)] than in the 312 phase [red crosses in Fig. 14.4(d)], while the opposite

is true of those bonds in the 523 phase; i.e., rAl−TiI > rAl−TiIII in Ti5Al2C3 [compare blue circles

and blue squares in 14.4(d)]. The reasons for this state of affairs are not fully understood, but

are likely related to the following observations:

1. The Ti–C bonds are relatively stiff building blocks of the individual 312 and 211 units,

as evidenced by the fact that they stay relatively the same size as in the original Ti3AlC2
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and Ti2AlC phases when the stacking sequences are interleaved. The dimension within

the crystal that thus has the most flexibility to change is the Al–Ti bond, which connects

the relatively rigid Ti–C octahedra. Therefore, it is likely that the Al–Ti bond plays a

role as an effective “compensating spring” in the structure to minimize the crystal energy.

Furthermore, this role would be different – and most probably more dominant – in the

more complex Ti5Al2C3 higher-order phase.

2. Among the possible factors that could be compensated for in the flexible Al–Ti bond

discussed above are those related to constraints on the lattice parameters – especially on

the c-lattice parameter, which essentially determines the Al–Ti bond length, given that the

Ti–C octahedra are rigid blocks. In a sample with multiple competing phases, it is likely

that these effects are prominent and manifest themselves in the Al–Ti bond.

3. The Al atoms in Ti2AlC and Ti3AlC2 lie in a mirror plane within the structures, while Al is

not constrained to mirror symmetry between the Ti–C atoms in the Ti5AlC2 phase (see

FIg. 14.1). Therefore, the changes in Al–Ti distances in the 211-stacked and 312-stacked

structures that occur when they are interleaved to form 523 may be a consequence of the

symmetry break.

These comments notwithstanding, it is important to note that the average Ti–Al bond length

in 523 (2.863 Å) is equal the average of the Ti–Al bond lengths in 312 and 211 (also 2.863 Å).

The average bond expansion in 523 (10.5 × 10−6 K−1) is also similar to the 211 and 312 average

(11.3 × 10−6 K−1). While more work is needed to fully understand the Al–Ti bond length

behavior, it can be reasonably concluded that the dimensions of the Ti–C units are consistent

for a given stacking, regardless of whether they are interleaved in a higher-order phase or in

a conventional MAX phase. Based on this fact and the inconsistency of the Al–Ti bonds, it is
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further speculated that the Al–Ti bonds serve to compensate other energy minimization factors

for the crystal, especially those related to symmetry and lattice constraints.

14.2.3 Bond expansions

In Ti2AlC and Ti3AlC2, the Al–Ti bonds show the highest expansion [see Table 14.1 and Figs.

14.3(b) and 14.3(c)]. To our knowledge, there are no previous reports of temperature-dependent

bond lengths in any of the Ti–Al–C MAX phases to which to compare our results. However, in a

previous HTND study of the nitride Ti2AlN, the Al–Ti bond also showed a higher expansion rate

than the Ti–N bond [2]. Similarly, a higher expansion rate was observed for the A–M bonds than

the M–C bonds in Ti3SiC2 [3] and Cr2GeC [2]. This result is also consistent with a high-pressure

XRD study of Ti3AlC2, where the Al–TiI bond was the most compressible, while the TiI–C and

TiII–C bonds were more rigid [150].

In Ti5AlC2, the expansion rate of the Al–TiI bond – 14.6 × 10−6 K−1– is the highest of all

the bonds in the sample, but the Al–TiIII bond expansion is unexpectedly low, at 5.5 × 10−6

K−1 (Table 14.3). Note that the error bars for the Al–Ti bond expansions in Ti5Al2C3 are the

highest of those for the bonds in all phases (see Fig. 14.3). This uncertainty further suggests that

the Al–Ti bond behavior is flexible within the structure and indicates other crystal imperfections

and/or symmetry and lattice dimension effects, as discussed above.

14.2.4 Atomic displacement parameters

The results in Fig. 14.2 show that, like all other MAX phases studied to date, the A atom – Al

in this case - is a rattler in that it vibrates with a significantly higher amplitude than the other

atoms in the structures. The high atomic displacement parameters of Al, both calculated and

experimental relative to the Ti, and C atomic displacement values [Figs. 14.2(a)-(c)] are also

consistent with the relatively weaker Al bonding evidenced by the higher Al–Ti expansion rates,
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Figure 14.5: Temperature dependence of isotropic thermal motion Uiso of Al in Ti5Al2C3
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calculated values for Ti2AlN and Ti4AlN3 are from Ref. [4]. Errors are typically smaller than
symbols size.
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at least in Ti2AlC and Ti3AlC2 (Table 14.3) and the flexibility of the Al-Ti interaction, as discussed

above.

Previous HTND studies of Ti3SiC2 [3, 53], Ti3GeC2 [3], Ti2AlN [2], Cr2GeC [2], and Ti4AlN3

[138] have shown the same rattling phenomenon for the A-group element. A comparison of the

vibrational behavior of Al with two other HTND studies of the Al-containing nitrides Ti2AlN and

Ti4AlN3 (Fig. 14.5) further suggests that this “rattling” effect is independent of n.

The results shown in Figs. 14.2 and 14.5 also clearly indicate that from a theoretical point

of view, the ADPs of the three MAX phases should be very comparable. Given that the Al

atoms in Ti–Al–N nitrides are also predicted to behave similarly to one another – but different

from the carbides – in their vibrational amplitudes (see lines for Ti2AlN and Ti4AlN3 in Fig.

14.5), the DFT calculations indicate that the atomic displacement parameters of Al should not

be greatly influenced by stoichiometry. Interestingly, the agreement between theoretical and

experimental isotropic ADPs for the Al atoms is quite good in all five compounds plotted in 14.5.

The agreement for the other atoms is less good for reasons that are not well understood, but are

typical of the MAX phases [4].

14.3 SUMMARY

In this chapter, the temperature-dependent crystal structures of phases in a multiphase sample

containing Ti5Al2C3 [38(±1) wt.%], Ti2AlC [32(±1) wt. %], Ti3AlC2 [18(±1) wt. %], and

(Ti0.5Al0.5)Al [12(±1) wt.%] were presented based on Rietveld analysis of HTND data. It was

shown that Ti5Al2C3 exhibits similar thermal expansion and thermal motion parameters as

Ti2AlC and Ti3AlC2. In all MAX three phases, the average expansion rates of all the Al–Ti bonds

are higher than the average Ti–C bond expansions. Ti5Al2C3 consists of alternating layers of
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312- and 211-like stacking, where the 312 layers are similar to Ti3AlC2 and the 211 layers are

similar to Ti2AlC in dimensions and bond expansions. The Al atoms in all three phases vibrate

with higher amplitudes than the Ti and C atoms. This work shows that Ti5Al2C3 exhibits similar

properties to Ti3AlC2 and Ti2AlC, two of the most promising MAX phases, which indicates that

phase purity can be more relaxed in processing when considering applications.
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Chapter 15: Correlated motion and anharmonic effects in Ti3SiC2 and Ti3GeC2

In Chapters 13 and 14, a survey of the temperature-dependent bond lengths in 211, 312, and

523 phases showed that, in general, the M -A bonds should have the highest expansions while

the M–X bonds should expand at the lowest rate with temperature. Therefore, one of the

most surprising results presented so far is the nonlinear increase of the Ti–C bond in Ti3GeC2

and the apparent lack of expansion for the Ti–Ge bond in that phase. In this chapter, this

phenomenon will be addressed through a detailed study of Ti3GeC2 compared to Ti3SiC2. I will

propose a correlated motion model to explain these unexpected results using the experimental

HTND results for the Ti3SiC2 and Ti3GeC2 phases. It is proposed that the striking temperature-

dependent bond length behavior in Ti3GeC2 is directly related to the behavior of the thermal

vibrations. Further, an analysis of the mode-dependent Grüneisen parameter for the two phases

show that the Ti-A interactions may have higher-order terms that have been theoretically

neglected to date.

15.1 BOND LENGTHS AND ANGLES IN Ti3SiC2 and Ti3GeC2

I will begin with a discussion of the interatomic distances and lattice expansions in the two

phases in light of what is already known about the crystal structure of the phases from previous

studies. The thermal strains of the bonds and lattice parameters are re-plotted in Figs. 15.1(a)

and (b) for Ti3GeC2 and Ti3SiC2, respectively, for convenient referencing. Note that Figs. 15.1(a)

and (b) are the same as Figs. 13.4(c) and (d), respectively.

The strains along the a and c axes in Fig. 15.1 are also listed in Table 15.1, along with

the unit cell volumes. Least-squares fits of the lattice parameters and unit cell volumes yield
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Figure 15.1: Temperature dependencies of the thermal strains of the lattice parameters
and interatomic distances in (a) Ti3GeC2, and (b) Ti3SiC2. The room temperature values
were extrapolated from slightly higher temperatures starting at 100◦C for comparison sake.
Error bars are typically smaller than symbols.

thermal-expansion coefficients of 8.9(±0.1)×10−6, 9.4(±0.1)×10−6, and 9.0(±0.1)×10−6K−1

for Ti3SiC2 in the a direction, c direction, and the volume expansion, respectively. For Ti3GeC2,

the respective CTE values are 8.5(±0.1)×10−6, 9.2(±0.1)×10−6, and 8.7(±0.1)×10−6K1. The

Ti3GeC2 expansions along the a and c directions measured in this work are in good agreement

with those measured by high-temperature XRD, 8.1(±0.2)× 10−6 K−1 and 9.7(±0.2)× 10−6

K−1, respectively [38].

The bulk CTE of composites – as measured with a dilatometer – follow, to a good approxima-

tion, the rule for mixtures whereas the phase specific CTEs measured by diffraction techniques

adapt to the constraints imposed by the the pure phases. In this case, the higher CTE values

observed for TiC compared to reported values for pure TiC are consistent with the constraint

imposed by the more rapid shrinkage of the MAX phases from high temperatures. Similarly, the

CTE values reported for the MAX phases are to be considered lower bounds, since their values

for phase pure samples would be higher. (Ge also has a lower CTE than Ti3GeC2). The fact that
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Table 15.1: Summary of lattice parameters and unit cell volumes obtained from Rietveld
refinements of HTND data for Ti3SiC2 and Ti3GeC2, and room temperature values reported
in Refs. [53, 56, 151]. Numbers in parentheses are estimated standard deviations in the
last significant figure of the refined parameter.

Ti3SiC2 Ti3GeC2

T (◦C) a (Å) c(Å) Volume (Å3) a (Å) c (Å) Volume (Å3)
RT (Ref. [56]) 3.0665 17.671 143.906 3.0874 17.806 146.990
RT (Ref. [53]) 3.06557(6) 17.6300(5) 143.485(9) - - -
RT (Ref. [151])a 3.0705 17.670 144.273 3.0823 17.711 145.721
100 - - - 3.08793(5) 17.8193(5) 147.149(4)
300 3.07468(3) 17.7190(3) 145.067(2) 3.09259(5) 17.8484(5) 147.833(4)
500 3.07947(3) 17.7477(3) 145.756(2) 3.09752(6) 17.8786(5) 148.557(5)
600 - - - 3.10003(6) 17.8943(6) 148.928(6)
700 3.08465(3) 17.7798(3) 146.510(2) 3.10259(7) 17.9103(7) 149.308(6)
800 - - - 3.10497(7) 17.9258(7) 149.666(6)
900 3.09045(3) 17.8144(3) 147.348(3) 3.10822(8) 17.9456(7) 150.145(7)
1000 - - - 3.11111(9) 17.9644(8) 150.582(8)
1100 3.09687(3) 17.8532(3) 148.284(3) - - -
900† 3.09078(3) 17.8166(3) 147.398(3) 3.10800(8) 17.9453(8) 150.121(7)
800† - - - 3.10491(7) 17.9246(7) 149.650(6)
700† 3.08507(3) 17.7822(3) 146.570(3) 3.10196(7) 17.9065(6) 149.215(6)
600† - - - 3.09928(6) 17.8902(6) 148.822(5)
500† 3.07972(3) 17.7500(3) 145.797(2) 3.09654(6) 17.8735(6) 148.420(5)
300† 3.07484(3) 17.7212(3) 145.101(2) 3.09149(5) 17.8416(5) 147.672(5)
100† - - - 3.08655(5) 17.8115(5) 146.953(4)

a Based on first-principles calculations.
† Measurement taken during cooling.

the CTEs of TiCx are identical, within error bars, in both compounds [8.5(±0.1)× 10−6K−1],

despite the fact that the TiCx content in the Ti3GeC2 sample was ≈4 times that in Ti3SiC2 (see

Appendix A.1), is taken as strong evidence that any stresses caused by differences in CTE do not

play a significant role. This comment notwithstanding, it is hereby acknowledged that why the

CTE of the TiC phase is as high as it is, especially if it is stoichiometric, is not clear. It should

also be noted that the Ge and TiCx phase fractions remain constant during heating (with the

exception of the melting of Ge between 900 and 1000◦C, implying that no reactions take place

as a result of heating.

The only atom positions that are unconstrained by the P63/mmc (No. 194) space group

are the z coordinates of the TiI and C atoms, which are listed in Table 15.2 for Ti3SiC2 and
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Table 15.2: z coordinates of TiI and C atoms in Ti3SiC2 and Ti3GeC2 obtained from Rietveld
refinements of HTND data. Numbers in parentheses are estimated standard deviations in
the last significant figure of the refined parameter.

Ti3SiC2 Ti3GeC2

T (◦C) zTiI zC zTiI zC

100 - - 0.13245(9) 0.57148(4)
300 0.13529(5) 0.57218(3) 0.1327(1) 0.57161(5)
500 0.13532(5) 0.57218(3) 0.1330(1) 0.57187(6)
600 - - 0.1332(1) 0.57196(7)
700 0.13523(5) 0.57218(3) 0.1334(1) 0.57219(8)
800 - - 0.1335(1) 0.57238(8)
900 0.13509(6) 0.57214(3) 0.1337(1) 0.5725(1)
1000 - - 0.1342(1) 0.5732(1)
1100 0.13512(7) 0.57217(4) - -

Ti3GeC2. The interatomic distances at each temperature during heating and cooling, as well as

room temperature values determined in previous work [51, 53, 56, 151], are listed for Ti3SiC2

and Ti3GeC2 in Tables 15.3 and 15.4, respectively. The bond lengths of Ti3SiC2 and Ti3GeC2

compounds are generally consistent with those estimated at room temperature from XRD results

by Gamarnik and Barsoum [56]. Based on these results, the order of the Ti-C bonds lengths,

in decreasing order, is TiII-C(Ti3GeC2) ≈ TiII-C(Ti3SiC2) > TiI-C(Ti3SiC2) >TiI-C(Ti3GeC2) (see

Tables 15.3 and 15.4). As noted in Chapter 13, the TiII–C bonds are longer than the Ti–C distance

in TiC while the TiI bonds are shorter than the distance. However, the TiII–C distance in Ti3GeC2

is not only longer than that in all the other 312 phases, but shows the only clearly nonlinear

increase with temperature of all bonds [Fig. 15.1(a)]. This nonlinear increase is indicated by an

increase in the C-atom z coordinate, zC (Table 15.2). The z coordinate for C in Ti3SiC2, on the

other hand, stays constant with temperature, as expected for a structure whose bond lengths

expand at the same rate as the lattice parameters. As we saw from Chatper 13, all other Ti-C

bonds in Ti3AlC2, Ti3SiC2, and Ti3SnC2 increase at a rate similar to that in TiC [see Figs. 13.3(a),

(b), and (d)].
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The temperature dependencies of the bond angles in Ti3SiC2 and Ti3GeC2 are shown in Fig.

15.2. The TiI-Si/Ge-TiI bond angles [Fig 15.2(a)] represent the displacement of the TiI layers

either in the direction of, or away from, the Si/Ge layers. The TiI-C-TiII angles [Fig. 15.2(b)]

represent the distortion of the Ti-C layers. The C-TiII-C angles [Fig. 15.2(c)] represent the

compression, or expansion, around the TiII atoms shared by CTi6 octahedra above and below

the Ti mirror plane. From these results it is obvious that for Ti3GeC2, the TiI-Ge-TiI bond angles

decrease with increasing temperature; the corresponding TiI-Si-TiI angles for Ti3SiC2 increase

slightly. Conversely, the TiI-C-TiII and C-TiII-C bond angles for Ti3GeC2 increase slightly with

increasing temperatures; those for Ti3SiC2 are more or less independent of temperature as in

cubic TiC.

The most surprising result here is the apparent lack of expansion of the TiI-Ge bonds

compared to the more normal response of the TiI-Si bonds discussed above [Figs. 15.1(a)

and (b)]. We move onto a possible explanation of the bond length behavior in relation to the

vibrational behavior of the M and A atoms in the 312 phases.

15.2 CORRELATED MOTION MODEL FOR TI3SIC2 AND TI3GEC2

To begin the analysis, illustrations of the experimentally-determined 99% probability ellipsoids

at three different temperatures are shown for Ti3SiC2 and Ti3GeC2 in Figs 15.3 and 15.4.

The most likely explanation for the discrepancies can be related to the pronounced anisotropic

motion of the Ge atoms [see Fig. 12.8(c)], together with the resulting correlated motions of the

TiI and Ge atoms. More specifically, the orbiting motion of the A atoms around their average

position in the a− b plane was proposed by Togo et al. [132], who showed, using first-principles

phonon calculations, that essentially the TiI and Ge atoms avoid each other as much as possible.

Our argument (and evidence) is as follows:
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Table 15.3: Selected interatomic distances in Ti3SiC2(Å) deduced from Rietveld refinements
of HTND data, and room temperature values reported in Refs. [48, 51, 53, 56, 151].
Interatomic distances in secondary phase TiC in the same sample is also included for
comparison. Numbers in parentheses are estimated standard deviations in the last significant
figure of the refined parameter.

Ti3SiC2 TiC
T (◦C) Si-TiI TiI-Ti∗I TiI-C TiII-C
RT (Ref. [48]) 2.696 3.068 2.135? -
RT (Ref. [51]) 2.681 3.0575 2.088 2.176 -
RT (Ref. [53] 2.693(2) 3.06557(6) 2.085(2) 2.1814(8) -
RT (Ref. [56]) 2.6263 3.0665 2.1609? -
RT (Ref. [151])a 2.6697 3.0705 2.0931 2.2033 -
300 2.6987(7) 3.07468(3) 2.0978(6) 2.1880(3) 2.16623(7)
500 2.7025(7) 3.07947(3) 2.1015(6) 2.1914(3) 2.16943(7)
700 2.7084(7) 3.08465(3) 2.1043(6) 2.1952(3) 2.17293(7)
900 2.7156(8) 3.09045(3) 2.1073(7) 2.19893(34) 2.17679(7)
1100 2.7209(10) 3.09687(3) 2.1118(8) 2.2039(4) 2.18105(8)
900 † 2.7144(8) 3.09078(3) 2.1086(7) 2.1992(4) 2.17693(8)
700† 2.7085(7) 3.08507(3) 2.1052(6) 2.1951(3) 2.17300(7)
500† 2.7023(7) 3.07972(3) 2.1020(6) 2.19170(29) 2.16937(7)
300† 2.6971(6) 3.07484(3) 2.0994(5) 2.18804(26) 2.16611(7)

a Based on first-principles calculations.
∗ Due to symmetry, rSi−Si = rTiI−TiI = rTiII−TiII = a.
? rTiI−C−TiII/2.
† Measurement taken during cooling.
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Table 15.4: Selected interatomic distances in Ti3GeC2(Å) deduced from Rietveld refine-
ments of HTND data, and room temperature values reported in Refs. [56, 151]. Interatomic
distances in secondary phase TiC in the same sample is also included for comparison. Num-
bers in parentheses are estimated standard deviations in the last significant figure of the
refined parameter.

Ti3GeC2 TiC
T (◦C) Ge-TiI TiI-Ti∗I TiI-C TiII-C
RT (Ref. [56]) 2.6754 3.0874 2.1646? -
RT (Ref. [151])a 2.6898 3.0823 2.0943 2.2078 -
100 2.7521(14) 3.08793(5) 2.0871(11) 2.1907(5) 2.15939(3)
300 2.7516(15) 3.09259(5) 2.0924(12) 2.1954(5) 2.16267(3)
500 2.7512(17) 3.09752(6) 2.0968(14) 2.2016(6) 2.16612(4)
600 2.7506(19) 3.10003(6) 2.0999(16) 2.2043(7) 2.16788(4)
700 2.7493(21) 3.10259(7) 2.1020(18) 2.2086(8) 2.16968(5)
800 2.7503(22) 3.10497(7) 2.1030(19) 2.2121(9) 2.17136(5)
900 2.7507(25) 3.10822(8) 2.1057(21) 2.2159(10) 2.17359(5)
1000 2.7470(29) 3.11111(9) 2.1062(25) 2.2248(12) 2.17566(6)
900† 2.7507(26) 3.10800(8) 2.1044(22) 2.2170(11) 2.17347(6)
800† 2.7485(22) 3.10491(7) 2.1037(19) 2.2124(9) 2.17126(5)
700† 2.7490(20) 3.10196(7) 2.1018(17) 2.2077(8) 2.16914(5)
600† 2.7502(19) 3.09928(6) 2.0984(16) 2.2047(7) 2.16729(4)
500† 2.7495(18) 3.09654(6) 2.0968(14) 2.2009(7) 2.16537(4)
300† 2.7492(16) 3.09149(5) 2.0922(13) 2.1951(6) 2.16178(4)
100† 2.7489(14) 3.08655(5) 2.0870(11) 2.1903(5) 2.15837(3)

a Based on first-principles calculations.
∗ Due to symmetry, rGe−Ge = rTiI−TiI = rTiII−TiII = a.
? rTiI−C−TiII/2.
† Measurement taken during cooling.
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Figure 15.2: Bond angles in Ti3SiC2 (red squares) and Ti3GeC2 (blue crosses) between
atoms in Ti layers with (a) the A-group (Si or Ge) layers and (b)-(c) the C layers. Inset
(middle) shows a schematic of the bond angles with nomenclature adopted in the figures.
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(a) 300 °C (b) 600 °C (c) 900 °C

Fig. 6: Thermal ellipsoids (99% probability) of Ti (red), 
Si (green) and C (black) in Ti3SiC2 at, a) 300oC, b) 
600oC, and c) 900oC. Images generated using 
CrystalMaker [40]. 

Figure 15.3: Thermal motion ellipsoids (99% probability) of Ti (red), Si (green), and C
(black) in Ti3SiC2 at (a) 300◦C, (b) 600◦C, and (c) 900◦C.

(i) The repulsion of the TiI atom is reduced temporarily when the Ge atom is displaced in the

basal plane away from that TiI atom [see r2 in Fig. 15.5(a)], and the TiI atoms can move

closer to the Ge plane.

(ii) This in turn is evidenced by the fact that the TiI atoms vibrate more normal to the basal

planes than parallel to them.

(iii) If the TiI and Ge atomic motions are correlated, then the instantaneous bond lengths

may be approximated by the distances r1 and r2 [Fig. 15.5(a)] between the edges of the
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(a) 300 °C (b) 600 °C (c) 900 °C

Fig. 7: Thermal ellipsoids (99% probability) of Ti (red), 
Ge (blue) and C (black) in Ti3GeC2 at (a) 300oC, (b) 
600oC, and, c) 900oC.  Images generated using 
CrystalMaker [40].

Figure 15.4: Thermal ellipsoids (99% probability) of Ti (red), Ge (blue), and C (black) in
Ti3GeC2 at (a) 300◦C, (b) 600◦C, and (c) 900◦C.

50% probability thermal ellipsoids. [Note that 99% probability ellipsoids are used in Fig.

15.5(a) to emphasize the effect].

In Fig. 15.5(b), r1 and r2 are plotted as triangles and circles, respectively. The average of

these two numbers is given by the red squares [Fig. 15.5(b)]. Also shown on the same figure

are the values directly obtained from Rietveld analysis, i.e., distance r3 in Fig. 15.5(a), and

denoted as blue crosses in Fig. 15.5(b). In light of these calculations, the result that r3 does not

increase with temperature is but a consequence of the anisotropic and correlated motions of the

Ge atoms in the basal planes. A similar effect was reported by Tucker et al. in quartz, explained
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by the difference between the instantaneous and average positions of Si and O atoms [152].

The Si thermal ellipsoids, on the other hand, show thermal motion that is less anisotropic

(Fig. 15.3) compared to Ge (Fig. 15.4). Since the Si thermal ellipsoids are not as flat as those

of Ge, the TiI atom does not vibrate preferentially normal to the plane into the space provided,

as it does in Ti3GeC2. Consequently, in Ti3SiC2, the TiI atoms vibrate with slight preference in

the basal planes, whereas the TiI atoms in Ti3GeC2 vibrate anisotropically normal to the basal

planes. A possible reason for the difference in the thermal behavior of the Si and Ge atoms is

their atomic masses relative to the Ti atoms. Since Si is lighter than Ti, it is not unreasonable

to conclude that their correlated motion is not as strong and thus less anisotropic. Conversely,

because the Ge atom is heavier than Ti, the correlated motion effect is stronger. Consistent with

these notions is the fact that the Al in Ti4AlN3 [138] behaves more like Si in Ti3SiC2.
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Figure 15.5: Schematic of and interatomic distances in Ti3GeC2: (a) 99% probability
thermal ellipsoids at 1000◦C showing TiI-Ge instantaneous positions (solid lines, r1 and r2)
and interatomic distance between time-averaged positions (dashed lines, r3). Inset shows
sketch of the interatomic distance behavior with (1) the movement of TiI toward empty
space provided by Ge thermal motion, (2) the more rigid bond between TiI and C, and
(3) the weaker bond between TiII and C. (b) Temperature dependence of the TiI-Ge bond
showing the minimum (r1, green triangles) and maximum (r2, black circles) interatomic
distances for the 50% probability thermal ellipsoids, the average of the two (red squares),
and the distances determined by the time- and space-averaged positions obtained by Rietveld
analysis (blue crosses).



CHAPTER 15: CORRELATED MOTION & ANHARMONIC EFFECTS IN Ti3SiC2 AND Ti3GeC2 196

Based on the shape of the TiI thermal ellipsoids in Ti3SiC2, it is reasonable to assume that

the correlated motion of the TiI – if it exists – is in the basal plane rather than normal to

it. The instantaneous positions can therefore be approximated by distances r4 and r5 [Fig.

15.6(a)]. Here the distance determined by Rietveld analysis is given by r6 [15.6(a)]. In this

case, the average of the two “instantaneous” positions, plotted as red squares in Fig. 15.6(b),

are almost identical to the values obtained from the Rietveld refinement shown as blue crosses

in Fig. 15.6(b). The end result is, again, quite reasonable, but because the Si motion is

less anisotropic, the increase in the TiI-Si bond behaves more “normally” – it expands with

temperature. It is important to note that when the results shown in Figs. 15.5(b) and 15.6(b)

are superimposed, at 1.71×10−5K−1, the thermal expansion of r2 is only ≈20% smaller than

that of r5 at 2.17×10−5K−1. Said otherwise, the expansions are not as different as the ratio of

the expansions, derived simply from Rietveld analysis, viz. r3/r6 ' 0.002, would suggest. For

comparison’s sake the thermal expansion of the TiII-C bond [Fig. 13.3(c)] is ≈ 1.6× 10−5 K−1.

Thus, in the final analysis, the expansion of the TiI-Si and TiI-Ge bonds are comparable to those

of the TiII-C bonds.

The anisotropic vibrations of the Ge atoms are also manifested in the bond angles. In the

case of Ti3SiC2, the lattice expands more or less uniformly and the angles (Fig. 15.2) are

weak functions of temperature. In contrast, in Ti3GeC2 the expansion is accompanied by a

decrease in the TiI-Ge-TiI angle with a concomitant and almost equal increase in the C-TiII-C

angle. This observation is most easily explained as follows: since the TiI-C bond is significantly

shorter than the TiII-C bond and therefore presumably stronger [Fig. 13.3(c)], the C atom

follows the temporary displacement of the TiI atom toward the A plane as the Ge atoms move

away as discussed above. But since the TiII atoms are located on a mirror plane, they cannot

accommodate the TiI displacement toward the A plane and the TiII-C bond thus expands at
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Figure 15.6: Schematic of and interatomic distances in Ti3SiC2: (a) 99% probability
thermal ellipsoids 1100◦C showing TiI-Si instantaneous positions (solid lines, r4 and r5) and
interatomic distance between time-averaged positions (dashed lines, r6). (b) Temperature
dependence of the TiI-Si bond showing the minimum(r4, green triangles) and maximum (r5,
black circles) interatomic distances for the 50% probability thermal ellipsoids, the average
of the two (red squares), and the distances determined by the time- and space-averaged
positions obtained by Rietveld analysis (blue crosses).

a higher rate than the TiI-C bond [see sketch in inset of Fig. 15.5(a)]. Said otherwise, the

C-TiII-C and TiI-Ge-TiI bond assemblies, being the weakest, act as hinges that move in opposite

directions.

In both compounds, the TiI-C bonds are almost identical [Figs. 13.3(b) and (c)]. And while

shorter than the Ti-C bonds in TiC, their rates of expansion are very similar to the latter [Fig.

13.3 (b) and (c)]. In contradistinction, the response of the TiII-C bonds in Ti3GeC2 is not “normal”

[Fig. 13.3(c)] for the reasons outlined above.

Lastly, I address how this unique understanding could shed light on why the internal friction

in Ti3GeC2 increases dramatically at ≈427◦C [52]. Examining the anisotropic thermal motion

parameters experimentally determined through HTND, indicate that a discontinuity of sorts

occurs between 300 and 500◦C in Ti3GeC2. This is best seen in Figs. 13.3(c) and 15.1(a) where

it is clear that a large increase in the TiII-C bond lengths occurs between 300 and 500◦C. Another
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hint, which may be more relevant, can be found by plotting the anisotropy of the thermal motion

of all the atoms, or U11/U33, as a function of temperature, which is shown in Figs. 15.7(a) and

(b) for Ti3SiC2 and Ti3GeC2, respectively. In Ti3GeC2 [Fig. 15.7(b)], below 400◦C, the error

bars and the scatter in the anisotropies of vibration of the TiII atoms are quite low; above that

temperature, however, the noise level increases dramatically, not only at a given temperature,

but between heating and cooling. Such noise is unique to the TiII atoms in Ti3GeC2. At this

time, there is no good explanation for the discontinuity observed between 300 and 500◦C in

the U11/U33 ratio for the TiII atoms [Fig. 15.7(b)] or the increase in noise level. I speculate

that the dramatic increase in uncertainty is an indication that the thermal motion of TiII cannot

be described by an ellipsoid at temperatures above 300-500◦C. Further experimental work

with high-resolution high-temperature neutron powder-diffraction data that would need to be

analyzed by pair-distribution function and entropy mechanisms, of both Ti3SiC2 and Ti3GeC2,

would need to be collected to experimentally verify this hypothesis.

15.3 ANHARMONICITY IN Ti3SiC2 AND Ti3GeC2 EXAMINED THROUGH THE

GRÜNEISEN PARAMETER

In the previous section, a correlated motion model was proposed for both Ti3SiC2 and Ti3GeC2,

and it was also postulated that the nature of the thermal vibrations is fundamentally different

between Ti3SiC2 and Ti3GeC2. Furthermore, in the comparisons between experimental and

theoretical mean-squared ADPs (Chapter 12), there was a disagreement between theory and

experiment for U33 of Si in Ti3SiC2 [see Fig. 12.7(c)] and U11 in Ge in Ti3GeC2 [see Fig. 12.8(c)].

These aforementioned discrepancies may also originate from anharmonicity, which is not taken

into account in the DFT calculations of the mean-squared displacements, Ui j. To explore this,

I calculated the frequency dispersion of the Grüneisen parameter (see Eq. 4.57 in Chapter 4),

which is shown in Figs. 15.8(a) and (b) for Ti3SiC2 and Ti3GeC2, respectively, along with their
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Figure 15.7: The U11/U33 ratios for the various atoms in (a) Ti3SiC2 and, (b) Ti3GeC2
during heating and cooling.

phonon band structures. The bands and corresponding Grüneisen parameter curves are color

coded to distinguish between the bands for the Grüneisen parameter dispersions. The red points

in Fig. 15.8 represent the localized modes of Si and Ge, which correspond to the red PDOS

curves below 5 THz [see Figs. 9.7(c) and (d)]. The localized phonon modes of C above 15 THz

[see PDOS for C in Figs. 9.7(c) and 8(d)] are shown as black points in Fig. 15.8. For most of the

modes in the spectrum, the Grüneisen parameter has a common value, below two. This gives an

average value over the Brillouin zone (1.45 in both cases) that would lead to the conclusion

that Ti3SiC2 and Ti3GeC2 are harmonic compounds to a good approximation. However for the

low-frequency modes involving the A and M atoms in red (solid line) and green (dashed-dotted

line) in Figs. 9.7(c) and (d), the Grüneisen parameters are larger. This in turn suggests that the

interatomic potential, U(r), between tje A atoms and their M atom (or possibly other A atom)

neighbors is anharmonic because the Grüneisen parameter is proportional to the ratio of the
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Figure 15.8: The band structure (bottom) and the mode-dependent Grüneisen parameters
(top) for (a) Ti3SiC2 and (b) Ti3GeC2. The colors in the plots of the Grüneisen parameters
are color coded according to ωp(M → K), which refers the frequency of the band between
the M and K point. Red diamonds correspond to the localized phonon modes of Si and Ge
below 5 THz; blue circles correspond to the frequencies between 5 and 15 THz, and black
squares represent the localized phonon modes of C above 15 THz.

third- to second- derivative of U:

γ∝ U′′′(r)
U′′(r)

(15.1)

This anharmonicity could contribute to the differences observed – in fact, even if anhar-

monicity is usually evidenced experimentally by a quadratic dependence in the averaged squared

displacement, it also modifies the coefficient of the linear term through renormalization of
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the frequencies. Therefore, it has been shown that anharmonicity may play a role, and must

therefore be considered, in the study of atomic motion. More work is needed, however, to

understand to what extent anharmonic effects play into the ADP calculations through first

principles calculations, and whether the incorporation of higher-order terms could lead to better

agreement between theory and experiment. Progress can also be made on the experimental

side because there are likely phenomena that cannot be described by the average structure

derived from Rietveld analysis of the real-space diffraction patterns but might be accessible by

maximum-entropy methods, as described by Izumi [153].

15.4 SUMMARY

In this chapter, the nonlinear expansion of the TiII–C bond in Ti3GeC2, along with the lack of

expansion of the Ti–Ge bond, is investigated. It is shown that the temperature dependence of the

bond angles coincide with the opening of the C–TiII–C during heating, which is different from

the same angle in Ti3SiC2 that stays more constant with temperature. The unexpected behavior

in the expansions of bond lengths in Ti3GeC2 is explained by a proposed model for correlated

atomic motion that was first suggested from a theoretical phonon study [132]. It is shown

that motion of the Ti and A (Ge or Si) atoms may be correlated in order to avoid each other as

they vibrate. This type of motion would lead to a discrepancy between the instantaneous bond

lengths and the distance between average atomic positions, which could explain the lack of

expansion of the Ti-Ge bond that was determined from Rietveld analysis of HTND data. On the

other hand, the type of correlated motion that was indicated by the thermal motion ellipsoids

in Ti3SiC2 would lead to time- and space- average interatomic distances that happen to equal

the instantaneous interatomic distances. This would explain how Rietveld analysis of HTND

data could lead to physically sound bond expansions, even if atomic motion correlation was



CHAPTER 15: CORRELATED MOTION & ANHARMONIC EFFECTS IN Ti3SiC2 AND Ti3GeC2 202

present. Lastly, the high mode-dependent Grüneisen parameters for the low-frequency bands

could indicate anharmonicity in the atomic interactions for the atoms involved in those modes –

namely, Ti and Si/Ge.
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Chapter 16: Summary and outlook

This thesis set out to explore the dynamical behavior in MAX phases by bringing together first-

principles phonon calculations and experimental techniques, including Raman spectroscopy and

neutron diffraction. DFT calculations of the phonon band structures and phonon partial density

of states have been presented for ten select MAX phases, and the frequencies of Raman-activated

modes were compared to Γ-point band frequencies. The relationship between the vibrational

frequencies and the atoms involved was explored. High-temperature neutron diffraction was

employed to investigate the temperature-dependent crystal structure of select phases, including

the bond expansions and mean-squared atomic displacements. Most importantly, the first-ever

DFT calculations of ADPs of MAX phases were performed and agree qualitatively with the

Debye-Waller factors from diffraction techniques. As a result of these combined investigations,

several new ideas have emerged from this work regarding the vibrational behavior of MAX

phases:

1. The A elements (e.g. Al, Si, Ge, Sn) vibrate with the highest amplitude, and do so

anisotropically within the basal planes. While A element “rattling” had been observed

from two previous HTND experiments on Ti3SiC2 and Ti4AlN3, it had never been modeled

through first-principles calculations. Through this work I have shown that this effect is

universal for all MAX phases studied through HTND (8 phases) and first-principles phonon

calculations (15 phases), and is related to the relatively weak bonding of the A element

within the structure.

2. The “rattling” effect of the A elements has little dependence on the stacking sequence; the
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isotropic atomic displacement parameters are similar among different stackings of the MX

layers for the same chemistry.

3. Trends of calculated ADPs with M and A chemistry have shown that the following factors

should lead to higher, more anisotropic atomic displacements for the A element:

(i) lighter A atoms,

(ii) fewer valence electrons for the A atom, and/or

(iii) fewer valence electrons for the M atom.

On the other hand, the mass of the M atom was predicted to have little effect on the

vibrational character of the atoms. These concepts were further supported by the depen-

dence of the vibrational frequency of Raman-active modes on the reduced mass of the

atoms involved: the low-frequency Raman modes corresponding to M and A vibrations

indicated that mass was responsible for at least some of the frequency differences, while

the high-frequency modes governed by M and X atom interactions showed that the role

of mass was minimal in relation to the role of chemistry in the bonding.

4. The phases that showed the best agreement between theory and experiment for the ADPs

were all Al-containing, and the worst agreement was for the Ge-containing phases. The

fact that the Al-containing phases are relatively good phonon conductors indicates that the

relatively low phonon conductivity of most of the MAX phases is not solely because of the

“rattlers” and may be related to effects that are not well-predicted by the harmonic model.

5. A model for correlated atomic motion has been provided based on the results for two of the

MAX phases, Ti3SiC2 and Ti3GeC2, and high Grunëisen parameters of the low-frequency

modes suggest that the phonons involving the Si and Ge atoms are localized.
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The aim of this thesis was to gain a deeper understanding of the dynamical behavior of the

atoms in MAX phases and understand the role they play in experimental measurements and

computational materials modeling. In a general sense, these results have put the vibrational

behavior of MAX phases into perspective in relation to their other properties and their trends with

MAX phase chemistry. Further, they serve as a guide for future modeling of high-temperature

properties by indicating which MAX phase systems are well represented by the harmonic model

and which ones are driven by other higher-order bonding intricacies and/or correlation effects

in atomic motion.

Now, I will walk through the main topics that have been covered and summarize the

investigations that were carried out in order to accomplish the aims of this thesis. The first few

chapters of Part I provided an introduction and relevant background on the materials systems

studied (i.e. the MAX phases) and the techniques used; the final chapter of Part I summarized

the details on the experimental and computational procedures for the studies in this thesis.

Part II presented and discussed the main results. First, the phonon band structures and

phonon partial density of states determined from first-principles calculations were presented for

a number of 211, 312, and 413 MAX phases in Chapter 9. The features of the band structures and

their origins in the phonon calculations – e.g., atom mass, interatomic forces – were discussed,

taking into account which atoms are involved in each of the frequency ranges to explain the

differences among the phases studied.

After discussing pure theory, Raman spectroscopy results were presented in Chapter 10

to investigate some of the Γ-point vibrational modes. Experimental Raman spectra for Sn-

containing phases (which have a heavy A element ) and Ta-containing phases (with a heavy M

element) were presented and compared to related structures with lighter elements. The role

of atomic mass in lattice dynamical behavior was discussed based on the frequencies of the
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the Raman-active modes plotted against the reduced mass of the atom pairs involved in the

vibrations. The reduced mass plots with more-or-less linear slopes indicate that mass effects

must account for at least some of the differences in the vibrations and the slope of the line

should be directly related to the bond stiffness.

In the next chapter (Chapter 11), the mean-squared atomic displacement calculations were

introduced and discussed from a purely theoretical standpoint. The temperature-dependent

ADPs were presented – first only the isotropic motion, then the anisotropic motion decomposed

into Cartesian components – for four different 312 phases and fifteen different 211 phases. At

this point, it was shown that in all MAX phase structures, the A atom vibrations should have the

highest amplitudes compared to the other atoms in the material. Further, the first-principles

calculations predicted highly anisotropic A-atom motion, where the A atoms vibrate more within

the basal planes than perpendicular to them. Later in the chapter, the ADPs at 1273 K were

considered with respect to where the atoms are situated on the periodic table. It was shown

that the A atoms with higher masses – i.e., lower in the periodic table – should vibrate more

isotropically and with smaller amplitudes. Moreover, the valence electron configurations of both

the M and the A atoms were predicted to affect the A atom vibrations, where more electrons in

the outer shell should lead to smaller displacements. On the other hand, it was predicted that

the M atom mass should not play a major role in the mean-squared atom displacements of any

of the atoms in the MAX phase structures.

After introducing the “predicted” high-temperature atomic displacement behavior for a large

number of MAX phases, the measured ADPs from HTND were presented for six select MAX

phases: two 211 phases, three 312 phases, and a 413 phase. Here, it was shown that both the

modeling and the experimental measurements capture the high displacements of the A atoms

compared to those of the other atoms in the phases. Moreover, the results showed that both the
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predicted and measured A-element ADPs are always anisotropic, vibrating more within the basal

plane. Beyond the general trends, however, there were some discrepancies – mostly systematic

offsets – between the calculated and measured values. Vacancies were suggested as a possible

explanation for the Ge-containing phases, which showed the worst agreement between theory

and experiment.

Next, I turned to the temperature-dependent crystal structures of 211 and 312 phases

(Chapter 13) and a more complicated 523 structure (Chapter 14), which is a higher-order MAX

phase. It was shown that the M–A bonds in MAX phases tend to expand at the highest rates,

while the more rigid M–X bonds generally have the lowest expansion. The bond lengths in

the 523 phase revealed that the M–X bonds are quite robust and are governed by the stacking

of their immediate neighbors rather than the stacking sequence of the larger unit cell – that

is, the 312-like octahedra maintained 312-like dimensions when interleaved between the 211

octahedra. On the other hand, the behavior of the Ti–Al bonds suggested that they compensate

for other instabilities within the crystal since they are more flexible and spring-like. Interestingly,

the measured isotropic atomic displacements of the Al atoms in Ti5Al2C3 were very well-modeled

with first-principles phonon calculations and did not differ much – either experimentally or

theoretically – from the 211 and 312 ADPs.

Following the study on the higher-order MAX phase, the bond length behavior in Ti3GeC2 –

first presented briefly in Chapter 13 – was discussed more in depth. To explain the nonlinear

increase of one of the Ti–C bonds and the lack of expansion of the Ti–Ge bonds, a correlated

motion model was proposed that would lead to different instantaneous interatomic distance

compared to the time- and space-averaged distance that Rietveld analysis of HTND data measures.

In addition to the correlated motion model, the mode-dependent Grüneisen parameter, γ, which

takes anharmonic effects into account through the volume dependence of phonon frequencies,
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was calculated as a function of phonon mode (i.e., the mode-dependent Grüneisen parameter).

It was shown that the high values of γ for the low-frequency bands may suggest that third-order

terms in the M–A potentials may be significant in both the Ti3GeC2 and Ti3SiC2 system.

Clearly, a huge variety of new information has been provided based on the totality of

the results in this thesis, but it is important to be able to distinguish the results that provide

conclusions, those that provide strong evidence and directions for future work to bolster a

proposed idea, and then those which cannot be fully explained and raise more questions for the

time being.

I will begin by discussing the first kind of information that contributes direct conclusions

and answers. There are a few points that I am able to state with a good amount of certainty that

are among the findings – or related to the findings – of this research:

• The M–X bonding in the MAX phases is quite robust. Taking the four 312 phases studied,

all the HTND studies showed that the distance between the C atom and the Ti atom

adjacent to the A-atom plane is longer than the Ti–C bonds inside the octahedra. This

not only shows that the M -X octahedra are sturdy blocks within the structure, but it also

validates the accuracy of the HTND procedures and data analysis, at least when measuring

relative atom positions.

• Based on this and other studies, the Raman frequencies in MAX phases are in fact rea-

sonably well-modeled with first-principles calculations. The phases that were measured

in this work showed good agreement with theory and in general, there are rarely major

unexplainable errors in Raman studies for the MAX phases.

• The A-atom vibration is the highest of all the atoms and it is always anisotropic. Regardless

of any quantitative errors in agreement, the qualitative atomic displacements for a large
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number of phases are quite consistent – that is, there has not been a case in which either

theory or experiment has not captured the anisotropic “rattler” effect of the A atom, at

least where the anisotropic ADPs are accessible.

Beyond the qualitative agreement, however, the reasons for the (sometimes quite severe)

disagreements between theory and experiment fall into the category of ideas that may be

proposed from this work, but that would benefit from more supporting arguments and further

studies.

Since perhaps the most significant contributions to MAX phase research, and materials

science in general, of this thesis are the calculations of ADPs through DFT, I will now discuss

this in more depth. In Tables 16.1 and 16.2 I have summarized the relative magnitudes of U11

and U33, respectively (both experimental and theoretical) along with their errors. The thick

black outlines represent the magnitudes of the calculated value and the shaded circle represents

the experimental value, where the radii are proportional to
p

Ui j. The shaded regions are

color-coded according to the error in Ui j [that is, (Uexp − Ucalc)/Ucalc]. Red represents cases

where the experimental value is greater than the predicted value, and blue indicates the opposite

being true; white or neutral colors represent good agreement between theory and experiment.

See legend on the bottom for interpretation of the shades.

As discussed earlier, the largest circles are for the U11 ADPs of the A atom, without an

exception. However, from even a quick glance at Tables 16.1 and 16.2 it is readily apparent that

the Ge-containing phases show the worst agreement, especially for the vibrations in the x-y

direction (U11, Table 16.1). On the other hand, the three Al-containing phases show relatively

good agreement with theory.
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Table 16.1: Overview of experimental and calculated U11 values at 1273 K and their errors.
Thick outlines represent relative calculated ADPs; shaded regions represent experimental
ADPs, where color denotes their deviations from the calculated values.

MI MII A X I X II

Ti4AlN3

Ti3SiC2

Ti3GeC2

Ti3AlC2

Ti3SnC2

Ti2AlN

Cr2GeC

Nb2AlC

Error:

-100% 0% +100%
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Table 16.2: Overview of experimental and calculated U33 values at 1273 K and their errors.
Thick outlines represent relative calculated ADPs; shaded regions represent experimental
ADPs, where color denotes their deviations from the calculated values.

MI MII A X I X II

Ti4AlN3

Ti3SiC2

Ti3GeC2

Ti3AlC2

Ti3SnC2

Ti2AlN

Cr2GeC

Nb2AlC

Error:

-100% 0% +100%
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For the most part, the experimental values should not be significantly lower than the

calculated values and the cases where the circles are any deep shade of blue should indicate

issues with the refinement. Since Ti is not a good neutron scatterer, it is likely that all the errors

in the Ti ADPs have to do with experimental issues with refinement. It should also be noted that

if U11 for Ti is blue, then U33 is generally a comparable intensity of red (e.g. see MI for Ti3SnC2

or both M atoms for Ti4AlN3 and Ti3GeC2). This suggests that the isotropic motion may show

reasonable agreement, since the average of the two could be similar to the predicted value. This

is an important point for future diffraction experiments with MAX phases: since the M atom

vibrations are predicted to be nearly isotropic anyway, it may be wise to use Uiso, especially

when dealing with poor scatterers.

The fact that the modeling of ADPs in Al-containing phases generally shows better agreement

with HTND results than for the other phases may suggest that the behavior of Al fits the harmonic

model and anharmonic effects are insignificant. Of course, more MAX phase studies would be

needed to further support this. The unexpectedly high ADP of Ge in Cr2GeC and Ti3GeC2, on

the other hand, suggests that there are factors outside of the harmonic model that are needed to

measure and/or model its vibrational behavior. The fact that Ge is such a good neutron scatterer

suggests that the large amplitude of displacement may be physical to a certain extent, but that

there are sources of error in the calculations such as phenomena that are not taken into account

in the harmonic Hamiltonian to model the large vibrations or issues with DFT calculations of

forces for Ge.

The correlated motion model proposed for Ti3GeC2 would explain some of the unexpected

behavior in that phase, but more work is needed to fully understand its implications and to

validate it. In particular, pair-distribution-function (PDF) analysis of diffraction data would

help clear up some of the uncertainty in the bond lengths because the scattering from specific
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atom pairs could be distinguished to measure the near-neighbor interactions. However, the

main challenge with this is the synthesis of predominantly single-phase samples. The Ti3GeC2

sample use in this work, for instance, included around 20% TiC, which would not be suitable

for PDF. Therefore, research toward making cleaner MAX phase samples is extremely important

for expanding on the characterization techniques that could be employed. Similarly, making

single crystal MAX phases would enable phonon dispersion measurements which could be more

directly compared with the phonon band structures.

In addition to potentially useful experimental work, there are many directions for future

theoretical work that would be useful for the MAX phases in general. One possible direction for

future work is the use of molecular dynamics (MD) simulations for simulating the vibrational

behavior of the atoms and determining the time-averaged displacement amplitude in different

directions. This would not only validate the first-principles calculations of the ADPs of the MAX

phases, but it could possibly provide further information about the correlation between the

movement of different atoms. Additionally, other MAX-derived phases – such as MXenes (see a

first-principles study in Appendix B.1) – may benefit from similar first-principles phonon calcu-

lations, which not only provide references for assessing parameters extracted from diffraction

experiments but also shed light on bonding and thermal conductivity.

The theoretical work in this thesis may also be useful for diffraction experiments because the

Debye-Waller factor plays into any elastic scattering experiment and is thus highly significant

in getting any crystallographic information on a material. Since ADP calculations through

first-principles phonon calculations are not yet used as a widespread tool for validating these

parameters, further work towards calculating ADPs through phonon calculations with DFT would

benefit the diffraction community as well.
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Lastly, this work provides insights, tools, and even a large set of parameters that are useful

in developing MAX phases for practical applications. Since most MAX phases are particularly

well-suited for high-temperature applications (e.g. heating elements, nuclear reactor cladding),

the ultimate aim for MAX phase modeling is to be able to predict high-temperature properties.

Thermal conductivity is also a particularly useful parameter to model from a practical standpoint.

The work in this thesis provides some important first steps in achieving the ultimate goal of

finite-temperature modeling, and modeling of thermal transport. The calculated ADPs are

temperature-dependent parameters that could be fit into multi-scale models to incorporate

temperature, or even direct modeling of thermal conductivity. Furthermore, and perhaps

most importantly, I have tested the accuracy of first-principles calculations (against different

experimental methods) for modeling the dynamical behavior of a large sample of MAX phases

– that is, ∼1/3 of the phases known to date. I have shown that the dynamical behavior of

the Al-containing phases shows surprisingly good agreement between experiment and theory,

which applies to many different stoichiometries (211, 312, 413, and even 523) and also to

different experimental techniques (HTND and Raman spectroscopy). This is an especially

exciting result because the Al-containing phases are also considered the most promising for

practical applications. Therefore, the theoretical results on the Al-containing phases from this

thesis are a starting point for developing high-temperature MAX phase modeling of methods.
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Appendix A: Texture, composition, and diffraction statistics

This chapter provides additional information about samples used for HTND and Raman spec-

troscopy. Composition and preferred orientation for samples studied through HTND in this

work are presented, as determined through Rietveld refinement of neutron time-of-flight data.

Some of the fitted profiles and refinement statistics for Rietveld refinement using GSAS are also

included. For the samples studied through Raman spectroscopy, basic characterization through

XRD and/or HRTEM is reported.

Section A.1 includes information on the samples studied through HTND. These data are

organized by phase, where the 312 phases Ti3SiC2 and Ti3GeC2 are presented together, then

the 211 phases Ti2AlN and Cr2GeC, and finally the multi-phase sample containing the Ti-Al-C

MAX-like phases Ti2AlC, Ti3AlC2, and Ti5Al2C3.

The following section, Section A.2 includes information characterization of the samples used

for first-order Raman scattering, including Ti4Al2C3, Ta4AlC3, Ta2AlC, and Ti3SnC2.

A.1 NEUTRON DIFFRACTION SAMPLES

This section reports additional information for the samples used in HTND.

A.1.1 Ti3SiC2 and Ti3GeC2

The results of the Ti3SiC2 texture analysis [Figs. A.1(a)-(c)] show a mild (0002) fiber texture

for the Ti3SiC2 phase; no texture change was observed during heat treatment. Texture analysis

of the Ti3GeC2 [Figs. A.1(d)-(e)] showed very mild texture as well that did not change with

heat treatment. As noted in Section 8.1.2 (which describes data refinement strategies), for both
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Table A.1: Profile agreement factors for Rietveld refinements for neutron diffraction data
collected during heating and cooling for Ti3SiC2 and Ti3GeC2.

T (◦C) wRp (%)
Ti3SiC2 Ti3GeC2

300 1.84 1.88
500 1.60 2.00
900 1.49 2.45
900† 1.51 2.40
500† 1.63 2.23
300† 1.69 2.12

† Data collected during cooling.

samples, the parameters obtained using MAUD to incorporate preferred orientation were within

error bars of those determined by the GSAS with no preferred orientation. Thus the Rietveld

analysis described herein was executed in GSAS assuming random texture and full occupancy.

Final bond lengths and angles were computed with GSAS.

Ti3SiC2 
(a) 300 oC 

(b) 1100 oC 

(c) 300 oC 

0 0 0 2 

0 0 0 2 

0 0 0 2 

1 0 𝟏𝟏� 0 

1 0 𝟏𝟏� 0 

1 0 𝟏𝟏� 0 

(d) 100 oC 

(e) 900 oC 

(f) 100 oC 

Ti3GeC2 
0 0 0 2 

0 0 0 2 

0 0 0 2 

1 0 𝟏𝟏� 0 

1 0 𝟏𝟏� 0 

1 0 𝟏𝟏� 0 

Figure A.1: Pole 0002 and 101̄0 figures recalculated from the orientation distribution of
HIPPO data for a) Ti3SiC2 at 300oC (before heating), b) 1100oC, c) 300oC (after heating)
and, d) Ti3GeC2 at 100o C (before heating), (e) 900 oC and, (f) 100oC (after heating).

Table A.1 shows the profile agreement factors for the Rietveld analysis at 300◦C, 500◦C

and 900 ◦C, giving the weighted pattern R index, wRp [115]. Figures A.2(a) and (b) show the

Rietveld fit for the neutron time-of-flight data integrated for full detector rings and the four
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Fig. 3: Rietveld refinement of HIPPO data from 90o detector bank for (a) Ti3SiC2 at 300 oC and, (b) Ti3GeC2
at 100 oC. In both plots,  the raw data points are shown as red +; calculated profile shown as solid green and, 
difference curve (Yobs – Ycalc) is shown is solid purple line below. Reflection markers show calculated peak 
positions for pure Ge (blue), TiC (red), and Ti3GeC2/Ti3SiC2 (black). 
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Figure A.2: Rietveld refinement of HIPPO data from 90◦ detector bank for (a) Ti3SiC2 at
300 oC and, (b) Ti3GeC2 at 100 oC. In both plots, the raw data points are shown as red +;
calculated profile shown as solid green and, difference curve (Yobs− Ycalc) is shown is solid
purple line below. Reflection markers show calculated peak positions for pure Ge (blue),
TiC (red), and Ti3GeC2/Ti3SiC2 (black).
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measured orientations for the 90 degree detector bank at the lowest temperatures for each

sample, 300◦C for Ti3SiC2 [Fig. A.2(a)] and 100oC for Ti3GeC2 [Fig. A.2(b)]. The calculated

(solid lines) and observed (+ signs) data are compared. The markers showing peak positions for

the included phases and the difference curves, yobs − ycalc, are plotted, in purple, below each

figure.

In both phases, TiC, with a rock-salt structure (space group Fm3̄m) [143] was an impurity

phase. The TiC content was 5.8(±0.2) wt.% in Ti3SiC2 and 19.1(±0.3) wt.% in Ti3GeC2. These

fractions remained constant with thermal cycling. Peaks corresponding to 3.0(±0.3) wt.% Ge

– with a cubic structure (space group Fm3̄m) – was also found in the Ti3GeC2 sample. At

temperatures above 900◦C, the Ge peaks disappeared, in agreement with its melting point

at 917◦C [154]. The fraction of Ge also remained constant upon thermal cycling. No other

reactions or phase changes were observed during the thermal cycling. In the Ti3GeC2 sample,

another minor impurity phase – with diffraction peaks near 1.8 Å and 2.1 Å – could not be

identified. Peaks above ∼2.12 Å from this phase were not observed, and based on the relative

peak intensities and their positions we assume it is a cubic, trigonal, or hexagonal, structure

with a relatively small unit cell. Since the inclusion, or exclusion, of less than 4 wt. % Ge

in the refinements had very little, if any, effect on the refined Ti3GeC2 structural parameters,

we assume that the refined parameters for Ti3GeC2 are also not affected by this unaccounted

impurity phase.

A.1.2 Ti2AlN and Cr2GeC

Texture analysis showed a very mild (0002) fiber texture that did not change during heating

in both Ti2AlN [Figs. A.3(a) and (b)] and Cr2GeC [Figs. A.3(c) and (d)]. By averaging

the four measured sample orientations and refining against the 90◦ and 140◦ detector banks
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Ti2AlN 

(a) 
300oC 

Cr2GeC 
0 0 0 2 1 0 1 1 
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(b) 
1100oC 

(c) 
100oC 

(d) 
1000oC 
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Figure A.3: Pole 0002, 101̄0, and 101̄1 figures calculated from the orientation distribution
of HIPPO neutron time-of-flight data collected during heating for Ti2AlN at (a) 300◦C and
(b) 1100◦C, and Cr2GeC at (c) 100◦C and (d) 1000◦C.

simultaneously, the existing mild preferred orientation was randomized and a random powder is

therefore a valid approximation for all practical purposes

The profile agreement factors for the Rietveld analysis of HTND data for both the Ti2AlN and

Cr2GeC samples at 100◦, 300◦, 500◦, and 900◦C are shown in Table A.2, giving the weighted

pattern R index, wRp, and goodness of fit, χ2, which is the ratio of the weighted pattern R to the

expected R index [115]. It should be noted that the HIPPO instrument repeats measurements

for different detector panels with the same diffraction angle due to its detector arrangement,

which is not taken into account in the expected R index and can lead to χ2 < 1 (as with Ti2AlN).

Figures A.4(a) and (b) show the Rietveld fit of the neutron time-of-flight data from the 90◦ 2θ

Table A.2: Profile agreement factors for Rietveld refinements for neutron diffraction data
collected during heating and cooling for Ti2AlN and Cr2GeC.

Ti2AlN Cr2GeC
T (◦C) wRp (%) χ2 wRp (%) χ2

100 1.76† 0.9131† 2.00 4.008
300 1.65 0.7589 1.97 3.781
500 1.57 0.6349 1.99 3.917
900 1.43 0.4441 1.92 3.670

† Data collected during cooling.
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Figure A.4: Rietveld refinement of HIPPO data from the 90◦ 2θ detector bank for (a) Ti2AlN
at 100◦C and, (b) Cr2GeC at 100◦C. Data in (a) for Ti2AlN was collected during cooling. In
both plots, the raw data points are shown as red + signs; calculated profile is shown as a
solid green line. Below these, reflection markers show calculated peak positions. In (a), only
markers for Ti2AlN are shown (black). In (b), the markers correspond to Cr2GeC (black,
bottom) and secondary phases Cr2O3 (red, middle) and graphite (blue, top). Difference
curve (Yobs− Ycalc) is shown in bottom of each panel as solid purple line.
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(a) 
Ti2AlC 

(b) 
Ti3AlC2 

(c) 
Ti5Al2C3 
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100 oC 1000 oC 

          

3 0 3 0

3 0 3 0

0 0 0 4

0 0 0 4

0 0 0 12 3 0 3 0

          

3 0 3 0

3 0 3 0

0 0 0 4

0 0 0 4

0 0 0 12 3 0 3 0

(f) 
Ti5Al2C3 

Figure A.5: Pole figures for 0 0 0 l and 3 0 3̄ 0 recalculated from the orientation distribution
of HIPPO data for (a) Ti2AlC, (b) Ti3AlC2, and (c) Ti5Al2C3 at 100◦C, and (d) Ti2AlC, (e)
Ti3AlC2, and (f) Ti5Al2C3 at 1000◦C. Sample cylinder axis is in the center of pole figures.

detecter bank at 100◦C for Ti2AlN and Cr2GeC, respectively, showing the observed (red + signs)

and calculated (green solid line) data. The difference curve and peak markers for all phases are

shown in the bottom of each figure.

No additional phases were found in the Ti2AlN sample. Refinement of the Al and N site

occupancies gave a crystal chemistry of Ti2AlN0.97, which remained constant with heating and

cooling. In Cr2GeC, additional phases of ∼ 4.9(±0.3) wt. % eskolaite, Cr2O3, and <1 wt. %

graphite 2H (hexagonal) were found and refined [see peak markers in Fig. A.4(b)]. The volume

fraction of both additional phases in Cr2GeC remained constant, within error bars, during

heating and cooling.
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Table A.3: Profile agreement factors for Rietveld refinements of neutron diffraction data
collected during heating and cooling for a multi-phase Ti-Al-C sample.

T (◦C) wRp (%) χ2 Rexp

100 1.34 3.959 0.67
200 1.31 4.042 0.65
600 1.23 3.599 0.65
1000 1.17 3.331 0.64
600† 1.29 3.998 0.65
200† 1.4 4.697 0.65

† Data collected during cooling.

A.1.3 Multi-phase sample containing Ti2AlC, Ti3AlC2, and Ti5Al2C3

Texture analysis (Fig. A.5) showed a mild (000l) fiber texture for all three phases. The texture

did not change during heating or cooling. The MAUD refinements incorporating preferred

orientation gave parameters that were within error bars of those determined without including

texture by Rietveld refinement with GSAS. Therefore, all results reported in this work for phases

in this sample are from the GSAS refinements assuming random texture.

The Rietveld fits for the neutron time-of-flight data – integrated for the full detector rings

and the three measured orientations – are shown for the lowest temperature run at 100◦C for

the 90◦ [Fig. A.6(a)] and the 144◦ detector banks [Fig. A.6(a)]. The calculated fit (solid green

lines) and measured data (red plus signs) are compared, with the difference curve plotted at

the bottom (solid purple line). The markers above the difference curve show the peak positions

for the phases: from top to bottom, (Ti0.5Al0.5)Al (green), Ti5Al2C3 (blue), Ti3AlC2 (red), and

Ti2AlC (black). The higher-d-spacing peaks resulting from diffraction by the basal planes are

labeled for the (0 0 0 6) peak of Ti3AlC2, the (0 0 0 4) peak of Ti2AlC, and the (0 0 0 15) and

(0 0 0 12) peaks of Ti5Al2C3. The latter two peaks unambiguously identify Ti5Al2C3 as the

dominant phase in the sample, as they cannot be accounted for by any other known phase in
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Figure A.6: Rietveld analysis of neutron diffraction data measured on HIPPO at 100◦C for
sample containing 38(±1) wt. % Ti5Al2C3, 32(±1) wt.% Ti2AlC, 18(±1) wt. % Ti3AlC2,
and 12(±1) wt. % (Ti0.5Al0.5)Al from (a) 90◦ detector bank and (b) 144◦ detector bank.
Raw data points are shown as red + symbols and the calculated profile is shown as a solid
green line. Underneath, markers show calculated peak positions of each phase. From
top to bottom: (Ti0.5Al0.5)Al (green), Ti5Al2C3 (blue), Ti3AlC2 (red), and Ti2AlC (black).
Difference curve (Yobs− Ycalc) is shown in bottom of each panel as solid purple line.
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Figure A.7: Compositions (wt.%) of each phase in the Ti-Al-C sample as a function of
temperature upon heating and cooling. Dashed lines indicate limits for ±1% range.
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the Ti-Al-C system. The profile agreement factors for the Rietveld fits are listed in Table A.3

at select temperatures, giving the weighted profile R index, wRp, the goodness of fit, χ2, and

the expected R factor, Rexp [115]. Good agreement is observed between the calculated and

observed profiles, with one unidentified peak at 2.09 Å whose origin remains unclear. A broad

peak at 3.80 Å is present only in the 90◦ bank [Fig. A.6(a)], which is likely due to background

interference.

The composition determined from Rietveld analysis is 38(±1) wt. % Ti5Al2C3, 32(±1) wt.%

Ti2AlC, 18(±1) wt. % Ti3AlC2, and 12(±1) wt.% (Ti0.5Al0.5)Al. The temperature dependencies

of the fractions of each phase are plotted in Fig. A.7, where the dashed lines indicate the ±1

wt.% limits. The compositions generally stay within 1 wt.% of the average value during heating

and cooling, lending credibility to our data analysis and the resulting uncertainties for the

composition.

A.2 RAMAN SPECTROSCOPY SAMPLES

This section reports additional information for the samples used for Raman spectroscopy.

A.2.1 Ta4AlC3, Ti4AlN3, and Ta2AlC3

The XRD pattern of the Ta4AlC3 sample [Fig. A.8(a)] shows that the sample is mainly Ta4AlC3,

with a small amount of TaC. Rietveld refinement of the XRD data with the MAUD software

program [122, 155, 156] showed approximately 5 wt.% TaC. The Ta4AlC3 a and c lattice

parameters were measured to be 3.112(±0.001) Å and 24.100(±0.002) Å, respectively. This

is in good agreement with Etzkorn et al. [68], who found a and c lattice parameters to be

3.113 (±0.0003) Å and 24.122 (±0.003) Å, respectively, and Eklund et al. [67] who reported

a=3.109 (±0.001) Å and c=24.078 (±0.001) Å.

Figure A.8(b) shows the powder diffractogram of Ti4AlN3 with lattice parameters a=2.992(±0.001)
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Figure A.8: XRD patterns for (a) Ta4AlC3, (b) Ta4AlN3, and (c) Ta2AlC. Markers show peak
positions for Si (blue circles) and TaC (green triangles) The dotted purple lines are the
calculated XRD patterns of the majority phases.

Å and c=23.40(±0.01) Å, as determined by Rietveld refinement using MAUD. These val-

ues are also in good agreement with previous results [157] that showed a=2.988(±0.001)

Å and c=23.40(±0.01) Å. The XRD pattern of the Ta2AlC sample [Fig. A.8(c)] shows Ta2AlC

(a=3.0805(±0.0002) Å, c = 13.874(±0.001) Å) as the main phase with 14 wt.% TaC. The lattice

parameters agree well with those previously reported [158], viz. a=3.086(±0.006) Å and

c=13.85(±0.04) Å.

A.2.2 Ti3SnC2

As shown in Fig. A.9(a), the XRD pattern for Ti3SnC2 after heating to 1600◦C for 4 h and

cooling to room temperature shows mainly Ti3SnC2 in addition to Ti2SnC, TiC, and Sn. After

treatment with HCl, the Sn dissolved and the volume fractions of the different phases were
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Figure A.9: XRD patterns for (a) Ti3SnC2 as produced after heating to 1600◦C for 4h and
cooling to room temperature, and (b) the same as (a) but after HCl treatment. Circles are
for Sn, Diamond for TiC, and squares for Si.

estimated at 70 wt.% Ti3SnC2, 9 wt.% Ti2SnC, and 21 wt.% TiC using Rietveld analysis. The

lattice parameters of Ti3SnC2 (a = 3.137 Å, c =18.613 Å) matches very well with what was

reported before [60, 61, 63].

A bright field image for a Ti3SnC2 particle is shown in Fig. A.10(a), and its EDS is shown in

Figure A.10(b). The EDS showed Ti:Sn at.% to be around 3:1 at.%, which is evidence of the

successful synthesis of the Ti3SnC2 phase.
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Figure A.10: (a) Bright field image for Ti3SnC2 particle, (b) EDS pattern for the Ti3SnC2
particle, (c) SAED of Ti3SnC2 along [112̄0], (d) HRTEM images along the same direction,
and (e) schematic for the crystal along [112̄0] direction for Ti3SnC2.
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Appendix B: Other works

This section includes the full text of five other interesting first-author papers I have worked

on during my PhD studies, but that are outside of the scope of this thesis topic. These papers

include:

• B.1: Two-dimensionsal Ta-containing transition metal carbides, Tan+1Cn (where n = 1, 2,

or 3) (Eur. Phys. Lett., 2013).

• B.2: Ti5Al2C3, a higher-order MAX phase:

� B.2.1: A first principles, XRD, and TEM study on Ti5Al2C3 (J. Eur. Cer. Soc., 2012).

� B.2.2: Comment on the stacking sequence of Ti5Al2C3 (J. Am. Cer. Soc., 2012).

• B.3: A study of mobile dislocations uing the (112̄1) twin for MAX phases and HCP metals

to represent a wall of dislocations (Phys. Rev. B., 2011).

• B.4: A study on the stability of α-Ta4AlC3 and observations about its polymorphism (Mat.

Res. Bull., 2011).
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B.1 FIRST-PRINCIPLES CALCULATIONS ON 2D MXENES

Published in: N.J. Lane, M.W. Barsoum, J.M. Rondinelli, “Correlation effects and spin-orbit
interactions in two-dimensional hexagonal 5d transition metal carbides Tan+1Cn (n= 1,2,3)”
Europhysics Letters 101, 57005 (2013).

Abstract

Density functional calculations are used to investigate the electronic structure of two-dimensional
5d tantalum carbides with honeycomb-like lattice structures. We focus on changes in the low-
energy bands near the Fermi level with dimensionality. We find that the Ta 5d states dominate,
and the extended nature of the wavefunctions makes them weakly correlated. The carbide
sheets are prone to long range magnetic order and we evaluate their stability to enhanced
electron–electron interactions through a Hubbard U correction. Lastly, we find that the splitting
of the bands near the Fermi level caused by spin-orbit interaction decreases with increasing
dimensionality. In the lowest dimensionality (n = 1) case, the band splitting pushes a conduction
band above the Fermi level and leads to a semi-metallic band structure.

Two-dimensional (2D) free-standing crys-
tals exhibit a range of functional properties,
mainly derived from the topology of their un-
derlying lattice and enhanced electronic and
magnetic effects due to reduced dimensional-
ity. Spin-polarized edge states,[159] for exam-
ple, have been predicted for the well-studied
2D carbon material graphene,[160] owing to
the topological origin of its transport proper-
ties. A large external magnetic field, however,
is required to realize the quantum Hall effect,
and its spin degeneracy makes it difficult to
manipulate. To overcome these challenges, ex-
perimental approaches have been developed
to induce magnetism by introducing transition
metal adatoms [161] and point defects [162]
on the surfaces.

2D binary metal oxides and dichalco-
genides, e.g. ZnO, BN, MoS2 also find
widespread interest. New functionalities orig-
inate from the presence of more diverse
chemistries. [163, 164] However, in most ex-
isting pristine 2D free standing materials, mag-
netic ordering is absent and the tunability of
the electronic structure is limited to electro-
static doping. A more promising avenue in-
cludes directly incorporating transition met-
als with multiple orbital degrees of freedom
and highly-correlated electrons into to the lat-

tice. Magnetism, for example, was recently
predicted for VX2 (X=S, Se) monolayers.[165]
Alternatively, heavier 5d transition metals with
strong spin-orbit coupling can be either de-
posited on the surface or directly integrated
into the lattice of the 2D materials. Recent first
principles calculations show that graphene dec-
orated with 5d transition metals can exhibit
remarkable magnetic and topological transport
properties [166]. The magnetic coupling in-
duced by such treatments on nonmagnetic 2D
materials, however, is difficult to control in
actual applications due to unintentional impu-
rities and defects.

In this Letter, we focus on low-dimensional
hexagonal materials, consisting of alternating
layers of carbon and tantalum. These Ta-
containing transition metal carbides are part
of a recently discovered group of 2D materi-
als called “MXenes” synthesized by chemical
exfoliation.[167] Similar to the previously stud-
ied Ta-decorated graphene structures, [166]
these materials contain sheets of carbon in the
inner layers and Ta atoms on the surface. In
this case, however, the Ta layers are ordered,
rendering them less susceptible to defects and
more favorable for deliberate surface function-
alization. Furthermore, these materials are de-
rived from MAX phases, which are a large fam-
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ily of layered carbides and nitrides with the gen-
eral formula Mn+1AXn, where n= 1 · · ·3, M is
an early transition metal, A is an A-group ele-
ment (mostly from groups 13 and 14), and X is
carbon and/or nitrogen. [1] Since the stacking
sequence of the XM6 octahedra in the hexag-
onal MAX phases depends on the stoichiome-
try, the MXene sheets have the advantage that
dimensionality controls both the system size
and the symmetry between the two surfaces
[Fig. B.1(a)].

The 2D MXenes have the general formula
Mn+1Xn, and they crystallize in sheets contain-
ing 1, 2, or 3 layers of XM6 octahedra de-
pending on n. Their recent synthesis [167]
has spawned interest for uses in energy ap-
plications, including anodes in Li ion batter-
ies [168, 169] and electrodes for supercapaci-
tors. There are a number of recent theoretical
studies, [170–172] mainly focusing on the Ti-
containing phases. However, modeling work on
MXenes in the Ta-C system have not yet been
reported, despite their recent synthesis [173].
Motivated by the structural flexibility, possible
enhanced electron–electron interactions, and
the strong spin-orbit coupling parameter for Ta
(ζd = 1970 cm−1)[174], we use ab initio elec-
tronic structure calculations to investigate the
effect of dimensionality (n) and electron cor-
relations on the band structure and magnetic
ordering in Tan+1Cn, n= 1 · · ·3.

First-principles density functional calcula-
tions are performed using the Vienna Ab ini-
tio Simulation Package (VASP) [129], with a
plane wave cutoff of 500 eV and the projector-
augmented wave method (PAW)[126] to treat
the interaction between the core and valence
electrons; we treat the Ta 5p electrons as va-
lence electrons. For the site-decomposed den-
sity of states, partial occupations are set us-
ing the tetrahedron method with Blöchl cor-
rections. In the band structure calculations,
Gaussian smearing with a smearing width of
0.10 eV was used. Reciprocal space integra-
tions are performed using a 15 × 15 × 2 k-
point mesh. We investigate the effects of
electron–electron interactions by using both the
local (spin) density approximation [L(S)DA)]

and the improved generalized gradient ap-
proximation (GGA) of Perdew-Burke-Eruzerhof
(PBEsol) for solids[175] with the rotationally
invariant Hubbard U correction (+U) of Liecht-
enstein et al [176]. For the on-site exchange in-
teraction, we test values of J from 0.2 to 1.5 eV
and determine J does not have a strong effect
on the stability of the magnetic configurations
with U . J is therefore kept constant at 0.5 eV
throughout. The high measured conductivity
of Ta4C3[173], and the robustly metallic elec-
tronic structures of bulk TaC[177] and the MAX
phases [1], suggest that electron correlation ef-
fects should be weak. We, therefore, anticipate
the LDA and PBEsol functionals to provide an
adequate description of the electronic and mag-
netic properties of these materials.

The Tan+1Cn unit cells used in our cal-
culations contain two symmetry equivalent
free-standing sheets that are separated by 11-
13 Å of vacuum. We obtain the equilibrium
structures at the LDA and PBEsol level by min-
imization of the total energy computed for a
range of a lattice parameters, performing a full
relaxation of the atomic positions along the c-
direction until the forces are converged below
a tolerance of 5 meV Å−1.

Table B.1 contains the ground state atomic
structure descriptors obtained with the LDA
and PBEsol functionals. These ground state
atomic structures are used for all subsequent
band structure and energy calculations accord-
ing to the corresponding dimensionality and
functional. The LDA functional, for all values of
n, predicts equilibrium lattice parameters that
are smaller than those obtained with PBEsol;
nonetheless, both functionals are in good agree-
ment, within < 1% of each other and the avail-
able experimental data[173] for Ta4C3. We
also summarize the interatomic distances be-
tween the different Ta and C atoms correspond-
ing to the sites labeled in Fig. B.1(a). For all
2D sheets explored, the Ta atoms at the surface
layer have shorter Ta–C bonds than those in the
center of the sheet, i.e. d(TaI–C) < d(TaII–C),
which is also consistent with the bond lengths
in MAX phases [1].

While there are slight differences in the
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Figure B.1: The two-dimensional Tan+1Cn (n = 1,2,3) sheets (a) all possess hexagonal
symmetry. The lattice constants, a, and select interatomic Ta–C distances are highlighted
(cf. Table B.1). (b) LDA electronic band structures for each compound along the path
Γ(0,0, 0)→ M(1

2
, 0, 0)→ K(1

2
, 1

2
, 0).

lattice dimensions and atomic positions, the
average interatomic distances and lattice pa-
rameters are similar between the three stoi-
chiometries. This suggests that any differences
in electronic structure should originate from
either the stacking of the octahedra or the num-
ber of occupied Ta d bands available, which
depends on the ratio of Ta to C atoms. To ex-
plore these possible differences, we begin by
computing the electronic band structures with
the LDA functional. For n = 1, we find two
dispersive Ta d-bands crossing the Fermi level
(EF ) along Γ−M [Fig. B.1(b), left]. The two
free-electron pockets centered at Γ are simi-
lar to those found in 3D metals despite the 2D
nature of the MXene sheet. Further, the hole
pockets at M make this a semi-metal with pos-
sible p-type conductor features that may be
highly temperature dependent.

In contrast, in Ta3C2 (n = 2) we find mul-
tiple bands crossings at the Fermi level, with
metallic-like partial occupancy centered around
M. The band structure for Ta4C3 (n = 3) shows
similar features as Ta2C, with nearly fully oc-

cupied Ta d states at M. However, in this case
a single Ta band, with nearly linear dispersion,
crosses the Fermi level along Γ−M. Indeed
the site-decomposed partial densities-of-states
(DOS) confirm that the region near EF is largely
controlled by the Ta d states [Figs. B.2(a–c)].

Figs. B.2(d–f) show the spatial distribution
of the electrons within 0.2 eV of EF . We find
a strong dependence on dimensionality for the
charge distribution. Intriguingly, this spatial
distribution about the Ta site in n = 1, viz Ta2C
[Fig. B.2(d)], and the inner Ta atom in n = 3,
viz Ta4C3 [Fig. B.2(f)], share similar features—
the charge around the atom is distributed into
six lobes, three above and three below the Ta
atom. The inner Ta atom in n = 2 (Ta3C2)
[Fig. B.2(d)] shows strikingly different behav-
ior, with a small distribution of charge collected
above and below the Ta atom, aligned parallel
to the c-axis.

To understand the atomic-scale origin of
these features, we examine more closely the
crystal structures of each sheet. Ta2C (n = 1)
consists of a single Ta–C octahedron with stack-
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Table B.1: Summary of lattice parameters, a, and Ta–C bond lengths, d, in Å with respect to
dimensionality, n, obtained with LDA and PBEsol functionals. Embolden values correspond
to experimental data taken from Ref. [173].

n length LDA PBEsol
Ta2C 1 a 3.041 3.058

d(Ta–C) 2.127 2.139

Ta3C2 2 a 3.086 3.112
d(TaI–C) 2.110 2.127
d(TaII–C) 2.220 2.236

Ta4C3 3 a 3.077 3.094 (3.1)
d(TaI–C) 2.119 2.131
d(TaII–CI) 2.201 2.210
d(TaII–CII) 2.215 2.226
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Figure B.2: Site-decomposed partial DOS computed within the LDA for the surface (surf)
and inner (in) layer Ta sites in (a) Ta2C, (b) Ta3C2, and (c) Ta4C3. Note that the contribution
from the C atoms to the DOS within this energy window is small and therefore not shown.
The spatial distribution of the partial charge density from 0.2 eV up to the Fermi level
(shaded region) is also shown in (d), (e), and (f) for Ta2C, Ta3C2, and Ta4C3, respectively.
The 2D contours are projections on the (112̄0) plane.



APPENDIX B: OTHER WORKS 234

-1.5

-1

-0.5

0

∆
E

 (m
eV

/a
to

m
)

-1.5

-1

-0.5

0

∆
E

 (m
eV

/a
to

m
)

0 0.5 1 1.5 2 2.5 3
Hubbard U (eV)

-1.5

-1

-0.5

0
∆

E
 (m

eV
/a

to
m

)

(a) Ta2C

(b) Ta3C2

(c) Ta4C3

NM

FiM

FiM

AFM

AFM oooo

AFM

Figure B.3: The L(S)DA+U energy differences, ∆E, between the magnetic and non-
magnetic (NM) states with U for (a) Ta2C, (b) Ta3C2, and (c) Ta4C2. Energies given
per Ta atom. The points at U = 0 eV are obtained without the Hubbard U method.
Schematics (inset) illustrate the spin ordering of the Ta atoms with ferrimagnetic (FiM) or
antiferromagnetic (AFM) order, where the arrows represent the relative magnitudes and
directions of spin, and the open circles indicate Ta atoms with no magnetic moment.

ing sequence AcB, where uppercase letters de-
note the Ta atom and lower case letters rep-
resent the stacking of carbon atoms. Ta4C3
(n= 3), therefore, is obtained as a Ta2C layer,
AcB, with an extra Ta atom on each surface
– that is, Cb[AcB]aC. Note that this is the
only structure in which two Ta atoms on ei-
ther surface have the same stacking. On the
other hand, Ta3C2 (n = 2) has a stacking se-
quence of AcBaC, so the symmetry of the AcB
layer is broken due to the odd number of lay-
ers. This suggests that the differences in the
charge distribution we find in Figs. B.2(d–f) are
largely governed by the stacking sequence of
the CTa6 units—a degree of freedom unique
to the MXene phases. Such differences in the
electron distribution near EF due to the asym-
metric stacking are also visible in the shape
of the DOS [shaded region in Fig. B.2(b)].
The charge is concentrated at the surface for
Ta3C2 and Ta4C3, consistent with the higher

partial density of states for the Ta surface atoms
[Figs. B.2(b–c)].

The large number of Ta d-states at EF and
the sensitivity of the electronic structure to
the sheet dimensionality suggest the possibil-
ity of stable long range magnetic spin config-
urations. We therefore performed a series of
spin-polarized calculations with two different
starting configurations, corresponding to ferro-
magnetic (FM), ferrimagnetic (FiM), and an-
tiferromagnetic (AFM) spin order on the Ta
sites to systematically explore the possible mag-
netic orders with respect to n. We carried out
unconstrained-spin density calculations to find
the stable magnetic ordering (Fig. B.3) and
compared the total energy of those states to
that of the non-spin-polarized case. Given the
limited ability of DFT to fully capture corre-
lation effects, including transition metal ions
with partially filled d shells, we now add the
Hubbard U correction to the standard PBEsol
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Figure B.4: LDA band structure for Ta2C without spin or correlation (gray, thick lines),
using LDA+U with U=1eV (black, broken lines), with spin-orbit coupling (SOC) (blue, solid
lines), and with SOC using LDA+U with U=1 eV (red, thick lines).

(PBEsol+U) and LSDA (LSDA+U) functionals
[178]. Since it was recently suggested that Ta-
containing MAX phases are weakly correlated
[179], we explored U < 3.0 eV.

Figure B.3 shows the change in total en-
ergy of the spin-polarized states computed
with the LSDA+U functional compared to
the non-magnetic (NM) case. The change
in energy is calculated as a function of U by
∆E(U) = [EM(U)− ENM(U)]/N , where EM(U)
and ENM(U) are the total energies of the mag-
netic and non-magnetic states, respectively, for
a given U value. N is the number of atoms per
unit cell.

In most cases, the magnetically ordered
configurations are lower in energy than the NM

state. For n= 1, the FM state could not be sta-
bilized with LDA calculations, and weak mag-
netic ordering is observed in the metastable
AFM state [Fig. B.3(a)]. As the dimensional-
ity increases, the AFM case becomes more sta-
ble. Our main results are summarized in Table
B.2, where the values in parentheses specify
the U values above which the specific mag-
netic ordering becomes stable. For Ta3C2, both
LSDA+U and PBEsol+U calculations predict
a FiM configuration, whereas an AFM order-
ing is predicted for Ta4C3, but only with the
LSDA+U exchange-correlation functional (Ta-
ble B.2). Note that in Ta4C3 no ordered mag-
netic phase was found to be stable with either
PBEsol and PBEsol+U .

Table B.2: Summary of the stable spin polarized ground states for the Tan+1Cn MXene
phases using different exchange-correlation functionals with and without a Hubbard U
correction. Notations (schematics) for the magnetic states are given in the caption (insets)
to Fig. B.3.

Ta2C Ta3C2 Ta4C3

LDA NM AFM AFM
LDA+U AFM (U > 0.5) FiM (U > 1.6) AFM

PBEsol AFM AFM NM
PBEsol+U FM (U > 0.1) FiM (U > 0.9) NM
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In all cases, the surface Ta atoms are spin
polarized in the same direction for FiM or-
der and in opposite directions for AFM. The
Ta atoms in the inner layers are weakly spin-
polarized in the direction opposite to the sur-
face Ta atoms in both the FiM and AFM config-
urations, with the exception of the AFM con-
figuration of Ta3C2, which is constrained by
symmetry. The addition of U generally has a
small effect on the electronic structure, leading
to a slight shift of the Ta d-bands uniformly to
higher energies.

We now evaluate the effect of spin-orbit
coupling (SOC) on the band structure with re-
spect to n. Here we find that SOC splits the
bands near the Fermi level, manifesting as a
shift in energy, especially for the highest oc-
cupied Ta d-bands. It has the strongest effect
on Ta2C (Fig. B.4), where the band splitting
is prominent and pushes one of the formerly
occupied degenerate bands below ≈−0.11 eV
to above EF , driving a transition from a band
structure with two band crossings to one with
Fermi surface with small electron and hole
pockets. Including electron correlation (+U)
within LDA and LDA+SOC causes only a small
energy shift to those states (Fig. B.4). For Ta2C,
the spin-orbit splitting at the top of the valence
band at Γ (∆SO=269 meV) is comparable to
that observed in GaAs (∆SO=342 meV)[180],
and more than 3 orders of magnitude larger
than graphene (∆SO =∼ 0.05 meV)[181]. The
result is that this double band crossing near Γ
shifts to a single linear band crossing as one
band splits off and is pushed above the Fermi

level. This shift toward a more semi-metallic
electronic state should be experimentally ob-
served in its transport properties, which are
predicted to be fundamentally different from
the n= 2 and n= 3 MXenes.

In summary, we have shown that the Ta-
based 5d electronic structure is sensitive to
dimensionality. All explored phases exhibit
correlation stabilized magnetic order that is
not found in the bulk MAX phase structures.
The LSDA+U method stabilizes the ferromag-
netic ordering in the case of n = 2, and for
n = 1 spin-orbit coupling shifts the electronic
band structure with a transition from a two-
band to a nearly filled single band. In these 2D
MXenes, the electronic structure is controlled
by the stacking of the CTa6 octahedra and the
states derived from the surface Ta atoms. Tai-
loring the electronic structure could therefore
be achieved through end group functionaliza-
tion of the surfaces of the MXene sheets. This
opens up possibilities for engineering a class
of tunable functional 2D materials. We conjec-
ture that one could maintain a band structure
with linear graphene-like crossings where the
Fermi surface is nearly completely controlled
by a single band – like that observed in Ta2C –
through epitaxial strain engineering. Overall,
the Ta-containing graphene-like carbides show
great promise as functional 2D materials that
can be synthesized in different dimensionalities,
leading to a range of stacking sequences and
stoichiometries that offer a variety of electronic
and magnetic behaviors.
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B.2 Ti5Al2C3, A HIGHER-ORDER MAX PHASE

This section consists of two papers, one on the synthesis and characterization of bulk Ti5Al2C3,
and another comment on the correct stacking sequence for this phase.

B.2.1 A first principles, XRD, and TEM study on Ti5Al2C3

Published in: N.J. Lane, M. Naguib, J. Lu, L. Hultman, M.W. Barsoum, “Structure of a new
bulk Ti5AlC2C3 MAX phase produced by the topotactic trasformation of Ti2AlC” Journal of the
European Ceramic Society 32 [12] 3485-3491 (2012).

Abstract

Upon annealing cold-pressed Ti2AlC, -325 mesh powders, at 1500 ◦C for 8 h in argon, the
resulting partially sintered sample contained 43(%±2) wt.% of the layered ternary carbide
Ti5Al2C3. Herein, the X-ray powder diffraction pattern of Ti5Al2C3 is reported for the first time.
Its structure and stoichiometry are confirmed through high-resolution transmission electron
microscopy. This phase has a trigonal structure (space group P3) with a unit cell consisting of 3
formula units and cell parameters of a=3.064 Å, c=48.23 Å. The lattice parameters determined
through first principles calculations agree reasonably well with the experimentally determined
values. At 147.1 GPa, the calculated bulk modulus falls between the bulk moduli of the MAX
phases Ti2AlC and Ti3AlC2. The transformation from Ti2AlC to Ti5Al2C3 is topotactic.

Introduction

Binary, early transition metal carbides possess a
number of desirable properties including high-
temperature stability, high melting point, high
hardness, and low compressibility relative to
metals; however, their applications are limited
because they are brittle, difficult to machine,
and highly susceptible to thermal shock. The
Ti–Al–C system includes ternary phases that
possess ceramic-like properties of their binary
relative, TiC, while overcoming many shortcom-
ings of the latter by acquiring some of the more
favorable properties of metals. Most notably,
two of the ternaries in the system are part of a
family of nanolaminated compounds known as
MAX phases, which have the general formula
Mn+1AXn (n = 1−3) where M is an early tran-
sition metal, A is an element from groups IIIA
or IVA, and X is C or N. They can be further
characterized according to their value of n: “2
1 1” for n = 1, “3 1 2” for n = 2, and “4 1 3” for
n= 3.

The synthesis of Ti2AlC was first reported in
the 1960s [28], along with some 3 1 2 phases,

including Ti3SiC2 [48]. Several decades later in
1994, Pietzka and Schuster synthesized Ti3AlC2
for the first time and found that it was isostruc-
tural with Ti3SiC2 [31]. It was later discov-
ered that, as a class, the MAX phases have
unusual yet attractive and sometimes unique
combinations of properties, and these phases
have since attracted a great deal of interest
[16–18, 182]. They are excellent electric and
thermal conductors with exceptional thermal
shock resistance. While they are elastically
quite stiff, they are also relatively soft and read-
ily machinable, with exceptional damage toler-
ance [16, 17, 20]. Some are creep and fatigue
resistant [23–25]. Of the > 60 MAX phases
known to date, Ti2AlC and Ti3AlC2 are partic-
ularly significant when considering the tran-
sition of MAX phases from the laboratory to
practical applications. They have perhaps the
greatest potential for commercialization due
to their excellent oxidation resistance and the
accessibility of their starting materials, which
are relatively inexpensive and readily available
[26, 55].
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In the Ti–Al–C system, three ternary com-
pounds have been reported to date. Two of
them, Ti3AlC2 and Ti2AlC, are MAX phases,
which crystallize in a hexagonal lattice (space
group P63/mmc) composed of M -X octahedra
stacked between layers of the A element. An-
other ternary carbide, Ti3AlC, has a structure
similar to oxide perovskites, with Ti and Al
forming an FCC-like structure and C in the
body-centered octahedral hole [183, 184].

Since Ti2AlC and Ti3AlC2 are two of the
more promising MAX phases for industrial and
commercial uses, the ability to fine-tune their
stoichiometry and crystal structure (for exam-
ple, by altering their stacking sequences) would
open more opportunities for engineering their
properties. In the present study, we report on
the synthesis of a new MAXphase, Ti5Al2C3. Its
stacking sequence can be considered as alter-
nate layers of Ti2AlC and Ti3AlC2. This phase
has previously been reported by Lin et al. as an
“intergrown structure” in Ti2AlC bulk samples
[185] and by Wilhelmsson et al. in Ti2AlC thin
films [81]. In both cases, however, it was only
observed in small domains through transmis-
sion electron microscope, TEM, analysis. Con-
sequently, its X-ray diffraction, XRD, patterns
are unknown.

Herein, we show that Ti5Al2C3 can be syn-
thesized in bulk. We determine its long-range
crystal structure, stacking, and stoichiometry
through XRD and TEM analysis. We also per-
form first principles calculations to determine
its ground state parameters and its electronic
structure.

Experimental details

The sample was made by heating Ti2AlC pow-
ders that were commercially obtained (3-ONE-
2,Voorhees, NJ, >92 wt.% purity; particle size
< 44µm, i.e.,-325 mesh) in an alumina tube
furnace under flowing argon, Ar, at 10◦C/min
to 1500◦C. The powders were then held at tem-
perature for 8 h. After cooling to room tempera-
ture, powders were obtained from the resultant
partially sintered bulk piece (relative density of

≈80%) using a titanium nitride coated milling
bit.

XRD patterns were obtained with a pow-
der diffractometer (Rigaku Smartlab, Japan)
using Cu Kα radiation and a step scan of
0.02◦, with 1 s per step. Si powderwas added
to some samples as an internal standard to
calibrate the diffraction angles and the in-
strumental peak broadening. Rietveld anal-
ysis was performed using Material Analysis
by Diffraction/Reflectivity (MAUD) software
[155, 156] assuming the presence of Ti2AlC,
Ti3AlC2, Si and a proposed phase Ti5Al2C3 [Fig.
B.7(a)]. The phase fractions, background, lat-
tice parameters (except for Si), thermal factors,
and symmetry-constrained atomic positions of
Ti2AlC and Ti3AlC2 were refined using the least-
squares refinement implemented in MAUD.

Samples for TEM observation were col-
lected by a holey carbon grid after suspending
the powder in ethanol. The TEM used (FEI
Tecnai G2 TF 20 UT) had a 0.19 nm point reso-
lution and 200 kV working voltage. The crystal
structure of the new phase was investigated by
selected area electron diffraction (SAED) and
high resolution TEM (HRTEM), together with
image simulation.

Ab initio calculations, based on density
functional theory (DFT), were performed us-
ing the Perdew-Burke-Eruzerhof (PBE) general-
ized gradient approximation (GGA) [98] with
a plane wave cutoff of 400 eV. The total en-
ergy was converged to <0.02 meV/atom with
a 13× 13× 2 Γ-centered k-point grid, as im-
plemented in the VASP software. For Ti, the
semi-core 3p states were treated as valence
electrons. Computations of the electronic prop-
erties and structural parameters were carried
with calculations of the total density of states
(DOS) and energy minimization through the
relaxation of atomic positions and c/a ratio for
a range of fixed volumes. The equilibrium vol-
ume and bulk moduli were obtained with the
modified Morse equation of state fit of the total
energy as a function of volume [186].
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Figure B.5: XRD patterns of Ti2AlC powder sample, (a) as received and (b) after heat
treatment. Inset shows region between 2θ = 5◦ and 20◦ for the sample after heat treatment,
indexing the (0003), (0006) and (0009) peaks for Ti5Al2C3: (i) sample in powder form,
and (ii) cold-pressed pellet (CP), where both patterns are normalized to the Si peak at
2θ = 28.5◦ (not shown). Markers show peak positions for Si (green squares), Ti2AlC (red
diamonds), Ti5Al2C3 (blue circles), and Ti3AlC2 (gray crosses). XRD patterns are shifted to
accommodate markers.

Results and discussion

The XRD patterns of the Ti2AlC powder sample
before and after heat treatment is shown in
Figs. B.5(a) and (b), respectively. Before heat
treatment [Fig. B.5(a)], the sample was pre-
dominantly single phase Ti2AlC (red diamond
markers), with a small amount (∼9 wt.%) of
Ti3AlC2 (gray crosses). After heat treatment
[Fig. B.5(b)], additional peaks appeared cor-
responding to the additional phase we iden-
tified as Ti5Al2C3 (blue circles). The peaks
at 2θ = 5.6◦, 11.0◦ and 16.5◦ correspond to
the (0 0 0 3), (0 0 0 6) and (0 0 0 9) peaks
for Ti5Al2C3, respectively. From these distinct

peaks that cannot be accounted for by Ti2AlC
or Ti3AlC2, it is readily apparent that the sam-
ple contains a substantial amount of this new
phase.

To emphasize and confirm the assignment
of the (0 0 0 l) peaks, we collected patterns
from discs produced by cold pressing, CPing,
the heat-treated powders at loads correspond-
ing to a stress of ≈1GPa. The inset of Fig. B.5
shows the 2θ = 5− 20◦ region of the XRD pat-
tern from (i) the powder sample, and (ii) the
cold-pressed sample. The two patterns are nor-
malized to the (1 1 1) peak for Si at 2θ = 28.5◦

(not shown). The (0 0 0 3), (0 0 0 6), and (0
0 0 9) peaks of Ti5Al2C3 are labeled, and their
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(a) 

(b) (c) 

(d) 

Figure 2 

Figure B.6: High-resolution TEM (HRTEM) image of a heat-treated Ti5Al2C3 sample: (a)
large grain of Ti5Al2C3, (b) selected area electron diffraction (SAED) pattern shown parallel
to the [112̄0] direction, (c) HRTEM image of the [112̄0] axis projection showing Ti5Al2C3
stacking, and (d) illustration of the [112̄0] plane for comparison with highlighted region in
(c).

positions are marked by blue circles. A clear
increase in the intensity of these peaks, and
not others, with CPing confirms assigning these
peaks to the 0 0 0 l planes. The MAX phases
are layered and cold pressing orients the basal
planes parallel to the loading direction. Note
that the peak at 13.0◦ is the (0 0 0 2) peak of
Ti2AlC, which also increases with CPing.

Rietveld refinement with MAUD gave
43(±2) wt.% Ti5Al2C3 for the sample after
heat treatment, with 49(±2) wt.% Ti2AlC, and
7(±2) wt.% Ti3AlC2. The lattice parameters
of Ti5Al2C3 are a = 3.064(2) Å, c = 48.23(2)
Å and its space group is P3m1 (156) ∗

The structure was confirmed by HRTEM
(Fig. B.6), where there are alternate layers con-
taining 2 and 3 Ti layers, sandwiched between
Al layers, with C filling the octahedral sites in
between Ti layers, in agreement with the simu-

lated image of the [112̄0] zone axis projection.
The space group of this phase is different from
that of Ti3AlC2 and Ti2AlC due to the break in
symmetry caused by the alternating stacking
sequence. This structure has the same stacking
sequence observed in the TEM in Ref. [81].

The HRTEM image is also consistent with
the equilibrium structure from first principles
calculations. The full structure is shown in Fig.
B.7(a), compared to the structures of Ti3AlC2
[Fig. B.7(b)] and Ti2AlC [Fig. B.7(c)]. The
stacking sequence for the Ti and Al atoms are
shown next to the structures. A unit cell of
Ti5Al2C3 consists of three formula units with a
total of 6 Al layers, where every other region
between the Al layers is filled with one Ti–C
octahedra, as seen in Ti2AlC, and rest contain
two Ti–C octahedra, as in Ti3AlC2. In order
to accommodate this structure, the stacking

∗Note: it has since been discovered that a higher-symmetry space group, R3m, can be used to represent the same
stacking.
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Figure B.7: Crystal structure and stacking sequence of (a) Ti5Al2C3, (b) Ti2AlC, and (c)
Ti3AlC2. (d) Volume vs. energy plot for the three structures in (a)-(c), showing values
determined from first principles calculations (solid data points) and the MO88 equation of
state fit (lines).

sequence of the Al layer must shift every two
layers. Fig. Fig. B.7(d) shows the volume vs.
energy plot determined by first principle cal-
culations, as well as the equation of state fits.
The bulk modulus, B, determined through the
fit is highest for Ti3AlC2, which is apparent in
Fig. B.7(d) from its higher curvature. The bulk
moduli for Ti2AlC, Ti3AlC2, and Ti5Al2C3 are
listed in Table 1, where B varies in the order
Ti2AlC<Ti5Al2C3 <Ti3AlC2. The lattice param-
eters determined by first principles calculations
agree well with the experimental values from
XRD (Table B.3).

The calculated electronic density of states
is shown in Fig. B.8, where 0 corresponds to
the Fermi level. All DOS units are per number
of atoms in the unit cell in Fig. B.7(a). The den-
sity of states is quite similar to that of Ti2AlC

and Ti3AlC2 [187, 189, 190], where its conduc-
tivity is predominantly due to the Ti d orbitals.
Since the stoichiometry is 2.5:1:1.5 (effectively
that of a MAX phase with n = 1.5), it should
be expected to have electronic properties that
fall somewhere between Ti2AlC and Ti3AlC2.

Since both Ti2AlC and Ti3AlC2 are gener-
ally synthesized at temperatures between 800
and 1500◦C [37, 55, 82, 145, 191], the phase
produced through heat treatment is highly de-
pendent on the elemental ratios of the starting
powders. In the sample investigated in this
study, we found regions where Ti5Al2C3 was
present in the same grain as Ti3AlC2 (Fig. B.9).
It is therefore reasonable to assume that the for-
mation of Ti5Al2C3 is topotactic, most likely oc-
curring through outward diffusion of Al and the
re-ordering of TiC octahedra in Ti2AlC. A phe-
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Table B.3: Lattice parameters of Ti5Al2C3, Ti2AlC, and Ti3AlC2 phases in powder sample
determined from XRD and calculated lattice parameters (a and c, bulk moduli (B), and
density determined from first principles calculations.

Ti5Al2C3 Ti2AlC Ti3AlC2

Exp. Calc. Exp. Calc. Exp. Calc.
a (Å) 3.064 3.068 3.063 (3.051a) 3.067 3.060 (3.0753d) 3.083
c (Å) 48.23 48.45 13.645 (13.637a) 13.75 18.661 (18.578d) 18.66
B (GPa) - 147.1 (186e) 136, (166b) 226 f 156, (190c)
Density (g/cm3) - 4.13 - 3.99 - 4.21

a Ref. [37].
b Ref. [187].
c Ref. [151].
d Ref. [31].
e Ref. [33].
f Ref. [188].

nomenon that could help explain the formation
of Ti5Al2C3 is a so-called gradient structure,
reported in a hot-pressing study of the Ti-Al-C
system by Mei et al [192]. In that study, various
compositions of Ti, Al, and C powders were hot
pressed at 1500◦C for 60 min under 30MPa. Al-
though they did not report any Ti5Al2C3 phase,
they found that the samples contained an inho-
mogeneous structure throughout their volumes
where most of the phases were Al-deficient.
Moreover, the Ti content was constant along
the axial direction, whereas the Al distribution
increased continuously from the hot pressed
surface to the center of the sample. As a re-
sult, the relative volumes of TiC, Ti3AlC2, and
Ti2AlC varied gradually. The evaporation of
Al was considered a fundamental reason for
such a formation, since Al has a higher vapor
pressure than Ti at 1500◦C [193].

Here, we postulate that the evaporation
of Al from Ti2AlC results in a higher Ti:Al ra-
tio, causing Ti5Al2C3 to be more thermodynam-
ically favorable. It is reasonable to assume
that further heating would convert Ti5Al2C3 to
Ti3AlC2 and ultimately to TiCx .

The results presented herein provide evi-
dence for a new bulk MAX phase, Ti5Al2C3
– with a stacking sequence combining that of
Ti3AlC2 and Ti2AlC and properties similar to
the two phases – that exists in bulk,
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Figure B.8: Electronic density of states
as determined by first principles calcula-
tions, showing (a) total density of states,
and partial density of states for (b) Ti, (c)
Al, and (d) C. The Fermi level is located at
0 eV.

formed when Ti2AlC powders are heated to
1500◦C for 8 h. Work to explore the effect
of annealing times and temperatures on the
microstructure and atomic ordering of ternary
phases in the Ti–Al–C system would be needed
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Figure 5 

(a) 

(b) 

Figure B.9: HRTEM image of a grain containing both Ti5Al2C3 and Ti3AlC2 showing (a)
lower-resolution and (b) higher-resolution TEM micrographs with respective unit cells
indicated [the interface between the two phases is indicated by an arrow in (a)] with
corresponding SAED patterns from the Ti5Al2C3 (“523”) and Ti3AlC2 (“312”) regions shown
above and below figure (a), respectively.

to understand the kinetics and mechanisms for
the formation of the Ti5Al2C3 phase.

Conclusions

A new bulk ternary MAX phase, Ti5Al2C3, was
synthesized in bulk form for the first time by
heating Ti2AlC under Ar for 8 h at 1500◦C. The
transition from Ti2AlC to Ti5Al2C3 is topotactic.
The crystal structure of Ti5Al2C3 was found to

be trigonal (P3m1) †, with a and c parameters
of 3.067Å, 48.16Å, respectively. The stacking
of atomic layers in Ti5Al2C3 can be considered
as a combination of that in Ti2AlC and Ti3AlC2.

Note added in proof

This paper was submitted on Jan 16, 2012. As
our paper was being reviewed, we discovered a
paper by Wang et al. [83] that was submitted

†Note: it has since been discovered that a higher-symmetry space group, R3m, can be used to represent the same
stacking.



APPENDIX B: OTHER WORKS 244

to J AmCer Soc on Feb. 7, 2012, accepted a
week later and available online shortly there-
after. We note that our paper takes precedence
as the original report because it was submitted
first. More importantly, the paper by Wang et al.
suggests a structure that is different from that
reported herein.We explored the differences be-
tween the two possible structures and made
the following observations:

(i) First principles calculations on the total
energies of the unit cells show that the
configuration reported herein has a lower
equilibrium energy (higher relative sta-
bility) compared to that reported in Ref.
[83], with an energy difference of ∼0.06
eV/atom.

(ii) In all other known Mn+1AXn phases with
n> 1, the M–X layers have a stacking se-
quence corresponding to BcAbC , where
the upper case is for the M atoms and the
lower case is for the X atom. In the pro-
posed structure (Fig. 3) in Ref. [83], the
Ti-C layers have a BaCaB stacking. This
has never been observed in any structure

in the MAX phase family. Furthermore,
the XRD and (not atomically resolved)
HRTEM data in Ref. [83] cannot verify
the BaCaB stacking, and contain insuf-
ficient information to permit a structure
determination.

(iii) It has been previously noted [66] (see
also the review in Ref. [82]) that in or-
der to preserve the correct stacking in
theMAX phases with 5:2:3 stoichiometry,
the P63/mmc symmetry must be broken
and the crystal structure must be indexed
with a hexagonal lattice with 3 formula
units. The (0 0 0 n) peaks are then in-
dexed by (0 0 0 3n), where n is the l
index for a cell containing one formula
unit. In the suggested structure in Ref.
[83], they are incorrectly indexed by (0
0 0 2n).

There are other reasons why the structure
given by Wang et al. is most probably incorrect.
For the sake of brevity, these are not discussed
here, but in a separate paper to be published
elsewhere
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B.2.2 A comment on the stacking sequence in Ti5AlC2

Published in: N.J. Lane, M. Naguib, J. Lu, P. Eklund, L. Hultman, M.W. Barsoum, “Comment on
‘Ti5Al2C3: A new ternary carbide belonging to MAX phases in the Ti-Al-C system’ ” Journal of the
American Ceramic Society 95 [10] 3352-3354 (2012).

The Mn+1AXn phases (n = 1, 2 or 3, M =
transition metal, A = A-group element, X =
carbon or nitrogen) are usually classified into
three groups based on their n values, i.e., “211”
for n = 1, “312” for n = 2, etc. In addition,
there is also a category of “intergrown phases”
such as the “523” and “725” phases, with alter-
nating half-unit-cell layers of “211” and “312”
(=“523”) or “312” and “413” (=“725”). These
phases were first reported in 2004 in the Ti–Si–
C system by Palmquist et al [66]. Since then
others were discovered as minority phases in
bulk samples [? ] and thin films [65, 81, 194?
]. Palmquist et al [66] noted that the alter-
nating stacking of even and odd M layers in-
duces a lateral translation of the A position,
breaking the P63/mmc symmetry of the regu-
lar MAX phases. Said otherwise, the A atoms
are not positioned above each other until af-
ter three repetitions. It follows that the c axis
of a M5A2X3 phase has to be three times the
average of the M2AX and M3AX2 c-axes. This
description has been echoed in several other
papers. [79, 82]. A complete structure descrip-
tion was, however, not available until we very
recently synthesized bulk samples with a high
fraction of Ti5Al2C3 which, in turn, permitted a
complete structure determination [8]. We con-
cluded that the space group was P3m1 and the
crystal structure indeed consists of three for-
mula units, with a c lattice parameter of 48.23
Å.

Very recently, Wang et al. [83] reported
on Ti5Al2C3 prepared by hot pressing Ti, Al,
and C powders, and suggested a structure with
P63/mmc space group symmetry. It is impor-
tant to note at the outset, that neither the X-ray
diffraction (XRD) nor transmission electron mi-
croscopy (TEM) results presented by Wang et
al. are sufficient to verify their proposed stack-
ing sequence. Their hypothetical structure [see
Fig. 1(c)] has Ti1 and Ti2 at Wyckoff position

4 f , Ti3 at 2d, Al at 4e, C1 at 2a, and C2 at
4e with lattice parameters a = 3.038 Å and
c = 32.261 Å. The purpose of this comment
is to make the case that this structure is most
probably incorrect.

Our evidence against P63/mmc symmetry
is multifold. First, in Wang et al.’s suggested
structure, the Ti-C layers appear with a BaCaB
stacking [Fig. B.10(c)], where the upper case
is for the Ti and the lower case is for the C
atoms. This stacking has never been observed
in any Mn+1AXn phase with n> 1. In all known
312 and 413 structures, the M–X layers have a
stacking sequence of BcAbC .

Second, Fig. B.10(a) shows an atomically
resolved TEM image (beam along [112̄0] zone
axis) and Fig. B.10(b) shows the correspond-
ing selected area electron diffraction pattern
(SAED) reproduced from Ref. [83]. The stack-
ing suggested by Wang et al. [Fig. 3, re-plotted
herein as Fig. B.10(c)] does not correspond to
the experimentally observed stacking, which
instead matches our structural model [Fig.
B.10(d)]. Third, SAED simulations demon-
strate that in [0001] and [11̄00] zone axes
(not shown) there is not much difference be-
tween the two structures. However, in the [11
=20] zone axis, there is an obvious differ-
ence [compare Figs. B.10(e) and (f)]. In con-
tradiction to the experimental SAED pattern
[Fig. B.10(b)], in the simulated pattern for
the structure suggested by Wang et al. [Fig.
B.10(e)] there are more (11̄0l) reflections and
mirror symmetry. Simulation of our structure
[Fig. B.10(f)], on the other hand, has fewer
reflections and does not show mirror symme-
try, which is consistent with our experimental
SAED pattern [Fig. B.10(b)].

Fourth, simulations of XRD patterns for
each of the structures show significant differ-
ences in both peak position and intensity [Fig.
B.10(g)]. The experimental XRD pattern [blue
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Figure B.10: (a) Experimental atomically resolved TEM image and (b) SAED pattern, both
from Ref. [8]. (c) Suggested stacking of Wang et al., and (d) stacking in our structural
model [8]. (e) and (f) are simulations of SAED patterns corresponding to (c) and (d),
respectively. All are in the [112̄0] zone axis. (g) Simulated and experimental XRD patterns
for Ti5AlC2: Simulated XRD pattern of structure from Ref. [8] (green solid), the simulated
pattern of the structure suggested by Wang et al. [83], (red dashed), and experimental XRD
pattern for sample containing 42 wt% Ti5Al2C3 from Ref. [8] (blue lines with open circles).
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lines with open circles in Fig. B.10(g)] has sig-
nificant peaks that are only predicted in the
simulated XRD pattern for our structure [green
solid pattern in Fig. B.10(g)] but not for the
simulation of Wang et al.âĂŹs structure [red
dashed pattern in Fig. B.10(g)], such as the
peaks at 41.7 and 42.8◦. Even more impor-
tantly, the structure suggested by Wang et al.
should exhibit a large peak at 44.35◦, which
is not observed in either experimental study
[8, 83]. The XRD pattern reported by Wang
et al. is thus incompatible with their proposed
structure.

Note that the XRD pattern we published
in Ref. [8], and partially reproduced in
Fig. B.10(g), has multiple prominent Ti5Al2C3
peaks, whereas the one reported by Wang et al.
shows only one peak – at 2θ of 11◦ – that can
be attributed to Ti5Al2C3. It follows that the
Rietveld refinement they report to have carried
out must be either invalid or, at the very least,
questionable.

Lastly, we performed first-principles calcu-
lations based on density functional theory to

calculate the total energies of each of the unit
cells. The Perdew-Burke-Eruzerhof (PBE) gen-
eralized gradient approximation (GGA) [98]
functional was used, with a plane wave cutoff
of 400 eV. The total energy was converged to <
0.02 eV/atom with a 11× 11× 2 Monkhorst-
Pack-type Γ-centered k-point mesh, as imple-
mented in the VASP software. The equilibrium
volume and bulk moduli were obtained with
the modified Morse (MO88) equation of state
fit of the total energy as a function of volume
[186]. The structure suggested by Wang et al.
was found to be the less stable of the two, with
an energy difference of ∼0.06 eV/ atom.

In conclusion, the evidence presented by
Wang et al. is insufficient to confirm their struc-
ture with space group P63/mmc. Our experi-
mental and first-principles calculations provide
evidence for the P3m1 space group. Needless
to add, if anybody can provide XRD, atomi-
cally resolved TEM and SAED results that agree
with Wang et al.âĂŹs hypothetical structure we
would gladly accept that there are two poly-
morphs for Ti5Al2C3.



APPENDIX B: OTHER WORKS 248

B.3 FIRST-PRINCIPLES CALCULATIONS ON THE (112̄1) TWIN AS A DISLOCA-
TION WALL

Published in: N.J. Lane, S.I. Simak, A. S. Mikhaylushkin, I. A. Abrikosov, L. Hultman, M.W.
Barsoum, “A first principles study of dislocations in HCP metals through the investigation of
the (112̄1 ) twin boundary” Physical Review B 84, 184101 (2011). Copyright (2011) by the
American Physical Society.

Abstract

Herein we use first principles calculations to study the energy of the (112̄1) twin boundary in
Zr, Zn, Mg, Ti, and Be. This boundary is important for understanding the microyielding and
damping of hexagonal close packed metals. The (112̄1) twin boundary is unique in that it is
comprised of – and can form by the glide of – basal dislocations nucleating at every c-lattice
parameter. The effect of the number of atoms between boundaries on the boundary energy, and
the resulting lattice strains of the relaxed structures, are quantified. It is shown that the energies
obtained converge within 32-64 atoms/supercell. The structures with higher second-order
elastic constant term, c44, also have higher boundary energies. We further show that the critical
resolved shear stresses of the basal dislocations at 0 K, which make up the (112̄1), twin are so
low as to be below the threshold of the first principles calculations.

Introduction

Hexagonal metals (HM) have been studied for
decades due to their technological importance.
While their mechanisms for plastic deforma-
tion under high strains are widely accepted,
their low-strain (ε < 1%) behavior has, until
recently, not been very well understood. The
deformation of HM under low strains is a cru-
cial piece of the deformation puzzle for HM,
especially when considering phenomena such
as microyielding and damping. A breakthrough
toward understanding the early deformation
of HM came about recently when we showed
that they are kinking nonlinear elastic (KNE)
solids [195–197]. Macroscopically, KNE solids
are characterized by the formation of fully,
and spontaneously, reversible closed hystere-
sis stress-strain loops. The size of these loops,
which corresponds to the energy dissipated per
unit volume, scales with the maximum applied
stress squared and is a strong function of grain
size.

It is currently postulated that the defor-
mation mechanism that leads to these char-
acteristic stress-strain loops involves the nu-

cleation, growth, and annihilation of incipient
kink bands (IKBs) [198]. IKBs [Fig. B.11(a)]
are concentric dislocation loops that nucleate
and grow under an applied load, and they are
spontaneously annihilated when the load is re-
moved. A sufficient condition for a solid to be
KNE is plastic anisotropy, where the disloca-
tions are confined to two dimensions – usually
the basal planes in hexagonal metals. Charac-
teristics that often lead to this include a high
c/a ratio and low c44, where c and a are the
lattice constants of the unit cell, and c44 is
the second-order elastic shear constant. Most
layered solids, graphite, the Mn+1AXn phases,
and mica can also be classified as KNE solids,
among others [195, 199–201].

Macro- and microscale models for the de-
formation of KNE solids have been devel-
oped and agree well with experimental results
[200, 201]. However, modeling at the atomic
level is still lacking. To fully describe the nu-
cleation and growth of IKBs [Fig. B.11(a)],
and their transformation to mobile dislocation
walls (MDWs) [Fig. B.11(a)], and ultimately
kink bands (KBs) [Fig. B.11(b)], it is essential
to understand the structure of the MDWs [Fig.
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Figure B.11: Schematic of (a) an IKB, (b) KBs, and (c) the dislocation structure of the
IKB and MDWs shown in (a). The (11̄00) plane view of the (112̄1) twin is shown in (d),
showing the (112̄1) plane (dotted line), the twin angle θ , and edge dislocations every c
lattice parameter. Inset (bottom left) shows the (112̄1) plane.

B.11(c)].

The ultimate goal of this work is to model
IKBs and their nucleation from an atomistic
point of view. The goal of this paper, however,
is much more modest and represents a first step
towards our ultimate goal, in that we chose to
study the atomistics of the (112̄1) twin in HM.
The (112̄1) twin is of particular interest be-
cause it is a special kink boundary in which
a basal plane dislocation is nucleated every c
lattice parameter [Fig. B.11(d)]. The (112̄1)
twin stands out as the only twin in which all
lattice sites are correctly sheared to their twin
positions, and lattice shuffles are thus not re-
quired [202]. Said otherwise, this twin can
form solely by basal dislocation glide. Study of
this twin can be traced back to Palache,[203]
who reported the twinning features in graphite
as (112̄1) twins. A full description of the struc-
ture of all twinning elements of this boundary
was first provided by Freise and Kelly [204],

who identified the (112̄1) twin boundary as a
wall of basal dislocations in graphite. Based on
Shockley and ReadâĂŹs model for the energy
of dislocations along a grain boundary [205],
they proposed that the (112̄1) twin was com-
posed of alternating partial dislocations along
the boundary. Minonishi et al.[206] also found
that the stable relaxed structure at the interface
leads to a change in stacking sequence across
the boundary [see Fig. B.12(a) and B.12(b)],
which renders it effectively shuffleless. Simi-
lar results were obtained by Serra and Bacon
[207]. Since this kink boundary is, at first ap-
proximation, a boundary of edge and screw
dislocations, it follows that investigation of the
energy and structure of the (112̄1) twin would
be useful for enhancing our understanding of
dislocations, KBs, and ultimately KNE solids.
To our knowledge, the (112̄1) twin has to date
not been investigated using first principles cal-
culations in the way it is dealt with herein.
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Among atomistic modeling approaches, em-
phasis is put on first principles, or ab initio,
calculations based on full electronic structures
for obtaining accurate energies. However, the
study of dislocations is not a well-tested terri-
tory for ab initio calculations since the super-
cells needed to adequately account for the long-
range elastic fields can be quite large. With a
supercell approach, it is difficult to isolate the
effects of the dislocations, or defects within
the cell, from the surface effects caused by its
periodicity. To eliminate surface effects, full pe-
riodic boundary conditions must therefore be
satisfied, which is only possible if the Burgers
vector of the supercell is zero. This approach
has been employed for dislocation cores in cu-
bic systems [208–210] and boundary surface
energies in Mg [211], but generally the use of
ab initio calculations to study boundaries and
dislocations has still been few and far between.
The main reason for this is the computational
limitations for the large number of atoms re-
quired, along with the boundary conditions,
which impose limitations on the special bound-
ary structures that can be simulated.

The purpose of this study is to report on
the energy and structure of the (112̄1) twin in
the HMs Mg, Ti, Zn, Zr, and Be, through the
supercell approach using ab initio calculations.
The effects of supercell size on the boundary
energies, for each element, are considered. We
also calculate the unit cell parameters and c44
and explore how these parameters relate to our
results on the twin boundary energies. The crit-
ical resolved shear stresses of the dislocations
are also estimated to be below the threshold of
the ab initio calculations.

Calculations

Ab initio calculations based on density func-
tional theory (DFT) were performed using the
projector-augmented wave (PAW) [126, 212]
method, as implemented in the VASP code
[127–129]. The exchange-correlation function
used was the Perdew- Burke-Ernzerhof (PBE)
generalized gradient approximation (GGA)

[98]. The potential for Zr included 4s semi-
core states. The boundary energy calculations
involved calculating the total energy of twinned
and perfect crystal structures, with the same
number of atoms per unit cell. For each set of
calculations, a supercell of the perfect crystal
structure, with the required number of atoms,
was used to converge the k-point mesh and
plane wave cutoff with respect to the c/a ratio,
compressibility (bulk modulus), and equilib-
rium volume relaxation. This led to a plane
wave cutoff of 210 eV, 178 eV, 276 eV, 230
eV, and 247 eV for Mg, Ti, Zn, Zr, and Be,
respectively, and Γ-centered k-point grids of
25×25×25 for 2 atoms, 9×9×9 for 32 atoms,
and 5× 5× 5 for 64 and 80 atoms. For each
structure, the total energy was converged to
10−6 eV/cell at fixed volumes while relaxing
the c/a ratio and atomic positions. The equilib-
rium structure and energy were determined by
fitting the total energy as a function of volume
to the modified Morse equation of state [186].

For the twin boundary calculations, super-
cells with two (112̄1) twin boundaries consist-
ing of 32, 64, and 80 atomswere constructed.
This was accomplished by shifting the hexago-
nal coordinates to orthogonal axes, with the x
direction normal to the (112̄1) plane and the
y and z directions parallel to the plane. Figure
B.12(a) shows a unit cell with 32 atoms, con-
sisting of rows of undistorted hexagonal close-
packed (hcp) crystals with 7 atomic planes be-
tween the boundaries. Supercells with 64 and
80 atoms (not shown) consist of 15 and 20
atomic planes, respectively, between the bound-
aries. After slicing the cell along the (112̄1)
plane and mirroring the structure about the
plane, a shift from ABAB to ACAC stacking se-
quence across the boundary is necessary, result-
ing in the structures shown in Fig. B.12(b) and
(c).

The boundary interfacial energy,
E(112̄1),was extracted from the energy of the su-
percell and the energy of a perfect hcp crystal,
assuming:

E(112̄1) =
n · (Esupercell− Ehcp)

2 · A (B.1)
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Figure B.12: (a) (11̄00) plane view of relaxed atom positions of repeating structure with
two (112̄1) twin boundaries for a 32 atom, unit cell, showing (112̄1) planes (red lines)
and the boundaries for the unit cell (dotted lines). (b) The structure of the (112̄1) twin in
an hcp material in the (1̄126) plane projection. (c) (11̄00) plane projection of the (112̄1)
twin, illustrating stacking sequence. Red line represents the (112̄1) plane. For (b) and
(c), green, yellow, and pink atoms correspond to A, B, and C stacking, respectively (see
inset, bottom right); solid and striped atoms correspond to matrix (ABAB) and twin (ACAC)
lattice, respectively.

where n is the number of atoms in the su-
percell, and Esupercell and Ehcp are the energies
per atom of the supercell with the twin bound-
ary and the perfect hcp crystal, respectively. A
is the area of the boundary given by the cross
product of the axes in the x and z directions.

As noted already, and for reasons discussed
later herein, our analysis also involves c44. This
was calculated by applying lattice distortions
and deriving the elastic constants from the
stress-strain relationship [215] as implemented
in VASP 5.2.

Results and discussion

The results of the interfacial energy calcula-
tions on the (112̄1) boundary are summarized
in Table B.4 along with values previously calcu-
lated using other methods [206, 213, 214] and
the twin boundary angle θ . With the exception
of Zn, increasing the number of atoms to 64
atoms only changes the energy of the bound-
ary by less than 5% compared to 32 atoms.
The larger differences for Zn are most likely
due to the distortion from ideal packing indi-
cated by the anomalously large c/a structure.
In general, however, the fact that the bound-



APPENDIX B: OTHER WORKS 252

Table B.4: Interfacial energies of the (112̄1) twin boundary in selected hcp metals for
different supercell sizes, compared to values obtained in previous work.

Metal Supercell size Interfacial Energy (mJ/m2)
Our work Previous work θ (degrees)

Mg 32 122.3 147a, 480b 31.7
64 127.3
80 125.6

Ti 32 238.0 150a, 180.8c 32.4
64 234.9
80 233.2

Zr 32 235.1 169a 32.0
228.7

64 230.7
Zn 32 229.7 480b 27.5

64 196.3
Be 32 1034.4 1810b 32.4

64 1073.3

aFrom Ref. [213], Finnis-Sinclair (FS) embedded-atom potential technique
bFrom Ref.[214], based on pseudopotential theory
cFrom Ref. [206], Lennard-Jones potential fitted to Ti truncated between sixth and seventh
nearest neighbors

ary energy contribution to the total cell energy
does not change significantly with the number
of atoms implies that there is no considerable
interaction between the boundaries, and thus
the dislocations along them, at these supercell
sizes. Therefore, for most of the hcp metals
studied herein, the small number of atoms was
considered sufficient for the purposes of calcu-
lating boundary/dislocation structures.

Since there are no previous ab initio calcu-
lations on the (112̄1) boundary for comparison,
we can only judge the values obtained against
other techniques, such as the embedded atom
method (EAM) [216] and Finnis-Sinclair (FS)
[217] method. Both of these are considered
less accurate than ab initio calculations, espe-
cially for materials where covalent bonding is
important, such as Ti, Zr, or, especially, Be. Pre-
vious work on hcp twins has shown that while
structures produced by empirical models are
fairly close to those obtained from ab initio cal-
culations, the energies can be quite different

[218]. Generally, EAM and FS methods lead to
a wide range of energy values that vary signif-
icantly in either direction, demonstrating the
need for accurate potentials. For example, in
Zr, the (101̄2) twin, which is morphologically
similar to the (112̄1) twin, yields a boundary
energy of 150 mJ/m2 [219] and 151 mJ/m2

[220] from ab initio studies, while the results
from FS simulations lead to 262 mJ/m2 [218]
and 123 mJ/m2 [220]. For the same twin in
Mg, ab initio calculations lead to a boundary en-
ergy of 114 mJ/m2 [218, 220] and 118 mJ/m2

[211], while the results from FS simulations
lead to 188 mJ/m62 [213], and EAM results
lead to 800-1010 mJ/m2 [214].

A more useful evaluation of our results
comes from an assessment of them in relation
to c44. It is well established in classical dislo-
cation theory that the energy of a dislocation,
its core, and the Peierls stress all scale with the
shear modulus, G [205]. It is therefore rea-
sonable to assume that the (112̄1) boundary
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energy should scale with c44. As a benchmark
for evaluating the relative values, our results
– as calculated from VASP as outlined in the
previous section – are listed in Table B.5.
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Figure B.13: Twin boundary energy vs
c44 calculated for Ti, Zr, Zn, Mg, and Be.
Inset shows plot zoomed into lower-left re-
gion. Least squares fit of the results yields
a correlation coefficient, R2, of 0.99.

Values also listed in Table B.5 are the
ground state parameters for the crystal struc-
tures of all HM studied herein, compared with
experimental values. All values for the lattice
parameters are within 2% of the experimental
values, and the bulk moduli are within 6% of
the experimental values, lending credibility to
the potentials used.

Figure B.13 shows that a correlation be-
tween the boundary energy and c44 indeed ex-
ists, with a linear fit having R2 = 0.99. This
result is taken as indirect evidence for the va-
lidity of our methodology. It is significant to
note that the twin boundary energy of Be is
approximately an order of magnitude higher
than the other metals studied. Its bulk modulus
and total energies, however, are comparable to
Ti, and thus the higher boundary energy of Be
cannot be related to its compressibility or be an
artifact of the energy relaxations. The fact that
c44 of Be is also about an order of magnitude
higher than the other metals studied is thus

significant and consistent with the notion that
the boundary energy is related to the energy of
the dislocations.

The way dislocations move is contingent on
the energetics of bonding related to the dislo-
cation core.

As a loose definition, one can define the
core as the region of crystal lattice around the
dislocation line in which the relative displace-
ment of the neighboring atoms exceeds the
elastic limit (for example, 2% in terms of lo-
cal shear strain) [221]. Because core structure,
under zero stress, has been given importance
for its connection to mechanisms of disloca-
tion motion [218, 222? , 223], the equilibrium
structure of the bonding in and around the
boundary should be considered as well. Figure
B.14 shows the variations of interatomic dis-
tances within the basal planes in the 80 atom
(112̄1) supercell of Mg, as compared to the
equilibrium structure obtained herein (Table
B.5). All atomistic configurations are visual-
ized using Atomeye software [224]. Consistent
with the limited effect of the number of atoms
on the boundary energies, the size of the dis-
torted regions is similar for all supercell sizes
studied.

Figure B.15 shows the von Mises shear
strain invariant, which is a way of representing
the strain fields of each atomic environment
compared to the system average, or the overall
local distortion as compared to the perfect crys-
tal, as implemented in Atomeye [225]. Here
again, the von Mises strains on the atoms away
from the boundary are close to zero. Along
the basal planes, the absolute effective “strain”
falls below 1.5% at a distance of approximately
1.5a from the boundary. Similar results (not
shown) were obtained for the other elements
explored herein, regardless of their boundary
energies. Because the relative displacements
of the atoms outside of the strained regions,
or effective core, do not contribute much to
the energy of dislocation translation, the small
deviation in the core size implies that for solids
with higher boundary energies, such as Be, the
bond stretching and bending involved are much
more energetically expensive.
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Table B.5: Calculated lattice parameters, bulk moduli, B, and c44 values for HM

Metal a (Å) c (Å) c/a B (GPa) c44 (GPa)
Mg Calc. 3.198 5.174 1.618 37 17.9

Calc.a 3.138 5.107 1.627 37 17.7
Exp.b 3.209 5.211 1.624 36 16.4

Ti Calc. 2.926 4.612 1.576 116 40.6
Calc.a 2 .900 4.671 1.611 123 50.4
Exp.b 2.951 4.684 1.587 110 46.7

Zr Calc. 3.236 5.171 1.598 96 26.0
Calc.a 3.229 5.166 1.600 101 43.0
Exp.b 3.232 5.148 1.593 97 32.1

Zn Calc. 2.643 5.087 1.925 58 38.8
Calc.d,e 2.648 5.085 1.921 60 23.2
Exp.b 2.665 4.947 1.856 60 39.6

Be Calc. 2.264 3.573 1.578 122 159.7
Calc.c 2.294 3.608 1.573 122 160.2
Exp.b 2.287 3.583 1.567 114 162.5

a a From Reference 60.
b From Reference 61.
c From Reference 62.
d From Reference 63.
e From Reference 64 for c44.



APPENDIX B: OTHER WORKS 255

(a) 

(b) 

(c) 
0

0

r r
r
−

+6.0% 
+5.0% 

+3.0% 
+1.5% 
+0.5% 
-0.5% 
-1.5% 
-3.0% 

-5.0% 
-6.0% 

0

0

r r
r
−

+6.0% 
+5.0% 

+3.0% 
+1.5% 
+0.5% 
-0.5% 
-1.5% 
-3.0% 

-5.0% 
-6.0% 

0

0

r r
r
−

+6.0% 
+5.0% 

+3.0% 
+1.5% 
+0.5% 
-0.5% 
-1.5% 
-3.0% 

-5.0% 
-6.0% 

Figure B.14: Relative interatomic distances of structure obtained from the ab initio energy
relaxations of the (112̄1) twin supercell for Mg with 80 atoms. Deviations of interatomic
distances are represented as strains compared to r0, the interatomic distances in the unit
cell from ab initio calculations. For clarity, (a) shows only strains along the a direction,
(b) shows only strains in the c direction, and (c) shows interatomic distances between all
nearest neighbors. Boundary of repeating supercell is shown as dark rectangle.
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We can go further in our assessment of the
mobility of this boundary by not only iden-
tifying the regions where atom distances de-
viate from equilibrium, but also by assessing
the dislocation structure within this region. As
noted already, not only is the structure of the
(112̄1) twin composed of dislocations, but the
latter are glissile. Freise and Kelly [204] and
Minonishi et al. [206] found that the stable
relaxed structure at the interface leads to a
change in stacking sequence across the bound-
ary [see Figs. B.12(a) and B.12(b)], which
enables the boundary to move, within the basal
planes, with effectively no atomic rearrange-
ments. We note in passing that the work of
Serra and Bacon [207], on the same bound-
ary, is so different from our approach that no
meaningful comparisons can be made. For ex-
ample, they identified the twin dislocations as
being mixed with edge and screw components
in the (112̄6) direction and pointed out that de-
spite the small magnitude of the Burgers vector,
∼ a/7, the core registry is spread over a region
50–100 times this in width, suggesting that the
step may be very mobile [226]. Herein, we
treat the boundary as a low-angle grain bound-
ary with a Burgers vector equal to a.

Experimentally, the mechanical damping ef-
fect due to reversible (112̄1) twin boundary
movement was found in Zr [227–229] as well
as Co [230], which is also consistent with the
fact that dislocations along the (112̄1) twin are
mobile and result in reversible crystal slipping
on a single glide. To investigate this further,
we explored the atomic shifts and energies in-
volved in shifting the boundary by a Burgers
vector along the basal planes in 32 atom super-
cells [Fig. B.16]. The structures with the orig-
inal [Fig. B.16(a)] and shifted [Fig. B.16(b)]
boundaries were first relaxed as described in
the previous section, and a chain of seven im-
ages was generated by linear interpolation be-
tween the two end structures. We used the
nudged elastic band method [231, 232], as im-
plemented by VASP, to simultaneously optimize
the intermediate images and calculate the en-
ergy barrier to move the atoms into the atomic
positions of the shifted boundary. For both Mg

and Be, the energy is extremely small; at < 0.1
mJ/m2, the difference in boundary energy as a
barrier is below the resolution of the ab initio
calculations, indicating that factors beyond de-
tection of modeling at the atomic scale must be
dominant for dislocation glide. As far as we are
aware, this is the first time such a conclusion
has been reached using ab initio calculations
for basal plane dislocations in HM. This conclu-
sion is in agreement with the fact that Tinder
and Washburn [233] were unable to measure a
threshold stress for the motion of dislocations
in pure Cu. They also clearly showed that plas-
tic deformation commences from almost zero
stress in copper and zinc [234]. These find-
ings are also in line with the results reported
by Roberts and Brown [235, 236] for zinc and
the results of Brydges [237], who later showed
that the critical resolved shear stress (CRSS) in
pure Cu single crystals continuously decreased
with decreasing dislocation density.

This work on Zn and Cu is also consis-
tent with results by Roberts and Hartman
[238, 239] on Mg. In 1964, they published
a paper on the temperature dependence of
microyielding stresses in Mg single crystals
[239]. In that work, they reported that at
shear stresses, ÏĎ higher than about 0.04 to
0.07 MPa, fully and spontaneously reversible,
closed stress-strain loops were observed. At
about 0.35 MPa, the loops were no longer
closed. In Fig. 3 of their paper, they published
the loops for one of their samples – tested at
room temperature – that was pre-deformed to
a shear strain of 0.66% prior to cycling. More
importantly, they noted that initial loading of
annealed samples to any stress level always re-
sulted in permanent strain. In other words, the
yield point for as-received samples was below
the detectability limit of their equipment, i.e.,
< 0.01 MPa. Recently, we showed that damping
and microyielding inMg were due to the nucle-
ation and growth of IKBs [195, 196]. When we
apply our IKB model to their results, we obtain
CRSS values of the order of 0.02 MPa for the
crystals that were pre-deformed to 0.66%. As
noted by Agnew and Nie in a recent review of
Mg [240], it is still not known what exactly
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Figure B.15: Von Mises shear strain maps of atomistic configurations from relaxed (112̄1)
twin structures with repeating unit cells containing (a) 32 atoms, (b) 64 atoms, and (c) 80
atoms.

dictates the nucleation and growth of twins nor
what dictates the CRSS. Hutchinson and Bar-
nett [241] have also emphasized the disparate
nature of the data for CRSS from tensile or com-
pressive testing of single crystals, and the fact
that the CRSS values used for polycrystal mod-
eling have a much narrower distribution. For
hcp metals, it is likely that the mobility of dis-
location walls is dictated by extrinsic barriers
such as other dislocations, defects, or precipi-
tates, which would also explain the disparate
nature of CRSS when grain boundaries are in-
troduced (i.e., for polycrystalline materials).
However, given the fact that dislocation glide
is generally observed as the easiest system for
accommodating stresses [242], and that the
(112̄1) twin has been observed to be mobile
[204, 215, 226], as confirmed herein, these re-
sults are consistent with the IKB model when
considering the ability of dislocations to move
reversibly at the atomic scale. Directions for fu-
ture calculations in analyzing the full reversible
motion of dislocation walls lie in identifying the
extrinsic factors, perhaps at other length scales,
that may play a role during IKB formation and
annihilation.

Figure B.16: Illustration of the movement
of the dislocation boundaries (dashed
lines) by one Burgers vector: (a) initial po-
sitions and (b) positions after the boundary
has shifted one Burgers vector, shown by
the red arrow. Original atom positions are
also shown by the hatched circles to illus-
trate the movement of individual atoms.

Overall, the results on the convergence of
energy with supercell size show us that the dif-
ference in total energy is indeed introduced by
the boundaries and not the atoms in between
them, nor the interactions between boundaries.
Furthermore, the energy convergence with su-
percell size indicates that the smallest number
of atoms (i.e., 32) is, for these materials, suf-
ficient for investigating the energy effects of
the dislocation structures. Thus, this is a sound
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method for calculating the energy induced by
dislocations without having to go to extremely
large numbers of atoms.

Conclusions

The energy and atom arrangements of the
(112̄1) twin boundary in Mg, Ti, Zr, Zn, and
Be were determined from ab initio calculations.

The boundary energies scale linearly with c44.
The dislocation energy and core structure for
the supercell with 32 atoms are sufficient and
provide similar results as the supercell with 80
atoms. The study of the core arrangement and
energetics of the (112̄1) boundary through ab
initio methods can shed light onto the disloca-
tion motion through basal slip, and thus the
deformation of hcp solids through kinking.



APPENDIX B: OTHER WORKS 259

B.4 HIGH-TEMPERATURE STABILITY OF α-Ta4AlC3

Published in: N.J. Lane, P. Eklund, J. Lu, C.B. Spencer, L.Hultman, M.W. Barsoum, “High-
temperature stability of α–Ta4AlC3” Materials Research Bulletin, 46, 1088-1091 (2011).

Abstract

Cold-pressed α-Ta4AlC3 powders were annealed up to 1750 ◦C to test first-principles predictions
of Î́s-Îš phase-stability reversal at 1600 ◦C. Up to 1600 ◦C, the α-Ta4AlC3 samples were stable
with no indications of any α-β transformation, as shown by the strong characteristic X-ray
diffraction peaks of α-Ta−4AlC3 and the zigzag stacking observed by transmission electron
microscopy. These results show that, in this experimental situation, high temperature alone is
not sufficient to cause the α-β transformation.

Graphical summary

Polymorphism in the MAX Phase Ta4AlC3

In this study, stability of α-Ta4AlC3 is investigated to
test a hypothesized thermodynamically-driven α-to-β
phase transformation. It is found that the α phase is
stable up to 1600 C, with impurities and point defects
most likely increasing the stability of the α-Ta4AlC3 .
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Introduction

The layered ternary Mn+1AXn ceramics, or
“MAX” phases, where M is an early transition
metal, A is an A-group element, and X is C
or N, crystallize in the space group P63/mmc
and contain alternate layers that stack along
the c direction consisting of octahedral M6X
building blocks that form a zigzag pattern with
close-packed A-group atomic mirror planes
[1, 82, 243]. The MAX phases are classified
into 3 groups based on their n values, i.e., “211”
for n = 1, “3 1 2” for n = 2, and “413” for n = 3.
While the 211 and 312 MAX phases have been
extensively investigated and characterized, it
was long believed that Ti4AlN3 was the only
413 MAX phase [64]. Since 2004, however,
several new 413 phases have been discovered;
first with the synthesis of Ti4SiC3 and Ti4GeC3
thin films [65, 66] and then bulk synthesis of
Ta4AlC3 in the form of polycrystals [67, 69–71]
and single crystals [68]. More recently, the 413
phases V4AlC3 [72, 73], Nb4AlC3 [74], and
Ti4GaC3 [75] were also synthesized in bulk
form. Of the experimentally identified 413
phases, only Ta4AlC3 has shown polymorphism.

Manoun et al. [71] found large differences be-
tween experimental and calculated data in their
high-pressure X-ray diffraction study of sintered
Ta4AlC3 and tentatively attributed this to pre-
ferred orientation. Soon afterwards, however,
Lin et al. showed that their hot-pressed Ta4AlC3
structures exhibited a different stacking se-
quence from the structure of Ti4AlN3 [69, 244]
explaining the discrepancies observed by Ma-
noun et al. In contrast, Etzkorn et al. syn-
thesized Ta4AlC3 single crystals and found the
same stacking sequence to be that of Ti4AlN3
[68]. Eklund et al. also observed this stacking
in Ta4AlC3 powder and concluded that there
were two Ta4AlC3 polymorphs. The two poly-
morphs are now known as α-Ta4AlC3, with
Ti4AlN3-like stacking sequence, and β -Ta4AlC3,
in which the TaII and CII atom positions ‡

Figure B.17: Measured XRD patterns for
a-Ta4AlC3 powder (a) as-received and after
coldpressing, and successively annealing
to temperatures (b) 1450 8C, (c) 1550 8C,
(d) 1600 8C and (e) 1750 8C. Markers on
top of the various peaks denote the phases
TaC (X) and Si standard (∆).

are shifted resulting in de-twinning and loss of
the normal characteristic zigzag stacking of the
TiX6 layers.

The MAX phases have also shown another
type of polymorphism that has been demon-
strated in the 312 and 211 phases and involves
shearing of the A layers. This type of poly-
morphism appears to be driven by shear strain
under high-pressure conditions and/or TEM
sample preparation [82, 134, 245–248]. In
Ta4AlC3, on the other hand, the polymorphism
is most likely thermodynamically driven with
structural differences confined to the Ta4C3
slabs [67, 69, 82]. A number of recent pa-
pers have been published on the polymorphs of
Ta4AlC3 [243, 249, 250]. Since this polymor-
phism would also be expected in V4AlC3 and
Nb4AlC3, as V and Nb have the same number
of valence electrons as Ta, Wang et al. [76]
performed first principles studies to investigate
reasons for this discrepancy. They predicted
that a polymorphic phase transformation from

‡In the Ta4AlC3 structures, there are two different Ta sites, those adjacent to Al sites, and those not. These sites
are referred to herein as TaI and TaII, respectively. Similarly, the two nonequivalent C sites are referred to as CI and
CII.
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α- to β- Ta4AlC3 is thermodynamically favor-
able at 1600◦C, unlike in V4AlC3 and Nb4AlC3
[76]. The main origin of the predicted decrease
in relative free energy from α- to β-Ta4AlC3 is
the relative strength of the TaII–CII bond, which
is shorter in β-Ta4AlC3. In the present study,
we experimentally test this prediction by heat-
ing coldpressed α-Ta4AlC3 powders to temper-
atures as high as 1750◦C.

Experimental details

Experimental details for the synthesis of the a-
Ta4AlC3 powder can be found elsewhere [67].
Approximately 3 g of the as-received powder
was cold pressed into a pellet, with a radius
of 6.5 mm at 700 MPa. The pellet was embed-
ded in approximately 5.9 g of un-compacted
Ta4AlC3 powder in a 100 mm diameter alumina
crucible. The crucible was placed in an alumina
tube furnace with a flowing Ar atmosphere in
three successive heat treatments. The first an-
nealing was at 1450◦C for 1 h, followed by
a second at annealing at 1550◦C also for one
hour, followed by one 1600◦C for 2 h. The heat-
ing rate in all cases was constant at 5◦Cmin−1.
Finally the sample was heated in a vacuum,
graphite furnace at 8◦Cmin−1 to 1750◦C for
4 h. The latter furnace was used since the Ar
furnace used for the first three runs was limited
to 1600◦C. In all cases, the sample was furnace
cooled.

X-ray diffraction (XRD) was performed on
the as-prepared powder and after each heat
treatment in a powder diffractometer using Cu
Kα radiation. Approximately 10 wt.% Si was
mixed by mortar and pestle with the powder
samples to normalize peak intensities for com-
parison. The data was normalized to the Si
peak intensities. The simulations of the XRD
patterns of Ta4AlC3 accounting for defects (va-
cancies and antisites) were performed using the
CaRIne software [251]. The microstructures of
the as-prepared and annealed at 1550◦C pow-
der samples were characterized by using a FEI
Tecnai G2 TF 20 UT transmission electron mi-
croscope (TEM) operated at 200 kV with a 0.19
nm point resolution. The TEM specimens were

made by suspending the powder in ethanol and
collecting grains on holey carbon grids.

Results

Fig. B.17(a)–(e) shows the XRD patterns of
the as-received and coldpressed Ta4AlC3 pow-
der and after annealing at 1450◦C, 1550◦C,
1600◦C, and 1750◦C, respectively. All annealed
samples up to 1600◦C retain the α-Ta4AlC3
structure. This is obvious from the intensi-
ties of the peaks indexed in Fig. B.18, as
(101̄2), (101̄4), (10 1̄6) and (101̄7) peaks. In
β-Ta4AlC3 the intensities of these peaks are
negligible and would have been strongly re-
duced in intensity had an α-β transformation
occurred [7,26]. Furthermore, the (101̄5) peak
intensity would have significantly increased in
intensity had β -Ta4AlC3 formed. After the heat
treatment at 1750◦C, only TaC is observed [Fig.
B.17(e)]. While there are no indications of
any a–b phase transformations, the following
systematic observation can be made: the basal
reflections decrease in intensity in relation to
non-basal ones. This is clear from the

Figure B.18: Detail of the 2θ range 33–
44◦ of the measured XRD patters for the as-
received a-Ta4AlC3 (red dashed line) and
after annealing of 1450◦C (blue solid line),
1550◦C (green triangles), and 1600◦C
(black circles).
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a) b)
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Figure B.19: HRTEM of the lattice of α-Ti4AlC3 annealed at 1550◦C in the [112̄0] zone
axis projection, showing zig-zag pattern stacking sequence typical of α-Ti4AlC3: (a) low
magnification overview image and, (b) image of three unit cells. (b) and (c) are TEM images
showing amorphous TaOx phase found in as-received Ta4AlC3 powder and after annealing
at 1550◦C, respectively. After the high temperature anneal the volume fraction of TaOx
increases noticeably.

(0 0 0 2), (0 0 0 4), (0 0 0 6) and (0 0 0 8)
peaks shown in Fig. 1 at approximately 2θ =
7◦, 15◦, 22◦, and 29◦, respectively, as well as
the (0 0 0 10) peak indexed in Fig. B.18, which
all decrease in intensity relative to the (1 0 1̄ l)
peaks compared to room temperature.

The as-received powder and the sample an-
nealed at 1550◦C were characterized by high
resolution TEM. In agreement with the XRD re-
sults, these samples were found to contain only
the α-Ta4AlC3 phase. Fig. B.19(a) is a HRTEM
image along [112̄0] zone axis of α-Ta4AlC3
from the annealed sample. A magnified im-
age presenting three unit cells is shown in Fig.
B.19(b). Fig. B.19(c) and (d) show areas of
the Ta4AlC3 samples where an amorphous tan-

talum oxide phase was found in the as-received
material and that annealed at 1550◦C, respec-
tively. The amorphous material consists only of
Ta and O, as confirmed by qualitative EDS. The
annealed sample contained significantly more
amorphous tantalum oxide than the as-received
powder.

Discussion

Based on the above results, it is clear that cold-
pressed α-Ta4AlC3 powder does not transform
to β-Ta4AlC3 by heat treatment alone as pre-
dicted by the ab initio calculations of Wang et
al. [76]. Therefore, there must be other fac-
tors that drive the α–β phase transformation.
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First, heating the α-Ta4AlC3 samples in the Ar
furnace leads to experimental conditions that
deviate from the ideal stoichiometry and purity
assumed in the ab initio calculations. For in-
stance, the presence of secondary phases (e.g.
TaC), the possibility of oxidation in the furnace,
and the creation of defects such as vacancies
are not accounted for in the theoretical pre-
dictions. Second, there are significantly more
TaOx impurities in the heat-treated sample [Fig.
B.19(d)] compared to the as-received powder
[Fig. B.19(c)]. Oxidation may thus affect the
predicted phase transformation. Third, exper-
imental studies of the β-Ta4AlC3 polymorph
involve synthesis through hot pressing in addi-
tion to higher temperatures [69–71] and the
synthesis pressure may also affect the relative
phase stability. To test this hypothesis we hot-
pressed a stoichiometric mixture of TaC, Al, and
graphite powders in a graphite-heated vacuum
hot-press at 1500◦C for 2 h under a pressure
of 70 MPa. Again, the resulting phase was α-
Ta4AlC3 with unreacted TaC, as confirmed by
XRD (not shown).

In support of these arguments, our results
show a decrease in basal peak intensity rela-
tive to the non-basal peaks. From simulations
of the XRD patterns (Fig. B.20), we conclude
that these shifts in relative intensities of basal
vs. non-basal peaks can be caused by vacancies
on the TaI sites or Ta antisite defects on the
Al positions. Excess Al (i.e., occupancy greater
than 1) would also explain the effect, but the
excess would have to be large (30-40%) and
is therefore less likely than the other effects.
Fig. B.20 shows that all three types of defects
have roughly the same effect on the diffraction
pattern, with the intensities of the basal plane
peaks decreasing relative to the non-basal peak
intensities. Vacancies on Al sites or TaII sites
would have the opposite effect on the XRD pat-
terns. This is interesting because vacancies on
the Al sites would be expected since extended
heating at high temperatures results in TaCx ,
which may suggest a degree of preferred ori-
entation. These results combined with the ex-
perimental XRD patterns (Fig. B.17) show the
possible changes in stoichiometry caused by an-

nealing α-Ta4AlC3 and can also be connected
to the relative phase stability. While there is no
phase transformation, there are indeed system-
atic changes in the XRD patterns that can be
attributed to these possible defects, which may
increase the relative stability of the α-Ta4AlC3
polymorph.

(a) (0 0 0 2)

(0 0 0 4)

(0 0 0 6) (0 0 0 8)

(1 0 -1 6)

(1 0 -1 5)

(b)

(c)

(d)

5 10 15 20 25 30 35 40 45
2

Figure B.20: Simulations of XRD patterns
for α-Ta4AlC3, (a) perfect crystal, (b) with
30% excess Al, (c) 10% vacancies on the
TaI sites, and, (d) 10% antisite defects on
both Al positions.

Summary and conclusions

No evidence of an α–β phase transformation
during the annealing of α-Ta4AlC3 at tempera-
tures up to 1600◦C was found, contradicting ab
initio calculations that predict a transformation
around 1600◦C. Heating to 1750◦C converts
the α-Ta4AlC3 to TaCx . The reason for this
apparent discrepancy may be the differences
between the idealized conditions for the ab
initio calculations and non-ideal experimental
conditions, including the presence of defects.
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Heating the powders, however, resulted in a
diminution of the relative intensities of the (0 0
0 l) peaks, which is likely due to the formation
of vacancies or antisites. These results indicate

the need for more calculations to study the ef-
fects of vacancies, antisite defects, impurities
such as oxygen, and pressure on the relative
phase stabilities.
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Appendix C: Acronyms

ADP atomic displacement parameter

CTE coefficient of thermal expansion

DFT density functional theory

DOS density of states

E-WIMV entropy [algorithm of] Williams, Imhof, Matthies, Vinel

GGA generalized gradient approximation

hcp hexagonal close-packed

HIPPO High Pressure Preferred Orientation [diffractometer]

HTND high-temperature neutron diffraction

HTXRD high-temperature X-ray diffraction

IKB incipient kink band

KNE kinking nonlinear elastic

LDA local density approximation

ND neutron diffraction

PAW projector augmented wave

PDOS partial density of states

PBE [functional of] Perdew, Burke, and Eruzerhof

TEM transmission electron microscopy

TOF time-of-flight

VASP Vienna Ab intio Simulation Package

XRD X-ray diffraction
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Appendix D: Notations

MAX PHASE NOTATIONS

MAX Mn+1AXn

211 M2AX (n= 1)

312 M3AX2 (n= 2)

413 M4AX3 (n= 3)

M metal element in MAX phase

A A-group element in MAX phase

X carbon or nitrogen in MAX phase
OTHER NOTATIONS

V volume

a,c lattice parameters

x , y, z internal coordinates in unit cell

ω frequency

α coefficient of thermal expansion

H Hamiltonian operator

V potential energy

T kinetic energy

U(x) elastic potential energy between atoms separated by x

D dynamical matrix

u(R) atomic displacement of atom on site R

Φ force constant matrix

Ui j anisotropic mean-squared displacement

Ueq equivalent isotropic mean-squared displacement

Uiso isotropic mean-squared displacement
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