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Abstract 

Low Temperature Elastic and Electronic Properties of MAX Phases 
Peter Finkel 

Michel Barsoum, Ph.D. 

 

 The Mn+1AXn phases (where M is an early transition metal, A is an A-group 

element and, X is C and/or N and n = 1 to 3) represent a new class of carbides and 

nitrides and can be best described as polycrystalline nanolaminates. They combine 

some of the best properties of ceramics and metals. Their physical properties 

(stiffness, damage and thermal shock resistance, high thermal and electrical 

conductivity) along with the fact they are readily machinable, make them extremely 

attractive in terms of the potential technological applications. Knowledge of low-

temperature behavior is vital because it can provide insight into Mn+1AXn-phases‘ 

physical properties. This work entails the systematic study of the elastic, electrical, 

galvanomagnetic and thermal properties of these materials in the 4-300 K 

temperature range. 

  The elastic constants of these compounds (Ti3SiC2, Ti3AlC2 and Ti4AlN3) 

were measured over the 20-300 K temperature range. Their Young’s and shear 

modulii determined from ultrasonic velocities were in 300-335 and 124-140 GPa 

range, respectively; both moduli increase slowly with decreasing temperature and 

reaching a maximum at temperatures below 125 K; Poisson’s ratio is 0.2. The Debye 

temperatures, θD, of these compounds calculated from the mean ultrasonic velocity 

are in 650-780K range which is in agreement with data obtained from low- 

temperature heat capacity measurements.   
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 To characterize the electronic transport properties, the resistivity, 

magnetoresistance, Hall effect, Seebeck coefficient and magnetic susceptibility were 

measured in the 4-300K range, and in magnetic fields up to 9T. All MAX-phases 

exhibit metal-like temperature dependence of the resistivity ρ(T).  θD for most of the 

MAX-phases determined by fitting ρ(T) with the Bloch T5 formula were in good 

agreement with the values determined from elastic and calorimetric measurements. 

The carrier density of electrons n (or holes, p) and their mobilities were calculated 

utilizing a semi-classical isotropic two-band model. It was shown that most of the 

Mn+1AXn (n=2) phases (Ti3SiC2, Ti3AlC2, Ti3GeC2) are nearly compensated 

conductors with n ~ p and total density of electrons and holes of ~1028 m3. This result 

also was is in agreement with conclusions based on negligible thermopower of these 

solids. Extensive study of electronic and galvanomagnetic properties and analysis of 

the results suggest Mn+1AXn (n=2) phases can be characterized by relatively high 

charge carrier mobilities. 
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1. Introduction   

 
1.1 Background 

 

There is a need for new materials that have high strength, large modulus, are 

corrosion resistant, and, at the same time, can retain all these properties over a broad 

temperature range, and be usable from cryogenic to refractory environment.  

Material scientists continue a search for new low and high temperature tolerant 

materials that can be easily machined, light-weight, tough, highly reliable with the 

potential to be used in different environments: from large-scale aerospace 

applications, combustion engines, power plants to electronic device applications in 

the semiconductor industry and microelectronics.  It is well known that there are 

special metal alloys developed which are capable of sustaining favorable properties 

to temperatures up to 1000 oC.   Ceramics can work to significantly higher 

temperatures. However, being stiff and hard, they are very generally brittle and 

difficult to machined, and, furthermore, are not generally thermal shock tolerant. In 

spite of significant progress over the past several decades, the wide application of 

ceramics is still limited.   

In 1996, there was remarkable breakthrough in this area, when Barsoum and 

El-Raghy and their research group from Drexel University reported the successful 

synthesis of fully dense, single phase Ti3SiC2. This compound structurally resembles 

the Hägg phases (so called, H-phases) discovered in the sixties. This class of 

materials was lately named MAX phases because of their chemistry: they all are 

ternary layered hexagonal carbides and nitrides, with the general formula Mn+1AXn, 
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where n =1 to 3, M is an early transition metal, A is an A-group element and X is 

either C and/or N.  It has been shown that Ti3SiC2 exhibits large thermal and 

electrical conductivities, structural stability up to 1700 oC in inert atmospheres, high 

fracture toughness, good damage tolerance, shock resistance, good oxidation 

properties and low coefficient of friction, and yet, it is readily machinable.   

So far possible applications of these material are already identified and some 

of them have been the subjects of patents. It is anticipated that the MAX-phase 

materials will be used in many different applications ranging from tribology to 

electrical contacts at high temperatures.  For instance, used as substrates, the 

Mn+1AXn phases, possibly coupled with buffer layers, could be ideal for an array of 

electronic devices. Their high thermal conductivity allows rapid dissipation of heat 

from devices and their structural stability, together with their large electrical 

conductivities  can function as ground planes and electrical shields.  There are many 

other applications, brushes in electric motors being the most obvious, that can take 

advantage of this combination of properties.  

This technological interest triggered a round of theoretical and experimental 

research aimed to better understand their nature and physics.  

In this thesis we report a comprehensive experimental characterization and 

analysis of the elastic and electrical properties of some of these novel material. The 

main results of this thesis are contained in the four published papers [1-4] and 

another manuscript that has been prepared for submission. 

This thesis starts with a literature review that focuses on the history of the 

MAX phases and their properties.  This review attempts to identify the important 
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properties of the MAX phases known prior to the initiation of this work the 

motivation of this thesis.   

The overall thesis is divided into two parts. First, Chapter 2, is devoted to the 

results of elastic constants measurements, while Chapters 3-5 concentrate on 

electronic and galvanomagnetic properties. The natural internal chronological order 

has been maintained, that could help the reader to gradually learn about the low 

temperature physical properties of MAX phases. The reader should be aware that the 

order of the measurements was strongly influenced by the order of the availability of 

high quality materials.  

The elastic constants (first part) are some of the most fundamental quantities 

to be evaluated since they link the interatomic bonding energy with the structural 

and thermal properties of the material. Chapter 2 contains the first reported values of 

Young’s, shear and bulk moduli of predominantly single phase samples of Ti3SiC2 

measured nondestructively. In this work the moduli were measured as a function of 

temperature in the 50-300K range.  Elastic constants were determined by means of 

ultrasonic pulse velocity measurements with a phase sensitive detection technique. 

The temperature dependence of the elastic constants was fitted to an appropriate 

theoretical function. Chapter 2 also deals with the results of elastic properties 

measurements on Ti3AlC2, and Ti4AlN3. One of the more important results of this 

chapter is the extraction of the Debye temperatures of these phases from the 

ultrasonic velocities. The values of these measurements are shown to correlate well 

with results obtained from specific heat experiments and theoretical calculations. 
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Chapters 3-6 discuss the results of the electric and transport properties of 

Ti3SiC2 [3], Ti3AlC2, and Ti4AlN3 [4] , as well as Ti3 (Si,Ge)C2 solid solutions. Ref. 

3 describes the electronic and galvanomagnetic results for Ti3SiC2, and it is 

reproduced in Chapter 3 nearly as it appeared in the Physical Review B. Chapter 4 

reports transport results for Ti3AlC2 and Ti4AlN3. Chapter 5 contains the first results 

of the elastic and transport measurements of the solid solutions on A-site 

compounds, namely Ti3(Si,Ge)C2. In future work the properties of other group of 

ternary carbides and nitrides, such as Ti2AlC, Ti2AlN, V2AlC, Nb2AlC, Cr2AlC and 

Ti2GeC among others will be measured in order to study the effect of composition 

on the physical and electronic properties in these isostructural compounds. The 

general conclusion chapter recapitulates the important results and their implications. 

Finally, Appendix C outlined the experimental ultrasonic elastic constants 

measurements technique. Additional details regarding this method which were not 

included into Chapter 2 but will also be described in Appendix C. 

 

1.2 An Overview of the Physical Properties of the MAX Phases 

 

Recently it has been shown that the MAX phases are best described as 

thermodynamically stable polycrystalline nanolaminates that, surprisingly, exhibit 

both metallic and ceramic features [5].  Some of them (e. g. Ti3SiC2, Ti3AlC2 and 

Ti4AlN3) are elastically quite stiff but despite the high stiffness they are readily 

machinable. Most of them are excellent conductors of electricity and heat; the 

thermal and electrical conductivities of Ti3SiC2 are more than double those of Ti 
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metal. To date, around 25 of the roughly more than 50 known Mn+1AXn phases have 

been synthesized. To date the physical properties of only few of them have been 

fully characterized.   

The history of these materials started forty years ago when Nowotny and 

Jeitschko [7] discovered that the vast majority of these ternary carbides and nitrides. 

At the time, the 211’s were labeled the H-phases, because they have a chemistry of 

the form M2AX;  their unit cell is hexagonal and they are made of layers of M2X 

separated by layers of pure A. The same group discovered Ti3SiC2 in 1967 [8].  It 

was also related to the H-phases because its unit cell made of layers of Ti3C2 

between pure layers of Si.  In general, all these phases are hexagonal (space group P-

6/mmc) and layered, wherein pure layers of the A-group elements are interleaved 

with Mn+1Xn layers consisting of octahedral unit blocks identical to the ones in the 

rock-salt structure [8].  

Recently an updated list shows that there are more than 50 M2AX, or 211 

compounds, three M3AX2 or 312 compounds (Ti3SiC2, Ti3GeC2, Ti3AlC2) and one 

M4AX3 or 413 compound, Ti4AlN3.  These ternaries are hexagonal with c/a ratios in 

the range of 3-6 [9].  In the 312 compounds the c-axis stacking sequence includes 

double layers of distorted edge sharing CTi6 octahedra, reminiscent of the TiC 

structure.  The double layers are separated by sheets of hexagonal nets of the A-group 

element. In case of the 413 compounds there are three A-group element layers 

separated. 

This layered structure of the MAX phases gives rise to a unique set of 

physical properties [8-43], including unexpected combination of metallic and 
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ceramic properties. These properties that can be attributed to the mostly metallic, 

with covalent and ionic contributions, of the very strong M-X bond, together with 

M-A bonds that are relatively weak, especially in shear.  The most outstanding and 

characteristic property that is derived from their layered nature is the ease by which 

they can be machined.  

In the very complete and broad review, Barsoum [5] summarized the 

physical and structural properties of the MAX phases as follows.  

- Being readily machinable, some of MAX phases (e.g. Ti3SiC2, Ti3AlC2 and 

Ti4AlN3) are elastically quite stiff (at 320 GPa the stiffness of Ti3SiC2 is almost 3 

times that of Ti metal, with the same density of ~ 4.5 g/cm3) [9-11]. This implies that 

some of the MAX phases have the highest specific stiffness values for readily 

machinable solids – with the exception of Be.  In general, it has been predicted, that 

nanoscale solids, especially laminates, should exhibit unusual and exceptional 

mechanical properties, which is clearly the case here. With Vickers hardness values 

in the 2-5 GPa range, these compounds are relatively soft compared to other early 

transition metal carbides and nitrides.  

- They are lightweight and stiff, yet machinable and somewhat ductile at room 

temperature.  

- They are all remarkably damage tolerant  [9, 10,11,13].  

- They also possess electrical and thermal conductivities in the range of 2-15 x 106 

Ω−1m-1
 and 20-50 W/m K, respectively [3,5,9,26,27,32-34]. 

- One of the most interesting and fascinating properties of the MAX phases has to 

be their mechanical response: deformation of Ti3SiC2 under compression is quasi-
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plastic (inelastic) and yet fully reversible even at 1 GPa at room temperature [37].  

This implies that at least Ti3SiC2, and possibly all others MAX phase materials, do 

not work harden at room temperature.  

- The basal planes of Ti3SiC2 exhibits a coefficient of friction (≈ 2 × 10-3), which 

is comparable to the lowest values measured for the best solid lubricants (e.g. MoS2 

and graphite) [19].  Even after 6 months’ exposure to air, the friction coefficients 

remained below 5 × 10-3 indicating that these basal planes are chemically robust and 

most probably also wear resistant.   

Most of the work to date [9-11, 12-15, 18-20] has been done on Ti3SiC2. 

Important features of the behavior of Ti3SiC2 established thus far include 

machinability similar to that of graphite [9-11], damage tolerance [13] and good 

oxidation resistance [14]. Ti3SiC2 has a relatively low density, non-susceptibility to 

thermal shock [10], a brittle to a pseudo-ductile transition at 1200°C, with 

respectable yield points at 1300°C (100 and 500 MPa in flexure and compression, 

respectively) together with a more than 50% strain at failure [15]. Each of these 

properties makes Ti3SiC2 a viable candidate for numerous applications.  

A. Mechanical Response (Fracture Properties) 

As emphasized in Ref 5, the mechanical properties of the MAX phases can 

be traced to the following 3 facts: (A) Basal slip, and only basal slip, is operative at 

all temperatures.  The Burgers vector in the basal plane is 1.5 Å; any nonbasal 

dislocation would have to have a Burgers vector > 13 Å.  Hence the 5 independent 

slip systems required for ductility are lacking. However, because they posses more 

operative slip systems than ceramics, they are more damage tolerant, thermal shock 
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resistant and softer. If the grains are oriented and large, Ti3SiC2 is ductile even at room 

temperature. (B) Because of their high c/a ratios, twinning is unlikely, and has never 

been observed.  Instead, deformation occurs by a combination of glide and the 

formation of kink bands within individual grains.  (C) Because they are confined to 

the basal planes, the dislocations arrange themselves either in arrays (pileups) on the 

same slip plane, or in walls (low or high angle grain boundaries) normal to the 

arrays. Dislocation interactions, other than orthogonal, are difficult and unlikely to 

occur.  Hence dislocations can move back and forth reversibly and extensively 

resulting in a new physical phenomenon in crystalline solids best described as fully 

reversible pseudo-plasticity [24].   

As expected, due to their nanolaminated nature, the MAX phases are  

mechanically (in respect to their fracture properties) strongly anisotropic, yet, 

somewhat surprisingly thermally they are quite isotropic, in contrast to typical 

layered materials [18]. The bulk dilatometric thermal expansions of the MAX phases 

fall in the narrow range of 8 to 10 x 10-6 K-1 [6,9,18].  The thermal expansion 

anisotropies of these ternaries are much less pronounced than the anisotropy in 

mechanical properties would suggest.   

In the case of Ti3SiC2, along the c-axis, the C-Ti-C, C-Ti-Si and Ti-Si-Ti, 

bonds expand at 5.5, 8.8 and 13 x 10-6 K-1, respectively [18].  In other words, along 

the c-axis, the C-Ti-C bonds are stronger than, and the Ti-Si-Ti bond are weaker than 

the average Ti-C bonds in TiC0.97[18]  It is this averaging in bond strengths that 

explains both the mild anisotropy in thermal expansion and the good agreement 

between the normalized molar heat capacity values of Ti3SiC2 and TiC0.97.  
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Mechanically, however, Ti3SiC2 bears little resemblance to TiC0.97. The latter is a 

hard, brittle solid, susceptible to thermal shock; the former is a relatively soft, readily 

machinable, damage tolerant solid that is not susceptible to thermal shock [44].  

Furthermore, since the earliest work on Ti3SiC2 the pronounced anisotropy in its 

mechanical (i.e. fracture) properties has been well documented.  For example, the 

hardness values normal to the basal planes are about 4 times that parallel to them 

[21,45].  The unusual mechanical behavior of Ti3SiC2 can be directly traced to the 

relative weakness, particularly in shear, of the Ti-Si bonds, the evidence for which is 

multifold. Thus, Raman spectroscopy [22] reveals the presence of a soft (151 cm-1) 

phonon shear mode between the Ti and Si planes. These modes that arise from the 

shear of the Mn+1Xn sheets relative to the A-planes are not found in the binary 

transition carbides and nitrides. In order to truly understand the relationship between 

bonding and mechanical properties, the anisotropies in the latter have to be studied 

by carrying out measurements on single crystals. This work must be performed on a 

clean single-phase specimen are available. 

B. Elastic properties: 

The most important role of the elastic properties and their temperature 

dependence is that with their knowledge one could identify correlations between 

fundamental solid-state phenomena such as lattice vibrations, theoretical strength, 

free energy, specific heat and thermal expansivity. We believe that the elastic 

constants and associated physical parameters (i.e., the Debye temperature) will allow 

a deeper understanding of the relationship between the mechanical properties and the 
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electronic and phonon structure of these materials. It is well known that elastic 

properties also can be predicted from ab initio calculations. 

 The elastic properties of Ti3SiC2 were first measured by Pampuch et al 

[16,17], who reported Young’s, ERT , and shear, µRT, moduli at room temperature for 

two different samples.  For these samples, hot pressed at 1400 °C for two hours, ERT, 

and µRT were 326±11 and 135±4 GPa, respectively.  The corresponding values for 

samples that were sintered at 1600 °C for 2 hours were 286±2 and 120±1 GPa.  

Poisson’s ratio, ν, was 0.193.  The samples measured, however, were not single 

phase, but contained ≈ 10-20 vol. % TiC [17].  

Barsoum and El-Raghy [9] in the preliminary work on a single-phase pure 

Ti3SiC2 material, reported room temperature Young’s modulus is about 320 ± 10 

GPa. Apart from this information no other references were found in the literature on 

the elastic properties or their temperature dependence for other Mn+1AXn (n>2) 

phases.  

In this work we report what we believe is the first measurements of the 

temperature dependence of the MAX phases elastic modduli. We present the 

measurement of E(T), µ(T) and bulk moduli as a function of temperature for Ti3SiC2 

[1,2] ,Ti3AlC2 [2] and Ti4AlN3 [2].  Note that the full set of elastic modulii measured 

on polycrystalline samples were calculated based on an isotropic media 

approximation. It should also be noted that isotropy of elastic properties alluded to 

above based on thermal expansion results and this is somehow in agreement with the 

recent theoretical prediction obtained by Holm et al [39] concerning the relative 
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isotropy of the elastic properties. We will compare these results with our 

experimental data in the next Ch. 2. 

Information about the elastic constants allows one to calculate the Debye 

temperature, which characterizes crystalline solids perhaps better than any other 

single parameter. It normally approximates the specific heat Debye temperature at 

T=0K. In principle, using elastically measured Debye temperature, θD, the lattice 

contribution to the low temperature heat capacity cp = const x (T/θD)3 can be 

estimated.  

 C. Transport Properties: 

I will now move from the overview of mechanical properties and begin a 

discussion of the transport properties (i.e. electronic and thermal properties).  

As was mentioned above, most of MAX phases are excellent conductors of 

electricity and heat; the thermal and electrical conductivities of Ti3SiC2 are more 

than double those of Ti metal.  With one possible exception, Ti4AlN3, MAX-phase 

compounds exhibit metal-like temperature dependence of resistivity ρ(T), i.e ρ 

increases linear with increasing temperature, at least for T>100K [5]. The 

resistivities of Ti-based compounds are lower than those of Ti and TiCx , the only 

exception is possibly Ti4AlN3 . 

As was shown in [31], the Seebeck coefficient of Ti3SiC2 is nearly negligible 

over the 300–800 K temperature range. This led Barsoum et al [31] to the conclusion 

that Ti3SiC2 is most probably a compensated conductor, i.e. the current is carried 

nearly equally by electrons and holes.  
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To claim to understand electric transport in a solid it is imperative that the 

density (n or p) and mobility of the charge carriers be known.  For a simple solid 

with a single carrier, the combination of Hall coefficient RH and resistivity 

measurements is usually sufficient.  Once determined these parameters can, in 

principle, be used to explain thermopower and magnetoresistance measurements.  

A first attempt to estimate the concentration of the charges carriers in 

Ti3AlC2, Ti3SiC2, and Ti4AlN3 was made in [32]. Most of results concerning the 

charge carriers determination in this original work have been shown lately to be 

incorrect because of the erroneous determination of the Hall coefficient. Recently, 

we actually re-measured the Hall effect and recalculated these values [3]. The results 

of this work are  reported in Chapters 3 and 4 and Refs 3 and 4..   

The resistivity vs. temperature ρ(T) data were measured for some other MAX 

phases fabricated so far [5,42,43].  Most of these results cover only high temperature 

range T > 77K. Apart from these results, as far as we are aware, the only low 

temperature work was done recently by the author in collaboration with the Rowan 

group [3,4]. However, it is well known that from the low temperature ρ(T) fitting 

using Block-Gruneisen formula ρ ~ T5 one can estimate the characteristic 

temperature which is close to the Debye temperature obtained  from the heat 

capacity and elastic measurements. This is important information that is crucial in 

substantiating the validity of the models and myriad experimental results.   

The results of the completed electrical transport, magnetoresistance and Hall 

measurements for Ti3AlC2, Ti3SiC2, and Ti4AlN3 samples are discussed in Chapter 3 

and 4.  As it will be shown in these chapters, the Debye temperature of these phases 
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estimated in this way agree well with the values obtained from low temperature 

specific heat and elastic measurements.  

Because some of the ternary phases are compensated conductors, in order to 

determine electron density, n, and hole density, p, as well as their mobilities, extra 

measurements were required. In the absence of such measurements, we assumed n= 

p, which allowed consistent fitting the resitivity, the Hall coefficient and the 

magnetoresistance results for Ti3AlC2 and Ti3SiC2. Surprisingly, the Seebeck 

coefficient in these compounds remains hole-like at all temperatures [43]. Similarly, 

Ti4AlN3 is a p-type conductor at room temperature.  As mentioned above, Ti3SiC2 is 

unique; its Seebeck coefficient is negligible over at least 800 K; no other solid 

behaves this way.  The full implication of this result is that Ti3SiC2 is a compensated 

conductor; it conducts electricity by holes and electrons with nearly identical 

concentrations, i.e. n = p.   

Thermal transport (thermal conductivity, thermoelectric power, i.e. Seebeck 

coefficient, and heat capacity) measurements are very important because they can in 

principle, but not easily be used for checking the validity of the theoretical models.  

From the band structure calculations [38,39] one can evaluate the bulk 

moduli, elastic constants and Debye temperature.  To measure the density of states at 

the Fermi level low temperature heat capacity can be used.  These measurements 

also quantify the Debye temperature. The density of states near the Fermi level for 

Ti3SiC2 were measured twice and hover around 5 (ev.unit cell) [18,39], in excellent 

agreement with theoretical values [40-42]. The agreement between the values for 

Ti4AlN3 is not as good, most probably is related to non-stoichiometry.  In spite of 
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quite intricate interplay of structure and transport properties in these compounds, 

their thermal properties can be traced form the strong contribution of the phonon 

scattering on defects present in the less stoichiometric Ti4AlN3.  

It was established earlier [5,9] that for the most part the MAX phases are 

excellent heat conductors because they are excellent electrical conductors. With the 

exception of some Al-containing MAX phases, the phonon contribution to the total 

thermal conductivity is small, particularly at high temperature where the results are 

relatively simple to understand. Given the high elastic constants of these phases, this 

is a somewhat surprising result. A partial answer to the question – based on a limited 

set of compounds - has recently been proposed [5,18]; namely that the A-group 

element acts as a rattler in the MAX structure. Such rattlers have been shown to be 

potent phonon scatterers. The best phonon conductors to date have been the Al-

containing ternaries.  One possible reason for this state of affairs is that the Al atoms 

are better bound to the structure than other A-group elements in general.   

Due to MAX-phase materials potential applications they have been 

extensively studied at elevated temperatures. Very few results have been published 

on the low-temperature properties of these materials. It should be noted that the 

knowledge of the low-temperature properties can help to reveal the nature of the 

fundamental physical characteristics, such as elastic moduli, electrical and thermal 

conductivities, thermopower and heat capacity.  
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1.3 Objectives and Scope of Work 

  

 The intent of this work is to create substantial experimental database of the low 

temperature physical properties of the MAX phases to obtain a basic understanding 

of the physics of these materials. This will be achieved by performing a systematic 

characterization of their fundamental elastic, electronic, magnetic and thermal 

properties as function of temperature and composition.   

The objectives of this work include: 

• Measure Young’s and shear moduli of MAX materials as a function of 

temperature using ultrasonic technique from cryogenic to room temperature. 

• Using this experimental data calculate fundamental parameters describing these 

materials (i.e. Debye temperature). 

• Analyze existing theoretical calculation of the elastic properties and compare 

them with the experimental results to select a correct model  

• Measure the electronic and galvanomagnetic properties of the MAX phases over 

a wide range of temperatures and magnetic fields. 

• From this data analyze and predict the type, density and mobilities of the charge 

carriers using band theory and correlate with the density of states calculations. 

•  Identify the composition effect on the physical properties of the isostructural 

compounds by investigating them at low temperatures.  

• Study the effect of alloying on M, A or C sites by measuring resistivity and 

galvanomagnetic properties of substituted materials. Predict the effect of this 

alloying and its influence on the conduction mechanism. It is our intention to 
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determine conduction mechanisms for as many materials in the MAX-phase family 

as possible. 

 The results obtained from these measurements and substantial interpretations are 

presented in this thesis.  
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2.  Low Temperature Dependence of the Elastic Properties of Ti3SiC2 Ti4AlN3, 

and Ti3Al1C2  
 

 

2.1 Introduction  

 

 This chapter contains the first data on the elastic properties temperature 

dependence of the Mn+1AXn with n=2. Here we present the combination of the 

results published in two papers [1,2] concerning the Young’s and shear moduli 

measured ultrasonically in 50-300K temperature range for Ti3SiC2, Ti4AlN3, and 

Ti3Al1.1C1.8 . In the original paper, the chemistry of the latter was assumed to be 

Ti3Al1.1C1.8. Since that time, the actual composition was measured and found to be 

Ti3AlC2; the latter will be used here. 

As it was mentioned in Introduction, the only data on Young’s modulus of 

the single phase Ti3SiC2 sample were obtained at room temperature in [9].  The 

modulus was deduced from the slope of the stress-strain curve.  

In our earlier work [1] we reported the first nondestructive measurements of 

Ti3SiC2 elastic moduli as a function of temperature. The elastic moduli were 

determined from ultrasonic (shear, Vs, and longitudinal, VL) velocities measurements 

using the following equations [47]: 
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ν =
E

2µ
 -  1       (3) 

 

where E and µ and ν, are, respectively, the Young’s and shear moduli and Poisson’s 

ratio. Specimen density, ρ, was measured using Archimedes’ principle.  In Ref. 1 ρ 

was 4.47gm/cm3. The observed density of these samples was about 0.7% less than 

the theoretical one indicating the presence of some porosity and voids. The 

concentration of TiC in the sample was less than 1 vol. %.   From [1], based on 

measured velocities room temperature ERT and µRT were, respectively, 322 ± 2 and 

133.6± 0.8 GPa.  Poisson’s ratio was 0.2 (± 0.007).  Interestingly, these values were 

in excellent agreement with previously reported values [9,16]  (see Table 1). 

In that paper we estimated the Debye temperature using an expression 

equivalent to [47]: 

 

               θ D =  (
h
k

) (
3 n ρ N Av

4 π  m 
)1 /3  vm                                           (4) 

 

where:  

h - Plank’s constant 

k - Boltzmann’s constant 

ρ - density 

n - number of atoms per molecule 
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NAv – Avogadro’s number 

m – molecular weight 

Vm - mean sound velocity defined as  [43] by averaging shear Vs and longitudinal VL 

sound velocities: 

 

3/1
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V                          (5) 

 

In our early work [1], using the measured room temperature value of Vm  for 

Ti3SiC2 , θD was erroneously calculated to be 427 K, because the molecular weight, 

rather than the mean atomic weight, was used. The correct Debye temperature is 784 

K [2], which is roughly 8 % higher than most recent determination of the Debye 

temperature from low temperature heat capacity measurements , viz. 715 K [35].  

In the later work [2] we re-measured the temperature dependence of the 

elastic constants of Ti3SiC2 and the related ternaries Ti3AlC2 and Ti4AlN3 in the 50-

300 K range.  In addition we measured the elastic properties of Ti3SiC2 as a function 

of grain size.  The intent was to check the assumption that above ≈ 150 K the moduli 

of these materials should, like most all other materials, decrease linearly with 

increasing temperature.  This is expected since no phase transitions occur in this 

material up to at least 1600 °C [18].   
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2.2 Experimental Details 

  

The processing details have been presented elsewhere [9]. In Ti3SiC2 samples used 

in work [1] the microstructure of the sintered material consisted of equiaxed fine 

grains ≈ 3-5 µm in diameter.  The concentration of TiC in the sample was less than 1 

vol. %.  The specimen was machined into a 9 x 10 x 18 mm3 parallelepiped sample. 

Specimen density was measured hydrostatically with experimental uncertainty of 

0.1%. The observed density of these samples from the work [1] was about 0.7% less 

of the theoretical one indicating the presence of some porosity and voids.  

The fabrication procedure details for the Ti3Al1.1C1.8, Ti4AlN3 and Ti3SiC2 

samples can be found in [26], [27,34] and [28], respectively. In brief, Ti3SiC2 

polycrystalline samples were fabricated by reactive hot isostatic pressing (HIP) of 

TiH2, SiC and graphite powders at 1600°C for 4 hours under a pressure of 40 MPa.  

Titanium hydride (Timet, Henderson, NV, dm = 12 µm),  SiC (99.7 %, dm = 4 µm, 

Atlantic Equipment Engineers, Bergenfield , NJ), and C powders (99%, dm = 1 µm, 

Aldrich, Milwaukee, WI)  were weighed and dry mixed in a V-blender for 2 hours to 

yield the 3:1:2 stoichiometry.  Prior to HIP the compacts were heated in vacuum to 

dehydride the Ti. All samples in this set of measurements were fully dense. For 

Ti3SiC2, another two microstructures were examined; a fine (5-10 µm) grained 

structure and a coarse (20-200 µm) grained one [28]. The dimensions of the fine and 

coarse-grained Ti3SiC2 samples were, respectively, 9 x 10 x 15 mm3 and 8.8 x 10 x 13 

mm3. The samples contained < 2 vol. % TiC and SiC. The Ti4AlN3 samples were 10 x 

  
 



 
 

21

 
12 x 24 mm3 in size, and contained ≈ 1-3 vol. % TiN. The Ti3Al1.1C1.8 sample was 10 

x 10 x 27 mm3 and contained ≈ 4 vol. % Al2O3 as a secondary phase.  

 The elastic constants and their temperature dependencies were measured in 

the 50-300 K temperature range using a standard ulstrasonic pulse-echo method 

utilizing the heterodyne phase detection technique (PST) described in detail 

elsewhere [1, 46].   One can find more details on experimental techniques for elastic 

constant measurements in Appendix C.  The set-up used in this work was described 

elsewhere in detail [46].  This apparatus measures the change in the time of flight by 

decomposing each individual echo into a quadrature and in-phase component and is 

capable of resolving relative changes in sound velocity with precision up to 10-5.  

The PST also measures the absolute sound velocity in the material with an accuracy 

of about 0.5%.  The relative changes in transit times were recorded for each 

temperature point and the absolute velocities were calculated at 300 K and 20 K.  

The temperature was controlled by a LakeShore temperature controller.  To check 

the validity of the data calculated from the PST, the sound velocity was also 

calculated by digitizing and storing each echo pattern.  Fast Fourier Transform, FFT, 

of these patterns was then used to deduce the time of flight.  The velocity determined 

from the FFT was within 0.3 % of the values measured by the PST method.  Two Li-

niobate transducers (X –cut is for excitation  longitudinal wave, and Y-cut is for a 

shear waves)  tuned to the resonant frequency of 15 MHz was used for all these 

measurements.   A photograph of the sample holder and installed specimen with the 

transducer mounted on the facet is shown in Fig 1. The transducers were bonded to 

the samples with the different bonding agents to provide adequate coupling of the 
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acoustic waves over a wide temperature range.  For the room temperature 

measurements, phenyl salicilate (Salol‚ Merck, Inc.) was used for both transverse 

and longitudinal waves.  In the intermediate temperature range the transducers 

coupled to the sample with a thin layer of Nonaq Cork grease (Dow Corning).  At 

the lowest temperatures, silicone (GE Caulking compound) was used.  The gaps in 

the data represent regions where the coupling was deemed inadequate.   

 

2.3  Results and Discussion 

   

The experimental results on measured ultrasonic velocities in Ti3SiC2 at room 

temperature along with the calculated modulii are summarized in Table 1 (taken 

from the early work [1]). 

The temperature dependencies of the moduli for Ti3SiC2 are plotted in Fig. 2. 

A least square fit of the results yields:  

 

 
E

ERT
  =  1 – 0.95 x 10-4 (T - 298)                  T > 130 K    

  

 
µ

µRT
 =  1 – 1.43 x 10-4 (T - 298)                T > 130 K  (6) 

 

 There are several differing ways of interpreting the results shown in Fig. 2.  

Typically the temperature dependence of the shear moduli of metals and simple 

binary compounds is represented by the following relationship [50]:  
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µ(T ) = µRT [1 -  K (
T - 300

TM

)]     (7) 

 

where TM and T are, respectively, the melting points and the temperature of interest, 

both in degrees Kelvins.  K is a constant of the order of 0.5.  To check the validity of 

this expression for Ti3SiC2 is problematic because Ti3SiC2 does not melt 

congruently, but decomposes  (like other M2AX compounds (e.g. [5]), peritectically 

at ≈ 2200 ± 20 °C.  Based on Eq. 7, a plot of d(µ/µRT)/dT versus 1/TM should yield a 

straight line from which the “equivalent” melting point for Ti3SiC2 can be estimated. 

That such a plot of select elements and compounds yields a straight line is shown in 

Fig. 3.  From the plot, K ~ 0.57 and the r2 value is > 0.95. Based on the value of 

d(µ/µRT)/dT for Ti3SiC2 ( – 1.43 x 10-4) and Eq. 8, the equivalent melting point of 

Ti3SiC2 is ≈ 2600 °C.  This value is reasonably close to the reported decomposition 

temperature to be plausible.  

The temperature dependencies of the Young’s moduli of Ti3Al1.1C1.8, 

Ti4AlN3 and Ti3SiC2 (for two grain size samples used in [2]) are plotted in Fig. 4a 

and summarized in Table 2. The corresponding values for the shear moduli are 

shown in Fig. 4b. The least squares fit of the results shown in Fig. 4b, yields:   

 

µ/µRT = 1 – 1.5 x 10-4 (T - 298)  for T >125 K  and  

 

 µ/µRT = 1 – 1.2 x 10-4 (T - 298)  for  T >125 K   
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for Ti4AlN3 and Ti3Al1.1C1.8, respectively. These expressions are only valid for T > 

125 K; at lower temperatures the elastic constants tend to plateau out. The 

temperature dependencies of the Young’s moduli of the two compounds are also 

comparable (Table 2). 

There is practically no difference between the Young’s and shear moduli or 

their temperature dependencies of the fine and coarse-grained Ti3SiC2 samples (Fig. 

4a). For reasons that are not entirely clear, the room temperature Young’s and shear 

moduli obtained in [2] were ≈ 4 % higher than our previous determination [1]. One 

of the possible reasons of this variation may be related to the presence of some voids 

in the samples used in [1]. The slopes, (dµ/µRT)/dT, however, are identical (Table 2). 

It is also worth noting that the bulk modulus calculated herein, 184 GPa, is in 

reasonable agreement with recent direct measurements on Ti3SiC2, viz. 206 ± 6 GPa 

[36].  

Not surprisingly, given the similarities in structure and properties of these 

ternary compounds, their moduli are all within 10 % of each other.  The temperature 

dependencies of the shear moduli are also quite comparable and within 20 % of each 

other. Consistent with these results is the fact that the thermal expansion coefficients 

of Ti4AlN3 [27], Ti3Al1.1C1.8 [26] and Ti3SiC2 [18] are, respectively, 9.0 x 10-6, 9.7 x 

10-6 and 9.2 x 10-6 K-1
.  

 

It has also been suggested that the temperature dependence of E could be 

expressed as [51]: 
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E = Eo −
S

exp(T E
T

) −1
                                                             (8) 

 

where Eo, S and TE are, respectively, Young’s modulus at 0 K, a constant and TE is 

related to Einstein’s temperature.  In case of Ti3SiC2 , a best fit of the data (dashed 

line in Fig. 2b) by Eq. 8 yields Eo = 330.8 GPa, S = 19 GPa and TE = 510K.  From 

the value of TE  the Debye temperature, θD,  is estimated to be ≈ (4/3) TE or 680K 

according to the approach described in [51]. This value, recalculated recently using 

more recent data and new fitting technique, seems to agree better with the value 

obtained from low temperature heat capacity work [29] (i.e. 715K) than results 

presented earlier in [1]. In general, this agreement gives very strong credence of the 

results. Based on the room temperature value of Vm, calculated value of θD is slightly 

higher than the value (θD = 680 K) estimated using the fitting of E(T) curve to Eq. 8.  

Based on room temperatures values of vm, θD for Ti3Al1.1C1.8 is calculated to 

be 758 K, which compares favorably with the value of 764 K measured 

calorimetrically [35]. Similarly, θD for Ti4AlN3 is calculated to be 762 K, which, 

again, is in good agreement with the calorimetric value of 779 K [35]. The corrected 

Debye temperature for Ti3SiC2 (784 K), and the one calculated in this work (780 K), 

are in excellent agreement with each other and in reasonably good agreement with 

calorimetric value of 715 K [35]. Both these values are significantly higher than those 

of Ti ,Ti3Al or TiN and even comparable to those for C (graphite, viz. 940K) and 

refractory binary phases such as TiC0.97 . 

  
 



 
 

26

 
As noted in our previous paper [1], the elastic constants and their temperature 

dependencies measured herein are usually associated with ceramic materials, or very 

refractory metals such as Mo or W. Hitherto, the price one had to pay for high 

stiffness, low density solids, has been lack of, or difficulty in machinability. The 

results of this work make it amply clear that is no longer the case. It should also be 

mentioned that the shear moduli of these ternaries are weak functions of temperature, 

implying that these solids should maintain their high stiffnesses to relatively high 

temperatures. For example, at 1273 K, Ti3Al1.1C1.8, would lose 12 % of its stiffness. 

Table I also compares the elastic properties of Ti3SiC2 measured in this work 

to those of TiC0.97, Ti and Mo.  It is worth noting that stoichiometric TiC0.97 is quite 

stiff, with Young’s and shear moduli of 456-500 [44,45] and 193 GPa [45], 

respectively. A perusal of the results clearly establishes that: 

a) Ti3SiC2 is less stiff than TiC0.97 but substantially stiffer than Ti.  

Interestingly, its elastic properties and their temperature dependencies compare quite 

favorably with those of Mo. 

b) The Debye temperature of Ti3SiC2 estimated from the elastic 

measurements is slightly higher than one calculated from heat capacity 

measurements. This is somewhat quite usual result if one bears in mind the 

anisotropy of the mechanical response of the MAX phase materials.  Given the 

layered nature of Ti3SiC2 and the anisotropy in the strength of its various bonds, one 

may expect that at least two, not just one, characteristic temperatures (i.e. Debye 

temperatures) are required to fit the data. This approach is based on representation of 

the in-plane and out-of-plane (in respect to the layers) vibrational modes associated 
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with different characteristic temperatures [58]. However, comparative analysis of the 

available θD data for other materials revealed rather small, in general, relative 

variations in the values of θD estimated by different methods for other MAX 

materials. Though it is well acknowledged that the representation for an structurally 

anisotropic, multi-element materials by one Debye temperature is an 

oversimplification, recent experimental results gave an indication that, in principle, 

these results can be reasonably well treated within the framework of the single-

parameter Debye model.  For such structurally anisotropic solids as MAX phases, 

the averaging of their vibration modes, in general, led to the quite adequate results 

for elastic θD calculated in assumption of an elastically isotropic medium where the 

velocities are independent of crystallographic direction. 

This is not surprising result, since this averaging is already presented in 

polycrystalline materials where the anisotropy is averaged out by the randomly 

oriented grains. Measured on a polycrystalline specimens (representing an isotropic 

case) values of the elastic constants would be considered then not a bad 

approximation of the isotropic solids.  In some respect, this notion was also 

supported by the observed isotropy of Ti3SiC2 thermal properties.  

In addition to that, the results of our experiments were also supported by the 

recent theoretical work where Holm et al [38] concluded that Ti3SiC2 material is 

essentially elastically isotropic, since c11 and c33, as well as c12 and c13, were close in 

magnitude. We came across this theoretical paper on Ti4AlN3 and Ti3SiC2 

mechanical properties after this work was already finished. In [38,39] Swedish group 

from the Uppsala University obtained a set of elastic constants using density 
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function theory and compared their results with the values reported in [1,2].  

Young’s, shear and bulk modulus and Debye temperature values for Ti3SiC2 were 

calculated from the knowledge of the elastic constants evaluated using density of 

states results. It was shown that our experimental results [2] were in a good 

agreement with ab initio calculations. These values appeared to be less than 10% 

different from our results calculated experimentally indicating a satisfactory 

correspondence between theory and experiment.  

A complete understanding of the mechanical properties of Ti3SiC2 is 

obviously lacking at this time and more work, both theoretical and experimental, is 

required.  Measurements of single crystal elastic constants would be invaluable at this 

juncture.    

 

2.4 Conclusions and Summary 

 

 In this paper we reported on the temperature dependencies of the elastic 

properties of Ti4AlN3, Ti3Al1.1C1.8 and Ti3SiC2.  The velocities were measured using 

a phase sensitive pulse-echo ultrasonic technique in the 50–300 K temperature 

range. In case of Ti3SiC2, Young’s, shear and Poisson’s ratio are, respectively, 

336±3GPa, 133.6±0.8 GPa and 0.2.  A least square fit of the data yields,  µ/µRT = 1 - 

1.42 x 10-4 (T - 298) and E/ERT = 1 – 0.95 x 10-4(T – 298) for temperatures greater 

than 130 K.   At room temperature, Young’s, ERT, and shear, µRT, moduli and 

Poisson’s ratio of Ti4AlN3 are 310 ± 2, 127 ± 2 GPa and 0.22, respectively. The 

corresponding values for Ti3AlC2 are 297.5 ± 2 GPa, 124 ± 2 GPa and 0.2. Both 
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moduli increase slowly with decreasing temperature and plateau out at temperatures 

below ≈ 125 K. A least squares fit of the temperature dependencies of the shear and 

Young’s moduli of Ti4AlN3 yield:  µ/µRT = 1 – 1.5 x 10-4 (T - 298) and E/ERT = 1 – 

0.74 x 10-4 (T - 298), for T >125 K.  The corresponding relationships for Ti3Al1.1C1.8 

are: µ/µRT = 1 – 1.2 x 10-4 (T - 298), and E/ERT = 1 – 0.84 x 10-4 (T - 298) for T 

>125 K.  

The Debye temperature of these materials was calculated using averaged 

sound velocity. The elastic Debye temperatures calculated for Ti4AlN3 and Ti3AlC2, 

as well as Ti3SiC2, are all above 700 K, in agreement with values calculated from 

low temperature heat capacity measurements. This result is also in a good agreement 

with the value predicted from the fitting of E(T) curve. 
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3. Magnetotransport Properties of the Ternary Carbide Ti3SiC2 in the 4-300K 
Temperature Range 1 

 

3.1 Introduction 

  

To date the most studied of MAX phases materials is Ti3SiC2. Its physical 

properties have been extensively characterized since it was successfully synthesized 

as a fully dense, single-phase bulk material at Drexel University in 1996. It is 

anomalously soft for a transition metal carbide (Vickers hardness values from 2-4 

GPa) and readily machinable with a manual hack saw, regular high speed tool steels 

with no lubrication or cooling required. Ti3SiC2, is elastically stiff (Young’s moduli 

> 300 GPa) [5,9,10], damage and thermal shock tolerant and behaves quasi-

plastically under compression [21].  

In the last few years several band structure calculations of Ti3SiC2 have been 

performed [38-42]. Two of those papers [40,41] predict a density of states at the 

Fermi level N(EF) of about 5 states/eV unit cell. These values are in excellent 

agreement with the values calculated from low temperature heat capacity 

measurements [29]. The Debye temperature of Ti3SiC2 is also quite high and ranges 

from 715 to 780 K depending on the method of measurement [2,29]. 

It is a good thermal and electrical conductor. The room-temperature electrical 

conductivity is 4.5 x 106 (Ωm)-1, roughly twice that of pure Ti, and more than 4 

 
1 This chapter is reproduced practically without changes as it appeared in Phys Rev B [3] 
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the Humboldt and Max Planck Foundations to one of the authors (MB) during his sabbatical leave in 
Germany is also gratefully acknowledged. 
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times that of near stoichiometric TiC [9,31,32]. Recently Yoo et al. have shown that 

the thermoelectric power of Ti3SiC2 is negligible at least over the 300-850 K 

temperature range [31].  This fact led Barsoum et al. to the conclusion that Ti3SiC2 is 

a compensated conductor [32], in which the concentration of electrons, n, was equal 

to the concentration of holes, p. In addition, to account for the fact that the Hall 

coefficient fluctuated around zero, the mobilities of the holes and electrons were also 

assumed to be equal. As this work shows the Hall coefficient is not zero. Part of the 

problem in the previous work can be traced to the fact the latter were performed in 

relatively low (0.8 T) magnetic fields causing the Hall voltage to be around the noise 

level of the measurements.   

In this work, we characterize the electronic transport in Ti3SiC2 by 

performing electrical conductivity, Hall constant and magnetization measurements 

over the 4 to 300K temperature range and magnetic fields up to 5T. In what follows, 

we discuss the electronic properties of Ti3SiC2 derived from these new experimental 

results. New insight is obtained on the electronic conduction mechanism in Ti3SiC2 

in light of the two-band model.     
 

3.2 Experimental Methods   

 

Three samples (two six-probe Hall bars and one parallelepiped shaped 

specimen) of various thicknesses (0.2 – 1.3 mm) were cut from Ti3SiC2 sample with 

extra large (1 to 2 mm) grains phase fabricated using the following sequence: 

reactive sintering, hot forging, and a 1600 °C anneal for 24 hrs. The forging oriented 
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3.3

the grains and the annealing allowed them to grow to millimeter sizes. The 

fabrication details and microstructure are described elsewhere [24].   Despite the fact 

that the grains were quite large, the samples are to be considered polycrystalline, 

albeit with few grain boundaries.  

 
The Hall voltage and magnetoresistance, MR, were measured sequentially 

using pairs of the six leads in a gas flow cryostat over the 4.2 – 300K temperature 

range and at magnetic fields, B, up to 5T. Current contacts were applied with either 

silver epoxy or Wood’s metal.  Voltage probes were attached using silver epoxy and 

annealed gold wire. The voltage sensitivity was roughly 100nV.  No contact heating 

was observed for currents up to 300mA. The temperature was monitored and 

controlled using a Lake Shore temperature controller and cernox temperature probe 

which was affixed to the sample holder. The small magnetoresistive component of 

the Hall voltage was eliminated by magnetic field reversal and subtracting the 

measured voltage. Thermal emf’s were eliminated using a current reversal 

technique. The magnetic susceptibility measurements were done with a Physical 

Property Measurement System (Quantum Design).  

 

 Results and Discussion  

 

The temperature dependence of the resistivity ρ(T) for two different samples 

is shown in Fig. 5. For one sample the measurement was over the entire temperature 

range; for the second sample the residual resistivity in the low T region was studied 

in detail. A departure from the typical metal-like linear resistivity region is observed 
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at temperatures below 90 K. The experimental data was approximated by a Bloch 

formula using a T5 law in the low temperature region (insert, Fig. 5).  The Debye 

temperature ΘD obtained from this fitting yields ΘD = 830K, which is in good 

agreement with the value of 760K determined from elastic measurements [2], but 

higher than those measured from low temperature heat capacity [29]. The 

experimental results along with the published data are summarized in Table 3, and in 

general the agreement between the various measurements of ρ(300)  and dρ/dT is 

excellent. Figure 6 shows the Hall voltage as a function of the magnetic field for 

several temperatures.  In the 4 to 200 K temperature range, the Hall voltage is a 

linear function of magnetic field up to 5T. From these results the Hall coefficients, 

RH, were calculated at different temperatures and found to have a weak temperature 

dependence above 100K, but a stronger dependence at lower temperatures (in the 

small angle electron-phonon scattering region - see Fig. 2b). In the presence of two 

isotropic bands with different types of carriers (possessing different effective masses 

or signs), in a weak field limit, the magnetoresistance ρ(H) and Hall effect can be 

expressed respectively as [54]: 
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where Ri  and ρi are the Hall constant and resistivity of the specific band, 

respectively. In the presence of a second group of degenerate charge carriers, the 

MR can be approximated and expressed in terms of mobilities, µI, of the each band 

by: 

 

                                ∆ρ/ρ  ≈ σ1σ2(µ1− µ2)2 Β2/(σ1 + σ2)2                                       (11) 

 

and the σi’s are the conductivities of each band. In the special case that the 

concentration of electrons, n, is equal to that of the holes, p, and given that the 

mobilities of the electrons, µn, is negative, while that of the holes, µp, is positive, Eq. 

11 simplifies to: 

 

                            ∆ρ/ρ  ≈ |µnµp|  Β2                (12) 

 

wherein the MR is proportional to B2. 

Furthermore, in the low field limit, Eq. 10 can be expressed as: 

 

RH = (1/e) (µp
2p – µn

2n) / (p µp + n µn) 2   (13) 

 

For n = p, it simplifies further to: 

 

                      RH = (1/ne) {(1 – b2)/ (1+ b)2}                                (14) 
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where b = µn/µp – the ratio of mobilities. In this case, RH will not be a function of B. 

The transverse MR is shown in Fig.8. At 4.2 K, the MR is indeed dominated 

by a positive quadratic field dependence and can be represented to an accuracy of ± 

2% by the expression ∆ρ/ρ(Β) = 2.06 x 10-3 B2 (Fig. 8). Furthermore, RH is field 

independent (Fig. 6). These results lead us to the conclusion that, in the two-band 

model framework, Ti3SiC2 is most probably a compensated material, i.e. n ~ p. The 

negligible value of thermopower also supports this conjecture [31].  

In common Hall experiments the electrical conduction is dominated by a 

single type of carrier, and the sign of RH dictates which type of carrier is mainly 

responsible for the charge transport.  It is easy to see from Eq. (14) that RH is zero at 

b2 = p/n.  In this regime, when the product of concentration by the square of mobility 

is equal for both types of carriers, the opposite influence of electrons and holes on 

RH makes the measurements extremely sensitive to any changes in either carrier 

densities or mobilities. This may occur due to the crystalline quality, i.e. grain size, 

impurity, defects, texturing, etc. Special care must thus be taken to check the effect 

of charge densities and mobilities.  

Between Eqs.12-14 and the simple expression for conductivity, there are 3 

unknown. Solving the equations simultaneously at 4.2 K along with the   fitting  of 

the  experimental data ∆ρ/ρ (B) one obtains: µp = 3.6 x 10-2 m2 /Vs and µn = 2.2 x 

10-2 m2/Vs , b~ 0.6, and n = p = 0.6 x 1028 m-3
.
  If one further makes the assumption 

that n, p and b are not functions of temperature, one obtains that at room 

temperature, µn ~ 2.3 x 10-3 m2 /Vs and µp ~ 4 x 10-3 m2 /Vs. 
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It is interesting to note that these values are in a good agreement with the 

value of mobility of ~ 4.5 x 10-2 m2/Vs calculated from the approximate expression 

for MR  ∆ρ/ρ(Β)  ∼ κ ( µB)2 derived for the degenerate dominating charge carriers 

in case of impurity (ionic) scattering as a dominating mechanism (for low 

temperatures, 4.2K κ ~ 0.5 [55]). It should be noted from the theoretical calculations 

[40,41], that the ratio of the DOS on the Fermi surface of Ti 3d (electrons) to Si 2s 

(holes) is of the order of 10. This is consistent with our calculations and the fact that 

the effective masses are large and the electron mobilities are low.  

 Interestingly the effective carrier density calculated assuming only 

one type of carriers are present, vis. RH = 1/ne, gives an effective charge carrier 

density of 1.78 x 1028 m-3 at room temperature. In fact, it is not unreasonable to 

assume that the Hall mobility, µH = RHσ, can be also used to estimate the mobility of 

the dominating carrier. Then, at room temperature, µ H ~ 1.6 x 10-3 m/Vs, and µ H  ~ 

3.1 x 10-2 m2/Vs at 4K. These calculations provide the margin of the applicability of 

the two-band model.  This estimate led us to conclude that we are in the low 

magnetic field limit, since the product µΗ H < 2π, and the effect of the open orbits 

can be considered minimal.  

Care must be taken when one calculates the effective charge concentration, 

since anisotropy and scattering mechanisms were disregarded in Eq. (11). With a 

more rigorous look at the MR data, one can observe a slight departure from the 

quadratic behavior at higher fields (a presence of a linear term in the MR vs B2 

fitting . The MR saturation in the strong field may be evidence for deviation from 
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the compensated regime. However, the actual magnitude of this effect is rather small 

and can be neglected.   

Finally, the magnetic susceptibility was measured at 5 and 300K. The 

magnetization, M, appeared to be a linear function of the magnetic field, B, and was 

found to be independent of temperature or B. The measured value of susceptibility is 

χ ~ 4.1 x 10-6.  The fact that χ measured in this work is temperature-independent 

suggests that Pauli spin magnetization theory of the conduction electrons may be 

applicable to derive and evaluate the effective mass.  For a free electron gas:  

 

                                    χ = µο µ2
B  N(ε F)                                                         (15) 

 

where ε F - Fermi energy , µo – permeability of free space and µB - Bohr magneton. 

From the knowledge that nearly all states below εF are occupied at low temperatures, 

one can calculate N(ε F) from χ. After accounting for Landau diamagnetism and 

band effects, Eq. (15) generally agrees within of factor of 2 with the measured 

susceptibility. From this one finds, N(εF) ~ 1-2 states/eV unit cell, which is in good 

agreement with heat capacity results, and theoretical calculations [29,40,41]. This is 

especially true considering the following simplification made to calculate this value: 

(a) χ contains the diamagnetic component due to the electrons of the atomic core, (b) 

in fact , the valence electrons are not completely free – the rest mass must be 

replaced by the effective mass in N(ε F), (c) the value of χ can be influenced by 

electron-electron and electron-ion interactions.  The density of states estimated by 

Eq. 15 translates to a carrier concentration of ~ 0.5 …0.9 x 1028 m3 calculated based 
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on an isotropic spherical band assumption. This result is in excellent agreement with 

our Hall effect calculations.   

 

3.4 Conclusions  

 

Our experimental results can be explained to some extent by an isotropic 

two-band model in the weak magnetic field limit. More satisfactory agreement can 

be achieved by taking into account the topology of the Fermi surface and the effect 

of the open electron orbits in the case of strong magnetic fields. The Hall effect and 

transverse MR have been measured as a function of temperature in the 4 to 300K 

range and magnetic field up to 5 T. From these measurements the mobility and 

carriers concentration were calculated. The Hall coefficient was found to be almost 

independent B and T. These, along with the fact that the MR is a quadratic function 

of H, imply that, as assumed earlier, Ti3SiC2 is a compensated conductor with n ≈ p.  

More limited data from microstructurally different samples are also generally 

consistent with our results. We also measured the magnetic susceptibility in a wide 

range of temperatures and found that magnetic properties of Ti3SiC2 are independent 

of temperature. The charge carriers concentration obtained from the magnetic 

susceptibility values is in agreement with the Hall effect and MR results.  The 

mobility values of Ti3SiC2 are quite comparable to ones for TiCx, despite the latter 

having much lower conductivity. That is probably related to the fact, that the charges 

carrier concentrations are higher in Ti3SiC2, while both compounds are quite similar 
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thermally. Thus, there we are able to present new reliable experimental data that 

shed more light on the conduction mechanism operative in Ti3SiC2 
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4. Low Temperature Electronic and Transport Properties of Nanolamintes 

Ti3AlC2 and Ti4AlN3  2 
 

 

4.1 Introduction 

 

The electrical properties and their relationship to chemistry of the MAX 

phases are needed to be more completely characterized and understood at low 

temperatures. This chapter is a continuation of our study of the electrical and 

transport properties of the 312 and 413 phases, namely, Ti3AlC2   and Ti4AlN3 . 

At 0.39 µΩm, the room temperature resistivity of Ti3AlC2 [26,32] is higher 

than that of Ti3SiC2 (0.22 µΩm) but roughly an order of magnitude smaller than that 

of Ti4AlN3 [27,32]. More recent work [43] reported a lower room temperature 

resistivity of 0.285 µΩm, with a residual resistivity of ≈ 0.1 µΩm.  The resistance of 

Ti4AlN3 is high partly because of its high residual resistivity, which likely reflects 

the fact that its actual chemistry is 4:1:2.9 rather than 4:1:3 [33,34].  

In a recent paper [3] we noted that both the carrier densities and mobilities in 

Ti3AlC2 and Ti4AlN3 were, for reasons that were not clear, roughly an order of 

magnitude off from the same parameters in Ti3SiC2 despite their structural 

similarities.  In this paper we carefully characterize the electronic transport in 

Ti3AlC2 and Ti4AlN3 by measuring their electrical conductivity, magnetoresistance, 

 
2 This chapter is based on the paper to be appeared in Phys Rev B July 2003 (in press). This research 
was partially supported by the Division of Materials Research at NSF (Grant Nos. 0072067 and 
0114073), the New Jersey Commission on Higher Education, Rowan University and by an award 
from the Research Corporation. We would also like to thank Mr. A. Procopio and Dr. N. Tzenov for 
supplying us with the samples used in this work.   
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Hall effect, thermopower and magnetic susceptibility in an attempt to better 

understand their overall electronic behavior and previous observations. 

 

4.2 Experimental Procedure 
 

  
Polycrystalline bulk samples of Ti3AlC2 were fabricated by reactively hot 

isostatically pressing a mixture of titanium, graphite and Al4C3 powders at a pressure 

of 70 MPa and a temperature of 1400°C for 16 h [26].  The samples were 

predominantly single phase (containing 4 vol. % Al2O3) and fully dense with a grain 

size of ≈ 25 µm.  Two polycrystalline parallelepiped-shaped specimens with 

dimensions 0.2×2.0×12 and 1.3 × 2.3 × 12 mm3 were cut from a Ti3AlC2 sample. 

The fabrication of the Ti4AlN3 samples is described in detail elsewhere [33,34]. For 

the transport measurements on Ti4AlN3 we used two specimens: one with 

dimensions 0.5×3.17×12 mm3, the other (1.0 × 1.52 × 15 mm3) was cut from the 

same batch used in [31].  

Four- and five-probe measurements were carried out as a function of 

temperatures, T, ranging between 5 and 300 K and magnetic fields, B, up to 9 T with 

a Quantum Design Physical Properties Measurement System (PPMS). The electrical 

resistivity, ρ, Hall voltage, VH, and magnetoresistance, (MR = [ρ(B)- ρ(0)]/ρ(0)]) 

were measured using a specially designed sample holder with spring-loaded gold-

coated contacts.  The voltage sensitivity was roughly 5 nV, and no contact heating 

was observed for currents up to 300 mA. The MR component of the transverse 

voltage and extraction of the Hall signal were achieved by either a balancing 

potentiometer or by magnetic field reversal and subtraction of the measured 
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voltages. Thermal emf’s were eliminated by use of a low-frequency ac current 

technique. The magnetic susceptibility measurements were carried out on powdered 

samples; the excitation frequency was varied from 100 Hz to 10 kHz with ac-field 

amplitude of 800 A/m.  The details of the high-temperature Seebeck coefficient 

measurements can be found in [31] and [32]. The low-temperature Seebeck 

coefficient was measured with the PPMS. 

 

4.3 Results 

 

The temperature dependence of ρ for Ti3AlC2 shows a typical metal-like 

resistivity; from room temperature to about 80 K the resistivity drops linearly with 

temperature (Fig. 9).  The residual resistivity, ρ0, of 0.18 µΩm is roughly six times 

higher than that of Ti3SiC2 (0.033 µΩm) [3], indicating the presence of a relatively 

larger defect concentration in Ti3AlC2.   The low-temperature data can be reasonably 

fit with the Bloch formula with the T5 law, yielding a Debye temperature, ΘD ≈ 800 

K, in good agreement with the 760 K determined from elastic measurements [2], but 

somewhat higher than the value obtained from low-temperature heat capacity 

measurements [29]. 

The ρ vs. T curves for Ti4AlN3 are essentially parallel to those for Ti3AlC2 

(and Ti3SiC2 for that matter) but are shifted vertically because of the significantly 

larger residual resistance ρ0 = (23.5 ± 2) × 10-7 Ω-m (Fig. 9). Even though ρo is 

relatively large, the fitting of the low-temperature resistivity to the Bloch-Gruneisen 

formula yields ΘD ≈  685 K, which is in reasonable agreement with values of ΘD = 
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740 K obtained from elastic [2] and heat capacity measurements [29]. At all 

temperatures, the Hall voltage, VH, for Ti3AlC2 is a linear function of B up to 9 T 

(inset Fig. 10a). At the lowest temperatures, the Hall coefficient, RH, is small but 

positive; above 100 K it is negative and drops more or less linearly with temperature 

(Fig. 10a). For Ti4AlN3, the dependence of VH on B is also quite linear and almost 

independent of temperature (Fig. 10b).   

The effect of B on the MR of Ti3AlC2 can be well fitted with the expression 

MR = αB2, where α is a quadratic coefficient equal to 4 × 10-5 m4/V2s2 at 300 K 

(Fig. 11) and 1.1×10-4 m4/V2s2 at 4 K. α drops more or less linearly with increasing 

temperature (Fig. 12). The MR of Ti4AlN3 is small with α no greater than 3×10-7
 

m4/V2s2.  

The Seebeck coefficients of both compounds are plotted as a function of 

temperature in Fig. 13.  Also included are the results of previous work [31]. The 

Seebeck coefficient of Ti3AlC2 is positive at all temperatures with a maximum at ≈ 

700 K. The agreement between the results obtained in this work and previous work 

[31] is excellent.  The response of Ti4AlN3 is similar, but the Seebeck coefficient 

peaks around 300 K and becomes negative at temperatures greater than 800 K. The 

high-temperature results (solid diamonds) were measured in Korea on the same 

sample used for the low-temperature measurements (open diamonds) (for details see 

Ref. [31]).  The agreement between the two sets of results is noteworthy. Also 

included are the results of previous work on a different sample [31]; the agreement 

with this data is not as good.  
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4.4 Discussion 

 
Based on the results presented here, and in qualitative agreement with 

previous work [32], we conclude that for Ti4AlN3 - because of the large positive 

value of RH,  holes are the majority carriers.  The behavior is well described by a 

single-band model in which the dominant carriers are holes with a concentration, p= 

1/(e RH ) ≈ 0.7 × 1028 m-3 and mobility, µp = 3.4 ×10-4 m2/Vs at room temperature 

(Table 4).  

The mobility is relatively low, as expected, presumably because of the point 

defects – recall the actual stoichiometry is Ti4AlN2.9.  It is fairly well established that 

point defects in binary transition metal carbides in general, and TiC in particular, are 

potent scatterers of electrons [52]. The low mobility is consistent with the fact that 

α for this material is small (~ 10-7 m4/V2s2). It is interesting to note that the 

mobilities calculated from the approximate formula, MR ~ (µB)2,  result in values (≈ 

3 × 10-4 m2/Vs) that agree quite well with those estimated from the Hall effect 

measurements.  Another characteristic of Ti4AlN3, noted earlier [32], and confirmed 

in this work is that the variation from sample to sample tends to be high (Fig. 9). 

Here again the exact reason for these variations is unknown but most probably 

reflect variations in chemistry or stoichiometry. Similar arguments can be made to 

explain the scatter in the Seebeck coefficient results (Fig. 13).  Note that the slopes 

of the lines in Fig. 9 are comparable indicating that the electron-phonon scattering 

mechanisms in these compounds are comparable.  

The situation for Ti3AlC2 is more complex. The sign change of RH (Fig. 10) 

indicates that a single-band model cannot be used.  Since MR is quadratic with, and 
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VH is linear in, B the two-band model can be used where the following applies 

[54,55,57,58,]: 

 

MR   =   
µnµpnp(µn - µp )2 B2 

(µnn + µp p)2  =  α B2                          (16) 
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where µn and n represent the mobilities and carrier densities of the electrons. In 

addition, conductivity, σ, is given by  
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σ +==                     (18)  

 
To solve for µn, µp, n and p one needs an extra constraint. Here we assumed that 

µn > µp and a range of b values (where b = µp/µn) that varied between 0.4 and 0.8 – a 

range previously shown to be valid for Ti3SiC2 [3]. To simplify the math we started at 

100 K, where RH = 0 and µp
2p = µn

2n.  

The results for the various values of b are listed in Table II; the following 

points are salient. The values of n are only weakly dependent on the values of b 

and/or temperature; they fall in the narrow range of 0.16 to 0.17×1028 m-3.  At the 

lower b values, the range of p is a stronger function of temperature. However, since 

the magnetic susceptibility results are a weak function of temperature (Fig. 14), 

suggesting a temperature-independent total charge carrier concentration, we sought 

values of b that led to the smallest variations in p.  With this in mind, we conclude 
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that the more accurate values for n, p, µn and  µp are the ones for which b > 0.6, 

which are listed in Table 5.  It is worth noting that when RH is close to zero, as the 

case is here, the sign and magnitude of the Hall coefficient are quite sensitive to 

small variations in the values of the mobilities chosen. For example, if µp is changed 

from 0.0075 to 0.0073 m2/Vs, RH changes from + 2.2 × 10-11 to – 2 × 10-11 m3/C. 

The assumption that n and p remain almost unchanged with temperature is 

quite reasonable based on the observed metallic nature of the electronic transport in 

these compounds. As discussed in the preceding paragraph, this conclusion is also 

supported by the fact that the magnetic susceptibility is relatively temperature 

independent. Further, it is well established that the conductivity of normal metals at 

high temperatures depends primarily on the electron-phonon scattering mechanism. 

Thus, changes in the mobilities should be considered the primary cause of the 

observed temperature dependencies of RH and α, rather than changes in n or p.  It is 

thus reasonable to conclude that the negative sign of RH, at low T, is a direct 

consequence of the electron mobility being larger than that of the holes.  In the case 

of thermal scattering by acoustic phonons, the mobility normally decreases with 

increasing temperature as (const) × T-3/2 [55].  The temperature dependence of the 

reciprocal of the mobility [calculated assuming MR ~ (µB)2, plotted in inset in Fig. 

12 inset] is consistent with a material for which the dominant scattering mechanism 

is lattice scattering with a strong contribution due to the presence of neutral 

impurities (horizontal dashed line) at low temperatures.  Examination of this plot and 

Fig. 10a suggests that the crossover of the dominant charge carrier, from hole-like to 

electron-like that occurs below 100 K, may be due to this temperature dependent 
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scattering. The temperature dependence of α representing the square of mobilities 

also illustrates similar behavior (Fig. 12).  It is interesting that a distinct difference in 

the temperature dependence of the mobility occurs below 100 K, where the impurity 

effect is more pronounced (residual resistivity region).  

The good agreement between the electrical transport parameters calculated 

here for Ti3AlC2 and Ti4AlN3, and those for Ti3SiC2 and near-stoichiometric TiCx (x 

> 0.95) measured previously and reported in [41] (Table 4) increases our confidence 

level in the full set of results.  This is particularly true when it is appreciated that the 

ratios of the density of states at the Fermi level N(EF) for Ti4AlN3 Ti3SiC2 and 

Ti3AlC2 - when normalized to a per Ti atom basis (eV-Ti atom)-1 - are 0.86:0.83:0.63 

[9,29] in good agreement with the narrow range in n and p deduced from our 

analysis.  In retrospect, it is now clear that the RH results reported in [32] were 

incorrect; the results obtained here yield a much more consistent and believable set. 

Finally it is important to note that the Seebeck coefficients measured for 

Ti3AlC2 and Ti4AlN3 (Fig. 13) are in agreement with the parameters listed in Table 

4.  For both compounds, the Seebeck coefficients are positive since in both cases the 

majority carriers are holes. It is generally accepted that the temperature gradient 

driven entropy carriers of the Seebeck measurement scatter differently than the 

potential energy gradient driven charge carriers of electrical transport. This implies 

that the entropy carrier mobility will have a different temperature dependence than 

that of the charge carrier mobility. Here we have a possible method for testing our 

ideas. If the crossover of the sign of the Hall number is related to a change in total or 

relative carrier concentration, one would expect to see the signature of the sign 
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change in the Seebeck voltage. Alternatively, if the sign change is a result of the 

temperature dependence of the mobilities, the Seebeck may not demonstrate a 

signature of the change. As seen in Fig.13, the Seebeck coefficient does not change 

sign, supporting our assumptions above. 

 

4.5 Summary  

 

In this paper we report on the electronic and magneto-transport properties of  

two Ti-based ternaries; Ti3AlC2 and Ti4AlN3. In order to determine the effective 

carrier concentrations and their mobilities, the Hall effect, electrical conductivity, 

thermoelectric power, magnetic susceptibility and magnetoresistance were measured 

as a function of temperature between 4 and 300K and at magnetic fields up to 9 T. 

For Ti3AlC2, the Hall voltage is a linear function of magnetic field at all 

temperatures. At the lowest temperatures, the Hall coefficient is small but positive; 

above 100 K it is negative and drops more or less linearly with temperature. The 

magnetoresistance of Ti3AlC2 is dominated by a positive quadratic field dependence. 

The magnetic susceptibility is nearly constant but displays a weak maximum around 

the temperature where the Hall effect changes sign (≈ 100 K). In contrast, the 

Seebeck coefficient remains positive up to 800 K, with a maximum at 700 K. The 

results were analyzed within a two-band framework assuming a temperature-

independent charge carrier density and a hole mobility that is slightly smaller than 

the electron mobility. The model quantitatively accounts for all our observations. 

The resistivity, magnetoresistance and Hall coefficient of Ti4AlN3, on the other 
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hand, were successfully described within the single-band model, with holes as the 

dominant charge carriers. This was supported by measurements of the Seebeck 

coefficient which is positive and peaks at ≈ 300 K. The magnetic susceptibility of 

Ti4AlN3 is also quite temperature independent.  

 

4.6 Conclusions  

 

We completed a systematic set of electronic transport experiments on 

Ti3AlC2 and Ti4AlN3. We find that the results for Ti3AlC2 can be explained within a 

two-band model, using a temperature independent number of total charge carriers 

(although with a higher concentration of holes) and a temperature-dependent ratio of 

the carrier mobilities. The data for Ti4AlN3, on the other hand, were successfully 

described within the single-band model.  To unambiguously determine the exact 

mobilities of Ti3AlC2, one must await the results of further experiments such as 

thermal transport.   
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5. Transport Properties of the Solid Solutions Ti3SixGe1-xC2 

 

5.1 Introduction 

 

In order to further understand the physical properties of MAX phases one 

must investigate other materials. The only way to analyze the role the A-element 

plays in bonding of these phases is to characterize solid solutions with various 

concentrations of the A-element, preferably, from the same group.  As this chapter 

shows it is quite instructive to study how the A-element substitutions affect transport 

properties.  

 
Although to date the most studied is Ti3SiC2, two other M3AX2 phases also 

exist with A = Al or Ge. Recently the Drexel group has fabricated fully dense 

Ti3SixGe1-xC2 phases [55].  The ternary Ti3AlC3 has already been studied (see Ch. 4).  

At this moment very limited information exists about physical properties of the 

Ti3GeC3 and none exist on the properties of Ti3SixGe1-xC2 solid solutions.   The 

purpose of this chapter is report on the electrical conductivities, magnetoresistances, 

Hall effects, thermopower and the thermal conductivities obtained on fully dense 

samples of Ti3SixGe1-xC2 with x = 0, 0.25 and 0.5 in the 4 to 300 K temperature 

range. We also report on the elastic properties at room temperature of the same 

materials. In future work,  we plan to further characterize the electronic transport in 

the Ti3SixGe1-xC2 phases by measuring their elastic constants , heat capacities and 

their low temperature dependencies and compare these results with those reported 
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herein. Our overall goal is to better understand the transport properties of the MAX 

phases.  

 

5.2 Experimental Methods 

 

For the elastic constant measurements a Ritec RAM 10000 system based on 

phase sensitive detection technique (PST) was used. This system was quite similar to 

that described in the Chapter 2 and [46].  This method is able to provide absolute and 

relative sound velocity measurements with a precision comparable to the method 

used in [46]. The Young’s and shear moduli were calculated by means of ultrasonic 

echo-pulse time of flight measurements. Ti3SiC2 sample was re-measured as a 

crosscheck. This system is capable to automate signal processing and perform 

amplitude and phase measurements of pulsed ultrasonic signals at frequencies 5-20 

MHz. The system is equipped with a digital data acquisition card for control and 

measurement functions. Temporal resolutions of 4 ps are possible.  

The sample fabrication details are described elsewhere [59]. In general, bulk 

polycrystalline samples of Ti3Si0.5Ge0.5C2 and Ti3Si0.75Ge0.25C2 were fabricated by 

mixing Ti, C, SiC and Ge powders in order to yield the desired stoichiometry. The 

mixed powders were then hot isostatically pressed (HIPed).   Several bar shaped 

specimen with dimensions 1 x 1 x 12 mm3 and 1.5 x 2 x 12 mm3 were cut for the 

transport measurements. The samples of Ti3Si0.5Ge0.5C2 for ultrasonic measurements 

were 8 x  8 x  8 mm3 cubes.  The Ti3GeC2  sample was a cylinder with a 10 mm 
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diameter and16 mm long. In all cases Salol was used as the ultrasonic transducer 

bonding compound.  

 Hall and resistivity four- and five-probe measurements were carried out as a 

function of temperatures in 5-300 K range and magnetic fields up to 9 T with a 

Quantum Design Physical Properties Measurement System (PPMS). The electrical 

resistivity, ρ, Hall voltage, VH, and magnetoresistance, (MR = [ρ(B)- ρ(0)]/ρ(0)]) 

were measured using a specially designed sample holder with spring-loaded gold-

coated contacts.  The low-temperature thermal conductivity and Seebeck coefficient 

was also measured with the PPMS.   

 

5. 3 Results and Discussion  

 

Room temperature Young’s and shear moduli were calculated from the two 

independent measurements of the longitudinal and shear sound velocities. Results 

are summarized in the Table 6. Young’s and shear moduli for x = 0.25 and 0.5 

phases were slightly lower than that for x = 1 or Ti3GeC2.  At 714 K, the Debye 

temperature ΘD of the latter calculated from the mean ultrasonic velocity (Eq. 4) was 

about 11% lower than that measured for Ti3SiC2  (780K). 

It is interesting to compare the effect of composition on the room 

temperature transport properties. For example, room temperature resistivity (Fig. 

15), thermal conductivity (Fig.16) and Seebeck coefficient (Fig.17) remain 

practically unchanged for all solid solutions as well as for the pure phases.  

However, the noticeable effect was observable for x = 0.25 and 0.5 at low 
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temperatures for residual resistivity when defect scattering dominates over the 

thermal scattering (Fig. 18). The low temperature thermal conductivity peak (see 

Fig. 16) was also suppressed for the solid solutions. It is also noteworthy that the 

temperature coefficient of resistivity dρ/dT remains practically unchanged across the 

entire solid solution range.    That value is also the same for Ti3AlC2. The slight 

variation of dρ/dT for x = 0.25 and 0.5 can be interpreted to be due to the 

contribution of electron-impurity scattering.   

Preliminary analysis of magnetoresistance and the Hall effect results utilizing 

a two-band model, a temperature-independent charge carrier density and a constant 

relaxation time as a function of the electronic energy, was carried out in the same 

manner as was done for the isostructural Ti3SiC2 (see Chapter 3, [3]) and Ti3AlC2   

(Chapter 4, [4]) Here again we assume n ~ p.  The calculated charge carriers 

mobilities and concentrations are summarized in the Table 6.  As can be seen from 

this table, the agreement between all phases is more than satisfactory. The carrier 

concentration results (see Table 7) suggest that the electronic properties vary little 

between the Ti3AC2 phases. These results also clearly indicate that the major effect 

the solid solution has is on the carrier mobilities, probably as result of diminished 

scattering length. 

 

5.4 Conclusions 

 

Based on the results presented in this chapter it appears that the A-group 

element has an effect of the elastic properties of M3AX2 solids. And while the carrier 
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concentrations are quite insensitive to the nature of the A-group element in the 

M3AX2 phases, solid solution scattering results in reduced mobilities.  
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6. Summary and Conclusions 

 

MAX phases are fascinating new compounds, which most of their physical 

properties are still unknown. For many phases, their properties are probed only 

within certain compositional and temperature domains (with the exception of only a 

few compounds being fully characterized).  Clearly much more remain to be done. 

However, since these materials are extremely new it is necessary to scan all 

their properties such as elastic, electric, thermal and mechanical properties. It should 

be stressed once again that there is no available existing database of physical 

properties of these solids. 

 In this work, for the first time, a systematic experimental study of the elastic 

and electronic properties of the MAX phases was carried out in the 4-300 K 

temperature range. It has been shown that the knowledge of the low temperature 

properties provides invaluable information about the physics and properties of the 

MAX phases. As a result of this work, the elastic constants, electrical resistivity, 

thermal conductivity and galvanomagnetic effects were characterized as a function 

of temperature. It was found that the Young’s, shear and bulk moduli of these 

compounds (Ti3SiC2, Ti3AlC2 and Ti4AlN3) obtained from the nondestructive 

ultrasonic velocity measurements increase slowly with decreasing temperature and 

plateau at low temperatures.  Ti3SiC2 has stiffness at 300 K with Young’s, and shear, 

moduli of 335 and 139 GPa, respectively; Poisson’s ratio is 0.2.  The Debye 

temperatures of these compounds were also calculated using the mean ultrasonic 

velocity to be 650-780K. These values agreed well with data obtained from low 
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temperature heat capacity measurements, viz 715-762K (the lowest value is for 

Ti3SiC2, and highest one - for Ti4AlN3 ). 

     The electronic transport properties were also characterized from the 

resistivity, magnetoresistance, Hall effect, Seebeck coefficient and magnetic 

susceptibility measurements carried out in the 4 to 300K range, and magnetic field 

up to 9 T. All MAX phases exhibit metal-like temperature dependence of the 

resistivity. Debye temperature values for most of the phases were determined by 

fitting ρ(T) using a Bloch T5 formula. The results obtained were in a good agreement 

with the value determined from elastic measurements. The carrier density of 

electrons, n and electrons, p, and their mobilities were calculated utilizing a semi-

classical, isotropic 2-band model. It was shown that most of the Mn+1AXn (n=2) 

phases (Ti3SiC2, Ti3AlC2, Ti3GeC2) are nearly compensated conductors with n ~ p.  

This result also was is in agreement with conclusions based on the fact that the 

thermopower in these solids is negligible.   

Also, as it was shown that Ti3SiC2, Ti4AlN3, and Ti3AlC2 are very weakly 

paramagnetic solid, with a susceptibility that is a weak function of magnetic field 

and, most important, temperature indicating that the total charge concentration, n+p, 

is also constant with  total charge carriers (electrons and holes) concentration of 

~1028 m-3 . 

 Extensive study of electronic and magneto-transport properties and analysis of 

the results suggest that the Mn+1AXn (n = 2) phases can be characterized by relatively 

high charge carrier mobilities. 
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The results of this work clearly demonstrated that in order to create a 

complete picture correlating crystal structure, microstructure, and resulting physical 

properties of the phases, it is important to extend measurements to other materials of 

this class, namely, solid solution phases of M3AX2 and M2AX phases. This 

systematic work characterizing the electronic, magnetic and thermal properties of the 

MAX phases expands the knowledge of these materials.   

 At the end, author wishes to believe the experimental results of this work 

would helped to accelerate our understanding of this new class of potentially very 

technologically important solids. 
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7.  Future Work 

 

Since about six years the group at Drexel University has undertaken a large 

working plan to synthesize and characterize MAX phases. In addition to all the 

known phases, these materials exhibit large solid solution capability in which each 

of the sublattice M, A and X behave independently and it is expected that upon 

alloying the elements mix on each sublattice separately.  

Probably further experimental work can be done to characterize various 

composition domains. The plan is to perform heat capacity and speed of sound 

measurements on many of the MAX phase materials with various solid solution 

compositions allowing the extraction of the elastic moduli and Debye temperatures. 

The goal of this study will be to find how good is the agreement between the Debye 

temperature as determined from calorimetric measurements or specific heats and that 

determined from elastic measurements.  

We also plan to measure low temperature transport properties of another 

groups of ternary carbides and nitrides (Ti2AlC, Ti2AlN, V2AlC, Nb2AlC, Cr2AlC 

and Ti2GeC), namely 211 phases, in order to study the effect of the solid substitution 

in the M-site on the physical and electronic properties in these isostructural 

compounds. In future work we plan to report on their elastic, thermal and electrical 

properties in the temperature range 4 to 300K.   

Another interesting material to be investigated is V2AlC. We already showed 

in our preliminary experiment that the Seebeck coefficient at the lowest temperatures 

is small and negative; increases with increasing temperature, saturates at ≈ 2 µV/K at 
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85 K and goes through zero again at 160 K before changing sign from negative 

(electron like) to positive (hole like). The thermal conductivity in the 100 and 300K 

temperature range is relatively temperature independent. A peak is observed near 

75K suggesting the materials is quite clean. This is further supported by the residual 

resistivity ratio, which is roughly 10. To investigate the sign change of the dominant 

charge carriers, we also measured the electrical conductivity and Hall effect. 

Comparisons of these results will be presented. 
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Appendix A: Tables 

 
 

Table 1.  Comparison of elastic properties of Ti3SiC2, TiC0.97, Ti and Mo.   
a Calculated from the single crystal data of Fisher and Dever [32], assuming µ = 
{1/2 c44 (c12 - c12)}1/2. The results are extrapolated to room temperature and 0 % Cr 
content. This table was directly taken form [1] without any correction done later in 
[2]. 

 

 
Solid 

 
R.T. Young’s 
Mod. (GPa) 

R. T. Shear 
Mod. (GPa) 

d(µ/µRT)/dT 
(K-1) 

Poisson’s 
Ratio 

Debye 
Temp. (K) 

Ti3SiC2 322 ± 2 133.6 ± 0.8 - 1.4 x 10-4 0.2 427 (this work) 
620 (thermal) 

[19] 
TiC0.97 456-500  

[44,45] 
193 
[45] 

- 0.54 x 10-4 

[45] 
0.18 614 [44] 

α−Ti 
ß-Ti 

116 
126a 

43.6 
19a 

 
≈ -1.8 x 10-4a 

 420 [52] 
 

Mo 318 122 - 1.46 x 10-4 

[30] 
0.3 470 [50] 
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Table 2. Summary of results on Ti3SiC2 , Ti4AlN3 and Ti3AlC2 elastic properties 
obtained in this work [2]. Also listed are previous results on Ti3SiC2 [1], a this 
work, fine-grained samples, b this work, coarse grained samples, c based on results 
reported in [1] but corrected (see text). 
 

 
 Ti3SiC2 Ti4AlN3 Ti3AlC2 

Room temperature 
longitudinal velocity, m/s 

 

9100a 
9142b  

8950 c  [1]  
8685 8880 

Room temperature 
shear velocity , m/s 

 

5570a  
5613b  

5450 c [1] 
5201 5440 

Room temperature 
 mean velocity, m/s 

6138a  
6195b  

6017b [1] 
5774 5994 

Measured density, g/cm3 
4.47a  
4.5b  

4.47  [1] 
4.7 4.2 

Room temperature 

Young’s modulus, GPa 

333 ± 2a  
339 ± 2b  

322 ± 2 c [1] 
310 ± 2 297.5 ± 2 

Room temperature 
shear modulus, GPa 

 

139 ± 2a  
142 ± 2b  

133.6± 0.8  [1] 
127 ± 2 124 ± 2 

Room temperature 
bulk modulus, GPa 

185a 
187b   

179 c [1] 
206 ± 6 [36] 

185 165 

Poisson’s ratio 0.200 ± 0.007a,b  

0.200 ± 0.007 c 0.220 ± 0.007 0.200 ± 
0.007 

d(E/ERT)/dT,  (K-1) 
(T > 125 K) 

- 0.88 x 10-4 a 
- 0.75 x 10-4 b 

- 0.95 x 10-4 c [1] 
- 0.74 x 10-4 - 0.84 x 10-4 

d(µ/µRT)/dT,  (K-1) 
(T > 125 K) 

- 1.4 x 10-4 a,b 

- 1.4 x 10-4  [1] - 1.5 x 10-4 - 1.2 x 10-4 

Debye Temperature, K 
 Acoustic 
Thermal 

 
780a,b 

784c [1] 
715 [29] 

 
762 
--- 

779 [35] 

 
758 
--- 

764 [35] 
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Table 3. Summary of the electrical properties of Ti3SiC2 determined in this work. 
Also included are the results for TiCx and Ti for comparison purposes. 
 
 

 
 
 

ρ300 
µΩ m 

dρ/dT 
µΩm/K 

RH x 1011 
(m3/C) 

µH x 103 

m2/(Vs) 

p, n x 
1028 

(m-3) 
Ref. 

 
Ti3SiC2 

 

0.22…0.24 
0.2273 

0.00071 
0.00075 

+30 
≈ 0 

1.6 
0.06 to 0.1 

< 0.9 
14 to 

24 

[3] 
[32] 

 
TiCx 

 
1 to 1.6 

 
 

 
-150 

 
0.89 to 1.68 

 
0.37 

TO 0.4 

 
[32] 

 
Ti 

 

 
0.4 to 0.49 

 
0.0017-
0.0021 

 

2.8 
-.05 to –

4.5 

0.043 to 0.09 
 

 
15, 31 

 
[32] 
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Table 4. Room temperature electric and magneto-electric properties of Ti3AlC2 and 
Ti4AlN3 used to calculate the concentration and mobilities of carriers in those 
compounds. Also included are previous results for Ti3SiC2 [1] and TiCx for 
comparison purposes. 
 
 

 

Compound 
ρ  

300 K 
(µΩ-m) 

α 
(m4/V2s2)

RH 

×1011 
(m3/C)

Mobilities 

(m2/Vs) 
Carrier density  

(1028 m-3) 

    µn µp n p 

Ti3AlC2 0.387 4 × 10-5 - 12 ±1 0.0046 to 
0.0042 

0.0054 
to 0.003 

0.15 to 
0.16 

0.2 to 
0.4 

Ti4AlN3 2.61 ~3 × 10-7 + 90±5 _ 0.00034 _ 0.7 

Ti3SiC2 0.22 2.06 ×10-3 +30 0.0023 0.004 0.6 0.6 

TiC0.95 1 to 1.6  -150 to  
- 261 

0.0012 
to 0.0017 _ 0.24 to 

0.4 _ 
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Table 5. Summary of experimental results and extracted charge carrier 
concentrations and mobilities for Ti3AlC2 as a function of T for various values of b. 
 

 

T 
 (K) 

σ 
(MΩm)-1 

RH 
(1011 
m3/C) 

α 
m4/(Vs)2 

b = 
µ p /µn 

µn 
m2/(Vs) 

µp 
m2/(Vs) 

n 
(1028

 m
3

) 

p 
(1028

 m
3

) 

0.85 0.0086 0.0075 0.17 0.23 
0.60  0.0065 0.0039 0.19 0.56 50 5.61 + 2.2 9 × 10-5 
0.40 0.0052 0.0021 0.18 1.22 
0.85 0.0076 0.0065 0.16 0.22 
0.60 0.0059 0.0035 0.17 0.48 100 5.02 0 8 × 10-5 
0.40 0.0047 0.0019 0.16 1.03 
0.85 0.0046 0.0054 0.15 0.21 
0.60 0.0042 0.0025 0.16 0.38 300 2.61 - 1.2 4 × 10-5 
0.40 0.0033 0.0013 0.17 0.79 
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Table 6. The Young’s, E , shear, G , and bulk, B, modulii of Ti3(Si,Ge)C2 obtained 
from ultrasonic measurements. Also presented is the longitudinal Vl and shear Vs 
sound velocity measured at room temperature. 

 

Material B  

(GPa) 

G 

(GPa) 

E  

(GPa) 

Vl  

(m/s) 

Vs  

(m/s) 

  Ref 

Ti3SiC2                180-206 133 - 
142 

322 - 
339 

9100 5570 [1,2] 

Ti3 (GeSi)C2  
for X=0.5 

169 

 

131 

 

313 

 

8262 5096 This work

Ti3GeC2  148 142 323 7800 5063 This work
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Table 7.  Room temperature electric properties of Ti3(Si,Ge)C2 and used to calculate 
the concentration and mobilities of carriers in those compounds. Also included are 
previous results for Ti3SiC2 , Ti3AlC2 [1,2] and TiCx for comparison purposes. 
      
 
 

 

Compound (300 K) 
(µΩ-m) 

dρ / dT 
(µ Ohm m 

/K) 

α 
(m4/V2s2)

RH 

×1011 
(m3/C) 

Mobilities 

(m2/Vs) 
Carrier density   

(1028 m-3) 

   (T=4K)  µn µp n p 

Ti3SiC2 0.255 0.00092 2.06 
×10-3 +30 0.0023 0.004 0.6 0.6 

Ti3Ge0.25Si0.75C2 0.251-
0.265 

0.00077 - - − − - - 

Ti3Ge0.5Si0.5C2 0.273 0.000755 
- - - - - - 

Ti3GeC2 0.275 0.000952 1.7 
×10-3 -22 

0.0016 
to 

0.004 

0.0016 
to 

0.004 

0.15 
to 

0.28 

0.15 
to 0.28

Ti3AlC2 0.387 0.000953 4 × 10-5 - 12 ±1 
0.0046 

to 
0.0042 

0.0054 
to 0.003 

0.15 to 
0.16 

0.2 to 
0.4 

ρ  
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Appendix B:  Figures 
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Figure 1. Photograph of the sample and sample holder that used in the ultrasonic 

velocity measurements setup (Sample holder from [46])  
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Figure 2.  (a)Temperature dependence of Young’s and shear moduli of Ti3SiC2 in 
the 20-300K range (sample from [1]); (b) fitting E(T) curve with Eq.8 (sample from 
[2]) 
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Figure 3.  Relationship between d(µ/µRT)/dT and the melting points of select 
elements and compounds.  
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Figure 4. Temperature dependencies of Young’s moduli of Ti4AlN3,Ti3AlC3 and 
Ti3SiC2 in the 30-300 K range. Also included in this figure are our previous results 
on Ti3SiC2. [1] 
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Figure 5. Resistivity versus temperature for several Ti3SiC2 samples, insert - low 
temperature resistivity fitting using Bloch formula. 
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Figure 6.   Hall voltage as a function of the magnetic field for various temperature 
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Figure 7. Hall coefficient as a function of temperature for B= 5T 
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Figure 8. Magnetoresistance of Ti3SiC2 as a function of magnetic field. 
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Figure 9.  Plot of the resistivity versus temperature for Ti3AlC2 and Ti4AlN3. Note 
the large residual resistivity of Ti4AlN3 and the difference in scale. The room 
temperature resistivity of Ti4AlN3 is nearly an order of magnitude larger than that of 
Ti3AlC2. The data are plotted for two samples of Ti4AlN3: the one measured in this 
work (sample B) and another one from [31] (sample A). This shows agreement with 
high temperature transport data from [31]. 
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Figure 10.  Temperature dependence of the Hall coefficient for Ti3AlC2. Inset: Field 
dependence of VH. (a) VH as a function of B for Ti4AlN3 at various temperatures. (b) 
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Figure 11.   Field dependence of the magnetoresistance of Ti3AlC2 at 300 K.  
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Figure 12. Temperature dependence of the magnetoresistance prefactor α for 
Ti3AlC2. Inset: temperature dependence of the inverse mobility vs. T-3/2

.  The neutral 
impurities dominate at low T; lattice scattering becomes important at higher 
temperatures. 
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Figure 13.  Seebeck coefficient versus temperature for Ti3AlC2 and Ti4AlN3. Also 
included are previous results.  Note: the low-temperature results were obtained at 
Rowan and the high-temperature ones were measured in Korea (sample B), which 
was different from sample A used in [31] and for which the conductivity is shown in 
Fig. 8.  
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Figure 14.  Magnetic susceptibility of Ti3AlC2 as a function of temperature.  Note 
that it is constant aside from a weak maximum near 100 K. 
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Figure 15. Resitivity as a function of temperature for Ti3(SiGe)C2  phases 
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Figure 16. Thermal conductivity as a function of temperature for Ti3(SiGe)C2 phases 
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Figure 17. Seebeck coefficient as function of temperature for Ti3(Si,Ge)C2 
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Figure 18.   Residual and room temperature resistivity as function of Ge composition 
in for Ti3(Si,Ge)C2 

 

 
 
 
 
 

  
 



 
 

90

 
 

Appendix C:  Experimental Ultrasonic Technique Review 

 

Elastic Constants Measurements Using Ultrasonic Method 

 

The elastic constants are one of the fundamental parameters to be evaluated. 

Thermodynamically, the elastic constants are defined by the shape of the interatomic 

bonding energy in the vicinity of the minimum. Therefore, any changes in crystal 

structure or electronic character of materials are often revealed through the changes 

in the elastic properties. It is clear that accurate measurements of the elastic constant, 

especially, as a function of temperature, provide significant information about the 

material. To measure the elastic constants of a material there are three commonly 

used methods which are based on: 1) measuring of the slope of stress-strain curve, 2) 

propagation of ultrasonic waves speed measurements or 3) dynamic resonance or 

natural vibration frequency measurements. 

The first one, based on static tension load testing, is very simple in concept  

(wich measures the displacement as a function of the applied load).  However, its 

approach can be difficult to achieve experimentally. When applied to ceramics or 

other very stiff materials, conventional tension testing will be problematic and 

cumbersome due to the problem related to specimen grip and alignment. In addition,  

very small resultant strains can be difficult to measure. Often destructive, this 

method suffers from a vast number of experimental errors.  

As has been established for a long time, the easiest technique to measure 

elastic constant is the one that uses a propagating sound wave.  This approach is 

based on measurements of the time of flight, t (or round-trip transit time) of elastic 

  
 



 
 

91

 
waves in the material in order to obtain the sound velocity, V from V= 2L/t , where 

L is the specimen length. When applied to the isotropic materials, the elastic 

constants can be obtained from the longitudinal Vl and transverse (shear) Vs 

ultrasonic wave velocities (see Chapter 2). So far, the most accurate, precise and 

complete set of elastic constants has been determined by measuring the time of flight 

of sound pulse.  

Recently Resonance Ultrasonic Spectroscopy (RUS) technique [61,62] has 

emerged. It is based on dynamic resonance approach when a specimen vibrates at its 

fundamental frequency using the (standing waves wavelength are twice length of 

specimen). By measuring the  resonance spectra, one can quantify elastic properties 

by solving the wave equation for particular configurations. This procedure can be 

complex, but basically, knowledge of the specimen dimensions, density and 

fundamental vibration frequency allow the elastic constants to be determined. The 

mode of vibration determines which of the elastic constants can be measured. This 

technique provides very accurate results, however, often requires specially 

parallelepiped (or cylindrical) shaped and polished samples, as well as rather tedious 

and sophisticated resonance peaks fitting procedure.  

 In our work we chose the second technique utilizing ultrasonic echo pulses 

time of flight measurements, even though this method demands at least two 

measurements of the ultrasonic velocities (longitudinal and shear), and relatively 

large samples. When carried out on polycrystalline specimen (such as ceramics, 

metals), this technique allowed us to get good results using a relatively simple 

commercially available apparatus.   The echo-pulse time of flight phase-sensitive 
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method developed in [60] is one of the most commonly used technique to measure 

the velocity of sound in solids, because of its precision of 2 ppm and capability to be 

automated. The principle of the phase sensitive technique is in the measurements of 

the phase φ of a given echo relative to the reference echo. This phase (or its change) 

can be obtained from φ  = tan-1(V1/V2) by measuring  in-phase component of the 

given echo amplitude V1 and its quadrature component amplitude V2.   Then the 

time t between two echoes (reflected and a reference tone burst) is a simple function 

of the phase of the signal and the frequency of the tone–burst, f:  t = φ /2πf.  The 

ultrasonic setup is nothing more than a superheterodyne receiver circuitry similar to 

that used in standard radio receivers. The system includes two phase-sensitive 

detectors (operating at the intermediate frequency) wherein the references are at the 

same frequency but shifted by 90 degrees with respect to each other. This allows the 

acquisition of the real and imaginary parts of the received signals. Gated integrators 

then act on a selected signal, and the resultant dc voltages V1 and V2 are recorded by 

the computer (via data acquisition analog to digital card) for measurement purposes.   

Temperature dependence of ultrasonic velocities was determined in this work 

by measuring of the time difference between consequent echoes produced by a 

piezoelectric transducer mounted on the specimen. The specimens for this study 

were machined as a rectangular prism/parallelepipeds with flatness and parallelism 

of the surface better than 3 microns.  Quartz or lithium niobate crystal with 

fundamental frequencies 5, 10 or 15 MHz were used as transducers.  Transducers 

were mounted on the specimen using phenyl salicilate (Salol) as a bonding agent.  

To produce longitudinal and shear waves X-cut and Y-cut transducers were used, 
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For a transit time of 2-3 µs the best resolution in velocity was 10-5 . Typically, error 

in density bring overall elastic constant error to roughly 0.05%.  

The effect of the microstructure and anisotropy were studied by varying the 

measurement frequency between 5-20MHz. This frequency variation did not affect 

the time of flight (and the measured velocity). This implies that any dispersion 

effects are very small and could be neglected. Thus the elastic constants measured at 

high frequencies can be considered to be equal to a static modulii. 
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