
 

 

On Spherical Nanoindentation Stress-Strain Curves, Creep and Kinking Nonlinear 

Elasticity in Brittle Hexagonal Single Crystals 

 

A Thesis 

Submitted to the Faculty 

of 

Drexel University 

by 

Sandip Basu 

in partial fulfillment of the 

requirements for the degree 

of 

Doctor of Philosophy 

August 2008 

 

 

 



 ii

Dedication 

 
 
 
 
 
 
 
 
 
 
 
This thesis is dedicated to my father (Nilmani Basu), mother (Swapna Basu), and brother 

(Santanu Basu), who believed in me and inspired me in every step of my life. 

 

 

 

 

 

 

 

 

 



 iii

Acknowledgements 

I would like to take this opportunity to thank all the people who supported me in 

different ways during my stay here at Drexel University. 

First, I want to thank all my dissertation committee members – Prof. Michel 

Barsoum, Prof. Surya Kalidindi, Prof. Yury Gogotsi, Prof. Jonathan Spanier and Prof. 

Miladin Radovic – for their time and critical evaluation of my research. I am grateful for 

all the stimulating discussions and their constructive suggestions regarding my research. 

At this moment, I do not have enough words to thank Prof. Barsoum, who has been 

much more than an advisor to me and I will always remember everything I learnt from 

him. Without his motivation and enthusiasm this research would not have been possible. 

He always made me think positive – not only regarding the research, but also in other 

aspects of life. I am indebted to him for what I achieved during the last five years. For 

now, I would say THANK YOU. I am really honored to work with him. 

I am grateful to all the members of our research group. Specially, I would like to 

thank Dr. Adrish Ganguly and Dr. Surojit Gupta for their help and support since the very 

beginning; Dr. Anand Murugaiah for all the help with nanoindentation; Dr. Tiejun Zhen 

and Dr. Elizabeth Hoffman for their support and help with various lab activities; and, of 

course, Dr. Aiguo Zhou for numerous stimulating discussions and for being a great friend 

– without his effort we would not have reached this far in this research. I would also like 

to thank Dr. Peter Finkel, Dr. Zhengming Sun, Dr. Dmitri Filimonov, Dr. Ori Yeheskel, 

Shahram Amini, Alex Moseson, Ted Scabarozi, Mathieu Fraczkiewicz, Charles Spencer, 

Ismail Albayrak, Ryan Buchs and Joan Berger for their invaluable help and support in 



 iv

this endeavor and also making our group a fun place to work in. I also want to say 

thanks to Chloe Baldasseroni and for her friendship and support during these years. 

I am grateful to all my friends in the Department of Materials Science and 

Engineering and at Drexel University. I really enjoyed having all of them around. I would 

like to express my thanks specially to Dr. Ranjan Dash, Varun Gupta, Servesh Tiwari, 

Dr. Kishore Tenneti, Dr. Hari Duvvuru, Dr. Lalit Bansal, Dr. Abhijit Joshi, Dr. Maria Pia 

Rossi, Dr. Gwenaelle Proust, Dr. Davide Mattia, Adarsh Sagar, Sebastian Osswald, Dr. 

Cristelle Portet and Steven Nonnenman for all their help and for making my stay an 

enjoyable experience. Besides being great friends, I would also like to thank Dr. Tom 

Juliano and Sidhhartha Pathak for their help and support with my experiments. 

I am indebted to all the faculty members in the department, for being very open and 

generous and, of course, for what I learnt from their courses. Specially I would like to 

thank Prof. Roger Doherty and Prof. Antonios Zavaliangos for numerous stimulating 

discussions and invaluable suggestions. 

I would also like to thank all the staff in the department, specially Judith Trachtman, 

Dorilona Rose and Keiko Nakazawa for extending their helping hand whenever needed. 

Lastly, I would like thank my parents and my brother from the bottom of my heart. I 

could not have come this far without their unconditional love, support and inspiration. 

 



 v

TABLE OF CONTENTS 

 

LIST OF TABLES .............................................................................................................. x 

LIST OF FIGURES ........................................................................................................... xi 

ABSTRACT ..................................................................................................................... xxi 

CHAPTER 1: INTRODUCTION ....................................................................................... 1 

1.1 Nanoindentation ........................................................................................................ 1 

1.1.1 Introduction to Nanoindentation ........................................................................ 1 

1.1.2 Spherical Nanoindentation ................................................................................. 2 

1.1.3 Previous Work on Spherical Nanoindentation Stress-Strain Analysis .............. 3 

1.2 Kinking Deformation in Solids ................................................................................. 4 

1.2.1 Kinking Nonlinear Elastic Solids ...................................................................... 5 

1.2.2 Kinking Deformation in MAX Phases ............................................................... 6 

1.2.3 Kinking Deformation in Geological Materials .................................................. 7 

1.2.4 Microscale Model: Reversible Motion of Dislocations, forming IKBs under 
spherical nanoindentation ........................................................................................... 8 

1.3 Kinking Nonlinear Elastic Deformation under Spherical Nanoindenter ................ 13 

1.3.1 MAX Phases .................................................................................................... 13 

1.3.2 Graphite ............................................................................................................ 14 

1.4 Goal and Motivation ............................................................................................... 15 

1.5 Structure of the Thesis ............................................................................................ 16 

CHAPTER 2: CONVERTING SPHERICAL NANOINDENTATION RESULTS INTO 
INDENTATION STRESS-STRAIN CURVES ............................................................... 19 

2.1 Introduction ............................................................................................................. 19 

2.2 Spherical Indentation Model ................................................................................... 20 



 vi

2.2.1 Elastic Regime ................................................................................................. 21 

2.2.2 Elasto-Plastic Regime ...................................................................................... 22 

2.3 Theoretical Elastic Modulus from Elastic Constants .............................................. 25 

2.4 Experimental Details ............................................................................................... 26 

2.5 Results ..................................................................................................................... 27 

2.5.1  δ–Correction and Effective Zero-point ........................................................... 27 

2.5.2 Method of Determining the Effective Zero-point for Spherical 
Nanoindentation ........................................................................................................ 28 

2.5.3 Effective Zero-point Correction in Fused Silica .............................................. 28 

2.5.4 Stiffness vs. Contact Radii Plots and Indentation Moduli ............................... 32 

2.5.5 Fused Silica ...................................................................................................... 36 

2.5.6 Aluminum ........................................................................................................ 38 

2.5.7 Iron ................................................................................................................... 39 

2.6 Discussion ............................................................................................................... 40 

2.6.1 Critical Analysis of Method ............................................................................. 40 

2.6.2 Fused Silica ...................................................................................................... 41 

2.6.3 Aluminum ........................................................................................................ 41 

2.6.4 Iron ................................................................................................................... 42 

2.7 Summary and Concluding Remarks ....................................................................... 43 

CHAPTER 3: DEFORMATION MICRO-MECHANISMS UNDER SPHERICAL 
NANOINDENTATION IN ZnO SINGLE CRYSTALS ................................................. 45 

3.1 Introduction ............................................................................................................. 45 

3.2 Experimental Details ............................................................................................... 46 

3.3 Results ..................................................................................................................... 47 

3.3.1 C-Plane ............................................................................................................. 47 



 vii

3.3.2 A-Plane ............................................................................................................ 51 

3.4 Discussion ............................................................................................................... 55 

3.5 Conclusions ............................................................................................................. 64 

CHAPTER 4: ROOM TEMPERATURE CONSTANT-STRESS CREEP IN ZnO ........ 65 

4.1 Introduction ............................................................................................................. 65 

4.2 Experimental Details ............................................................................................... 68 

4.3 Results and Discussion ........................................................................................... 70 

CHAPTER 5: KINKING NON-LINEAR ELASTIC BEHAVIOR IN LiNbO3 SINGLE 
CRYSTALS ...................................................................................................................... 80 

5.1 Introduction ............................................................................................................. 80 

5.2 Experimental Details ............................................................................................... 82 

5.3 Results and Discussion ........................................................................................... 83 

5.3.1 C-Plane ............................................................................................................. 83 

5.3.2 A-Plane ............................................................................................................ 93 

5.4 Conclusions ............................................................................................................. 99 

CHAPTER 6: SPHERICAL NANOINDENTATION AND DEFORMATION 
MECHANISMS IN FREE-STANDING GaN FILMS ................................................... 101 

6.1 Introduction ........................................................................................................... 101 

6.2 Experimental Details ............................................................................................. 103 

6.3 Results and Discussion ......................................................................................... 105 

6.3.1 C-Plane ........................................................................................................... 105 

6.3.2 A-Plane .......................................................................................................... 111 

6.3.3 Possible Deformation Mechanisms ................................................................ 112 

6.3.4 Kinking Non-Linear Elasticity ....................................................................... 113 

6.4 Summary and Conclusions ................................................................................... 118 



 viii

CHAPTER 7: KINKING NONLINEAR ELASTIC DEFORMATION IN SAPPHIRE 120 

7.1 Introduction ........................................................................................................... 120 

7.2 Experimental Details ............................................................................................. 122 

7.3 Results ................................................................................................................... 122 

7.3.1 C-Plane ........................................................................................................... 122 

7.3.2 A-Plane .......................................................................................................... 125 

7.4 Discussion ............................................................................................................. 126 

CHAPTER 8: KINKING NONLINEAR ELASTICITY IN MICA STUDIED BY 
SPHERICAL NANOINDENTATION, AND GEOLOGICAL IMPLICATIONS ........ 139 

8.1 Introduction ........................................................................................................... 139 

8.2 Theoretical Considerations ................................................................................... 141 

8.3 Experimental Procedure ........................................................................................ 143 

8.4 Results ................................................................................................................... 145 

8.4.1 Grade A .......................................................................................................... 147 

8.4.2 Grade B .......................................................................................................... 150 

8.4.3 Grade C .......................................................................................................... 152 

8.5 Discussion ............................................................................................................. 156 

8.5.1 Indentation stress-strain behavior .................................................................. 156 

8.5.2 Energy dissipation per cycle .......................................................................... 160 

8.5.3 Implications to geology.................................................................................. 163 

8.6 Summary and Conclusions ................................................................................... 164 

CHAPTER 9: SUMMARY, CONCLUSIONS AND FUTURE WORK ....................... 166 

9.1 Summary ............................................................................................................... 166 

9.1.1 Summary of Elastic Moduli ........................................................................... 166 

9.1.2 Summary of Hardness .................................................................................... 167 



 ix

9.1.3 Summary of Hysteretic Behavior under Spherical Nanoindentation ............. 169 

9.2 Conclusions ........................................................................................................... 171 

9.3 Future Work .......................................................................................................... 173 

LIST OF REFERENCES ................................................................................................ 175 

VITA ............................................................................................................................... 185 

 



 x

LIST OF TABLES 
 

Table 2.1: Summary of Poisson’s ratios, ν, and Young’s moduli, E, or 1/s33 taken from 
the literature, the moduli values measured in this work using the spherical indenters, ESp, 
a Berkovich indenter, EBr, and the hardness values using the latter, HBr. Also listed in last 
column are the Vickers microhardness values measured herein using a load of 10 N. .... 34 

Table 5.1: Dependencies of measured and calculated parameters, obtained herein, on 
indenter radii. .................................................................................................................... 91 

Table 9.1. Summary of elastic moduli values determined from spherical nanoindentation, 
Berkovich nanoindentation and theoretical elastic constants ......................................... 166 

Table 9.2. Hardness values as measured by Berkovich nanoindentation and Vickers 
microindentation ............................................................................................................. 167 

Table 9.3. List of c/a ratio, C44, energy dissipated per unit volume per cycle, and 
maximum stress, during cyclic spherical nanoindentation in the C-orientation of the 
hexagonal single crystals (except, Ti2AlC and Ti2SC – which were polycrystalline) .... 169 

 



 xi

LIST OF FIGURES 
 
Fig. 1.1 Schematic of the kinking deformation process. a) Incipient kink band (IKB). b) 
Mobile dislocation walls (MDW). Note a new IKB can form inside two MDWs. c) 
Permanent kink band (KB). ................................................................................................ 5 

Fig. 1.2 Plot of c44/c33 vs. c/a ratio for different materials. The materials on the right of 
the vertical line (at c/a ~ 1.4) belong to the group called kinking nonlinear elastic solids. 6 

Fig. 1.3 Schematic of the fully reversible cyclic deformation. ......................................... 10 

Fig. 2.1. Schematic representation of spherical indentation. ............................................ 23 

Fig. 2.2. a) Load-displacement curve resulted from a 13.5 μm indent on fused silica. Also 
plotted are the load-displacement responses after effective zero-point correction of 7.5 
and 15 nm. b) Same curves as (a) – only showing the initial loading part. Note the 
difference in initial load-displacement response after effective zero-point correction. .... 29 

Fig. 2.3. a) S vs. a curve from 13.5 μm indent on fused silica. Also plotted are similar 
curves after effective zero-point correction of 7.5 and 15 nm. b) Same curves as (a) – 
only showing the initial elastic loading part. Note the excellent match, between the S vs. a 
curve and the straight line passing through the origin, after effective zero-point correction 
of 7.5 nm. .......................................................................................................................... 30 

Fig. 2.4. a) The variation in correlation coefficient and standard error for different 
effective zero-point ( δ) correction, obtained from regression analysis of Fig. 2.7. b) 
Corresponding indentation stress-strain curves before and after the correction. Note the 
agreement between the initial stress-strain curve, after 7.5 nm correction, with the dashed 
line representing the elastic behavior. The horizontal arrow shows the approximate yield 
point for the silica sample. ................................................................................................ 31 

Fig. 2.5. a) Plot of contact harmonic stiffness versus contact radius, as determined from 
spherical nanoindentation; and b) Comparison of moduli values determined from 
Berkovich and spherical nanoindentation. ........................................................................ 33 

Fig. 2.6. Indentation results for fused silica. a) Load-displacement results for the 1 μm 
and 13.5 μm indenters used. b) corresponding stress-strain curves with no correction (i.e., 
δ = 0); the 13.5 μm results are shifted by 0.2 to the right for clarity. c) The same 1 μm 
results after δ-correction, the values of which are listed. In this figure we eliminated the 
data points to the left of the dashed line, which represents the elastic response. Also 
shown is a typical result obtained using 13.5 μm indenter. The agreement between the 
two sets of results is excellent. Dashed horizontal line represents the Vickers 
microhardness value measured on the same silica sample. .............................................. 35 



 xii

Fig. 2.7. a) Typical indentation load-displacement curve obtained by the 13.5 μm 
indenter on pure Al. b) Corresponding indentation stress-strain curves at different 
locations without any correction. c) Same as (b), but after δ–correction (see text). d) 
Indentation stress-strain curves after the curves in (c) are mechanically shifted to pass 
through the origin. Dashed horizontal line represents the Vickers microhardness on the 
same surface and dashed inclined line represents the elastic modulus of 58 GPa. ........... 37 

Fig. 2.8. Indentation curves for Fe loaded with a 13.5 μm spherical indenter. a) Typical 
load-displacement response. b) Indentation stress-strain response at different locations 
before the δ–correction. c) Same results after δ–correction and mechanical shifting. Also 
plotted are bulk compression results (open squares) on the same Fe, after multiplying the 
stress by 3 and strain by 10. The agreement between the two sets of results is excellent. 
Dashed horizontal line represents the Vickers microhardness measured on the same 
sample. .............................................................................................................................. 39 

Fig. 3.1. Typical load-displacement results obtained on the C-plane ZnO single crystal. a) 
13.5 µm indents; Note stochastic nature of pop-ins. The curve connecting the square 
symbols trace the load-displacement when the indentation is made near the edge of the 
sample. b) 1 µm indents. In both cases, only one major popin event is observed during 
each loading. ..................................................................................................................... 47 

Fig. 3.2. The contact stiffness vs. contact radii plot for the C-plane sample; Note the 
excellent agreement between the 1 and 13.5 µm indents, and that the linearity is 
preserved even after huge pop-ins. ................................................................................... 48 

Fig. 3.3. Nanoindentation stress-strain curves obtained when 1 µm and 13.5 µm spherical 
indenters are introduced into a ZnO C-surface. Dashed horizontal lines represent the 
hardness values of the same surface measured by a Vickers indenter using a load of 10 N 
and a Berkovich nanoindenter. The slope of the dashed inclined line corresponds to a 
modulus of 135 GPa. Note the near disappearance of a popin when the indentation is 
made near the sample’s edge (square symbols). ............................................................... 48 

Fig. 3.4. Spherical nanoindentation, a) load-displacement; b) stress-strain curves obtained 
when a 13.5 µm radius hemisphere is indented five times into the same location, to the 
same maximum stress, on a ZnO C-surface. Dashed horizontal line represents the Vickers 
hardness. The slope of the dashed inclined line corresponds to a modulus of 135 GPa; 
and, c) Magnified view of cycles 2 to 5 in (b). Note fully reversible and reproducible 
nature of loops. The distance between the two dashed inclined lines represents the 
nonlinear strain during cyclic deformation. ...................................................................... 49 

Fig. 3.5. Secondary Electron Microscopy (SEM) image of indented C-plane ZnO surface. 
The 6-fold symmetry of slip lines is consistent with pyramidal slip underneath the 
indented region.................................................................................................................. 50 

Fig. 3.6. Typical load-displacement results obtained on a A-plane ZnO single crystals. a) 
13.5 µm indents; b) 1 µm indents. Note stochastic nature of pop-ins and forward-



 xiii

displacement creep during unloading. Like the C-plane, only one major popin event is 
observed during each loading. .......................................................................................... 51 

Fig. 3.7. The contact stiffness vs. contact radii plot for the A-plane sample; Note the 
excellent agreement between the 1 and 13.5 µm indents, and that the linearity is 
preserved even after huge pop-ins. ................................................................................... 51 

Fig. 3.8. Nanoindentation stress-strain curves obtained when 1 µm and 13.5 µm spherical 
indenters are introduced into A-surface. Inclined near-horizontal dashed lines are those 
for the C-plane shown in Fig. 3.3. Dashed horizontal line represents the hardness values 
of the same surfaces measured by a Vickers indenter using a load of 10 N. The slope of 
the dashed inclined line corresponds to a modulus of 144 GPa. ...................................... 52 

Fig. 3.9. Spherical nanoindentation, a) load-displacement; and, b) stress-strain curves 
obtained when a 13.5 µm radius hemisphere is indented five times into the same location, 
to the same maximum stress, on the A-plane surface. Dashed horizontal lines represent 
the hardness values of the same surfaces measured by a Vickers indenter using a load of 
10 N. Note that, unlike the C-orientation, there is no hysteresis in this orientation. ........ 53 

Fig. 3.10. Secondary Electron Microscopy (SEM) images of indented A-plane ZnO 
surface. The 2-fold symmetry is consistent with basal slip (see Figs. 3.13b and 3.15b 
below). .............................................................................................................................. 53 

Fig. 3.11. The normalized popin load is plotted against normalized popin extension for 
both 13.5 µm and 1 µm tips and both C and A-orientations. The results from Bradby et al. 
on C-plane (Ref. 22) are also shown for comparison. ...................................................... 54 

Fig. 3.12. Weibull plots for the popin stresses for the 1µm and 13.5 µm indenters on, a) 
C-plane; and, b) A-plane. The Weibull moduli, m, are shown on the figures. ................. 56 

Fig. 3.13 a) Bright-field XTEM image of a spherical indent (tip radius ≈ 4.2 μm) in C-
plane at a maximum load of 50 mN. Arrows denote slip bands along the basal planes. 
(taken from Ref. 53) b) Bright-field XTEM image of a 50 mN spherical indent (tip radius 
≈ 4.2 μm) in A-plane. The arrow shows the direction of indentation. (taken from Ref. 61) 
c) Room temperature monochromatic CL image of a 200 mN spherical indent in C-plane. 
The field width for the image is ~ 65 μm and the CL wavelength is 376 nm. (taken from 
Ref. 53) d) Room temperature monochromatic CL image of 200 mN spherical indents in 
A-plane. The field width for the image is ~ 170 μm and the CL wavelength is 390 nm. 
(taken from Ref. 61) .......................................................................................................... 61 

Fig. 3.14. a) Schematic showing formation of dislocation based kink bands and/or mobile 
dislocation walls during spherical indentation of the C-orientation. The horizontal lines 
represent basal plane dislocation arrays/pileups. b) Schematic of dislocation movement 
on basal plane to form the Star of David, as observed by Bradby et. al. (Ref. 53). .......... 63 



 xiv

Fig. 3.15. a) Schematic of creation of basal plane dislocation loops when the A-
surface is indented. b) Schematic of the cross-sectional view (along the line AA’ in a), as 
confirmed from the XTEM study of Coleman et. al. (Ref. 61). ....................................... 63 

Fig. 4.1. Schematic of basal dislocation loops under the indented ZnO (11 2 0) surface. 66 

Fig. 4.2. a) Typical load-displacement response when a ZnO (11 2 0) surface is indented 
with the 5 μm spherical tip. To keep the stress constant during the second cycle, the load 
had to be continually increased. b) Corresponding NI stress-strain curves. Note the 
constant nature of applied stress during the creep tests. c) Time dependence of NI strain 
at stresses shown. Horizontal arrow points to a run that was interrupted for 50 s, 200 s 
into the creep run. No evidence for backpressure was noted. ........................................... 69 

Fig. 4.3. a) The log-log plot of strain rate vs. applied stress from the data obtained at 
different times during the 400 s holding segment. Note the decrease in slope with 
increasing time. b) Corresponding variation of strain rate with indentation stress at 
different times during the 400 s holding period. The intercept on the x-axis represents the 
threshold stress at a particular time. c) Log-log plot of strain rate, ε& , vs. effective stress, 
σ – σth, where σth is a threshold stress. Hollow symbols represent the data up to 400 s, 
where σth is estimated from (b). Solid symbols represent the creep data up to 4000 s. To 
determine σth, it was varied until the solid data points they fell on the n = 3.1±0.3 line. i.e. 
σth was an adjustable parameter. ....................................................................................... 71 

Fig. 4.4. a) Time dependence of σth; b) Functional dependence of NI strain with σth and 
applied stress, σ; c) Time and σ dependence of average distance between pile-up 
dislocations; and d) time and σ dependence of number of pile-up dislocations. .............. 73 

Fig. 4.5 Time dependent variation in - a) rate of dislocation generation; and b) 
Dislocation velocity. ......................................................................................................... 75 

Fig. 4.6 a) Typical load-displacement response when a ZnO (0001) surface is indented 
with the 5 μm spherical tip. To keep the stress constant during the second cycle, the load 
had to be continually increased. b) Corresponding NI stress-strain curves. c) Time 
dependence of NI strain at stresses shown. Note the strain rates are significantly lower 
compared to the A-plane (Fig. 4.2c). ................................................................................ 77 

Fig. 5.1 A photograph of transmission polarizing microscope showing three sets of 
intersecting twin lamellae in LiNbO3 single crystal (taken from Ref. 77). ...................... 81 

Fig. 5.2. Typical load-displacement results obtained when a C-plane LiNbO3 single 
crystal was cyclically loaded using a spherical indenter with tip radius of; a) 13.5 μm; b) 
5 μm; and c) 1 μm. ............................................................................................................ 84 

Fig. 5.3. Typical load-displacement results obtained when a C-plane LiNbO3 single 
crystal was cyclically loaded up to progressively increased loads using a spherical 
indenter with tip radius of; a) 13.5 μm; b) 5 μm; and c) 1 μm. ........................................ 85 



 xv

Fig. 5.4. Change in contact harmonic stiffness with contact radii for indentation on C-
plane LiNbO3 with 1, 5 and 13.5 μm spherical indenters. Note the excellent agreement in 
slope from three extremely different tip sizes. .................................................................. 86 

Fig. 5.5. a) Indentation stress-strain curves of the first cycle for results shown in Fig. 5.2. 
Dashed and solid horizontal lines represent the Vickers microhardness and the hardness 
measured by Berkovich nanoindentation, respectively. The dashed inclined line 
represents the elastic modulus, measured from S vs. a curves. b) Indentation stress-strain 
response for cyclic loading. The curves on the left are for the results shown in Fig. 5.2a. 
Center loops, and those on the right, were obtained after a location was indented to the 
highest load (500 mN for 13.5 µm, 100 mN for 5 µm, and 9 mN for 1 µm indents) for 2 
cycles, unloaded and progressively loaded to higher stresses (Fig. 5.3). The nested loops, 
with one loading trajectory, were shifted from their original position to the right for 
clarity. ............................................................................................................................... 87 

Fig. 5.6. SEM image of indentation mark made with the a) 13.5 µm tip loaded to 500 
mN; and b) 5 μm tip loaded to 100 mN. Note 3-fold symmetry of the linear surface 
features. ............................................................................................................................. 88 

Fig. 5.7. Plots of, a) UNL with εNL
1.5 and, (b) Wd vs. σ2, as a function of indenter radius.  

Note high correlation coefficients (θ2 > 0.9). c) The variation of domain width, estimated 
from both the theoretical model (squares) and microstructural observations in SEM 
(circles), with R. ................................................................................................................ 90 

Fig. 5.8. a) A schematic of an IKB inside a twinned region. b) SEM image of a flake that 
formed in the vicinity of a Vickers indent, showing the curvature presumably due to the 
presence of basal dislocations. .......................................................................................... 91 

Fig. 5.9 Typical load-displacement results obtained when a A-plane LiNbO3 single 
crystal was loaded using a spherical indenter with tip radius of; a) 13.5 μm; and b) 1 μm.
........................................................................................................................................... 93 

Fig. 5.10. Change in contact harmonic stiffness with contact radii for indentation on C-
plane LiNbO3 with 1 and 13.5 μm spherical indenters. Note the excellent agreement in 
slope from two extremely different tip sizes. .................................................................... 94 

Fig. 5.11. Indentation stress-strain curves of the first cycle with the 1 and 13.5 μm 
indenters. Dashed and solid horizontal lines represent the Vickers microhardness and the 
hardness measured by Berkovich nanoindentation, respectively. The dashed inclined line 
represents the elastic modulus, measured from S vs. a curves. ........................................ 95 

Fig. 5.12. SEM image of indentation mark made with the 13.5 µm tip loaded to 500 mN. 
Note the twinning outside the indented region and linear features, with two-fold 
symmetry, inside the indent. ............................................................................................. 96 



 xvi

Fig. 5.13. Typical a) load-displacement; and b) corresponding stress-strain – results 
obtained when a A-plane LiNbO3 single crystal was cyclically loaded using a spherical 
indenter with tip radius of 13.5 μm. .................................................................................. 97 

Fig. 5.14. Typical a) load-displacement; and b) stress-strain – results obtained when a A-
plane LiNbO3 single crystal was cyclically loaded up to progressively increased loads 
using a spherical indenter with tip radius of 13.5 μm. ...................................................... 98 

Fig. 5.15. Plots of, a) UNL with εNL
1.5 and, b) Wd vs. σ2, for the indents with 13.5 μm 

indenter.  Note the non-linearity in both the curves, which is inconsistent with the KNE 
theory. ............................................................................................................................... 98 

Fig. 6.1. Load-displacement response for spherical nanoindentation of GaN free-standing 
films with a 13.5 µm indenter up to a 500 mN load. a) C orientation; b) A orientation. 105 

Fig. 6.2. The variation in harmonic contact stiffness, S, with contact radii, a, for both C 
and A orientations measured with the 1 µm and 13.5 µm spherical tips. The results for the 
A plane are shifted by 2000 nm to the right for clarity. .................................................. 106 

Fig. 6.3. Indentation stress strain curves for the first loading calculated from the load 
displacement results of both 1 and 13.5 µm nanoindenters for the, a) C orientation, and, 
b) A orientation. The dashed and solid horizontal lines represent the Vickers and 
Berkovich hardness values, respectively. c) Superimposed indentation stress-strain curves 
for the 1 µm indents on both C and A-orientation. Note almost similar hardening rate for 
the two orientations. ........................................................................................................ 108 

Fig. 6.4. a) Spherical nanoindentation load-displacement response on the C-orientation 
for repeated spherical nanoindentation on the same location with the 1µm indenter. The 
applied load was 30 mN for the first 10 cycles and 60 mN thereafter. b) The magnified 
view of cycles 11 to 15. Note the fully reversible hysteretic loops in this orientation. .. 109 

Fig. 6.5. a) Spherical nanoindentation stress-strain response corresponding to the data 
shown in Fig. 6.4a. b) The magnified view of cycles 11 to 15. Note the fully reversible 
hysteretic loops in this orientation. ................................................................................. 109 

Fig. 6.6. a) Spherical nanoindentation load-displacement response on the A-orientation 
for repeated spherical nanoindentation on the same location with the 1µm indenter. The 
applied load was 30 mN for the first 10 cycles and 60 mN thereafter. b) The magnified 
view of the cycles 11 to 20. Note the hysteretic nature of the loops decreases with number 
of cycles. ......................................................................................................................... 110 

Fig. 6.7. a) Spherical nanoindentation stress-strain response on the A-orientation 
corresponding to the data shown in Fig. 6.6a. b) The magnified view of the cycles 11 to 
20. Note the hysteretic nature of the loops decreases with number of cycles. ............... 110 



 xvii

Fig. 6.8. Scanning electron micrograph of an indented region on, a) C-orientation; 
and b) A-orientation. The surface damage was caused by closely spaced (≈ 20 µm) square 
(4 x 4) array indentations made with the 13.5 µm tip and a 400mN load. ..................... 115 

Fig. 6.9 Room temperature monochromatic CL image of a 900 mN indent in a GaN 
epilayer with a sphero-conical tip of radius 4.2 μm (taken from Ref. 95). The horizontal 
field width is 50 μm. ....................................................................................................... 116 

Fig. 7.1 Cyclic nanoindentation results obtained when a 1 µm radius sphere is indented 
into the same location of a sapphire C (0001) crystal surface. (a) Load-displacement for 5 
cycles to 50 mN, followed by 8 cycles at 100 mN. Inset is a schematic of an IKB. (b) 
Magnified view of the center of select loops for an area indented 24 times to 100 mN. 
The reproducibility of the loops is noteworthy. In both a and b only a fraction of the data 
points collected are plotted. ............................................................................................ 123 

Fig. 7.2 Variation in contact stiffness with contact radius when the C-plane sample was 
indented with 1 μm indenter. .......................................................................................... 124 

Fig. 7.3 Cyclic nanoindentation results obtained when a 1 µm radius sphere is indented 
into the same location of a sapphire A crystal surface. (a) Load-displacement for 5 cycles 
to 50 mN, followed by 8 cycles at 100 mN. (b) Magnified view of the center of select 
loops for an area indented 22 times to 100 mN. The reproducibility of the loops is 
noteworthy. In both a and b only a fraction of the data points collected are plotted. ..... 125 

Fig. 7.4 Variation in contact stiffness with contact radius when the A-plane sample was 
indented with 1 μm indenter. .......................................................................................... 126 

Fig. 7.5 a) Indentation stress-strain curves corresponding to the results shown in Fig. 7.1a 
(triangles) and 7.3a (squares). Dashed line on left represents elastic response assuming 
elastic constant is ≈ 500 GPa. Note almost identical response after pop-ins. b) Variation 
of pop-in load with pop-in length for both orientations. Note the similarity in slope. ... 127 

Fig. 7.6 Atomic force microscopy (AFM) scans showing residual displacement after the 
pop-in and pileup around the indents in a) C-plane; and b) A-plane. ............................. 130 

Fig. 7.7 ESEM images of the indented surface of sapphire A surface. (a) The crater after 
a 200 mN indent. Note the two-fold symmetry of the linear surface features. (b) Surface 
feature near the edge of a indent that is most likely a kink boundary. ........................... 131 

Fig. 7.8 ESEM images of the indented surface of sapphire C crystal. (a) A severely 
damaged region of a 3x3 array of 200 mN indents. (b) A 200 mN indent. Note the six-
fold symmetry around the indentation. (c) Damaged area under the impression labeled A 
in a. Note presence of regular shaped pores at a distance of ≈ a below the indentation 
mark. (d) Surface feature near the edge of a 200mN indent that is most likely a kink 
boundary. ........................................................................................................................ 133 



 xviii

Fig. 8.1. Schematic of, a) phenomenological hysteretic mesoscopic unit (HMU), 
used to explain the hysteretic behavior in geological materials (Guyer and Johnson, 1999; 
Guyer et al., 1995). b) cross-section of nested MDWs that can form below a spherical 
indentation. Note the MDWs cannot form without delamination. Once formed the MDWs 
can move away from the indented region. c) top view of hexagonal, Star of David 
configuration of MDWs that form and move away from central indentation mark denoted 
by circle (Basu and Barsoum, 2007)............................................................................... 140 

Fig. 8.2. Photographs of three different grades of mica single crystals used in herein. 
Grades A and B are high quality; grade C, is the most defects, as evidenced from its lack 
of transparency. ............................................................................................................... 143 

Fig. 8.3. a) Typical load-displacement curves for the three different grades of mica when 
the surfaces are indented to a load of 100 mN using a 13.5 μm radius indenter. The 
curves for grades B and C results are shifted to the right by 100 nm and 250 nm, 
respectively. The response of grades A and B is mostly elastic; grade C, on the other 
hand, has some small pop-ins during the first cycle and dissipates considerably more 
energy during the repeat cycles. b) Typical load-displacement curves for the three 
different grades of mica when the surfaces are indented to a load of 500 mN using a 13.5 
μm radius indenter. Note while the behavior of grades A and B are similar, grade C 
exhibits plastic deformation prior to the pop-in. c) Weibull plots for pop-in stresses for 
the 3 grades. Grade C exhibited the lowest pop-in stresses and lowest overall Weibull 
moduli. However, two different regions in grade C resulted in Weibull moduli that were 
similar to those for grades A and B. ............................................................................... 146 

Fig. 8.4. Variation of contact stiffness with contact radii when a 13.5 μm indenter was 
loaded up to 500 mN on a) Grade A; b) Grade B; and c) Grade C, mica. ...................... 147 

Fig. 8.5. a) Spherical nanoindentation load-displacement response of grade A mica when 
a 13.5 μm indenter is introduced up to a load of 500 mN. In some locations, large pop-ins 
were observed, whereas, some locations were elastic up to 500 mN (open squares). b) 
Magnified view of the deformation during cyclic loading. Note that cycles 5–10 are 
almost identical and show repeatable hysteretic behavior. c) The corresponding 
indentation stress-strain curves for the load-displacement data shown in (a). Note linear 
elastic behavior prior to the pop-ins with a slope that corresponds to a modulus of 61 GPa 
(dashed inclined line). d) Illustration of the reversible nature of deformation during cyclic 
loading after the pop-in. The short vertical arrows in (c) and (d) highlight the lower 
modulus obtained during initial loading after pop-ins. ................................................... 148 

Fig. 8.6. Indentation – a) load-displacement; and b) stress-strain – response when the 13.5 
μm indenter was loaded to 100 mN. The linear elastic behavior is represented by the 
inclined dashed line in (b). Although the deformation is almost elastic for 5 cycles, note 
reproducible appearance and disappearance of small undulations during loading and 
unloading, respectively. The residual deformation at the end of each cycle is due to 
instrumental drift. ............................................................................................................ 149 



 xix

Fig. 8.7. The indentation – a) load-displacement; and b) stress-strain – response, at 
three different locations, when grade A was indented with a 5 μm indenter to a load of 
200 mN. The dashed inclined lines represent linear elastic behavior. Note the elastic 
nature of deformation even after the large pop-ins. ........................................................ 150 

Fig. 8.8. a) Typical load-displacement response of grade B mica when a 13.5 μm indenter 
was cycled 5 times to 500 mN in the same location. b) Indentation stress-strain curves for 
the data shown in (a). Dashed inclined line represents a modulus of 61 GPa. Inset 
illustrates the reversible nature of deformation during cyclic loading after the pop-ins. 
The short vertical arrows highlight the lower modulus obtained during initial loading 
after pop-ins. ................................................................................................................... 151 

Fig. 8.9. The indentation – a) load-displacement; and b) stress-strain – response, at three 
different locations, when grade B was indented with a 5 μm indenter to a load of 200 mN. 
The dashed inclined lines represent linear elastic behavior. Note the elastic nature of 
deformation even after the large pop-ins. ....................................................................... 151 

Fig. 8.10. a) Typical spherical nanoindentation load-displacement response for grade C 
mica, when a 13.5 μm indenter was loaded up to 500 mN. Note the smaller pop-in events 
(horizontal arrows) prior to the large pop-in and large hysteretic reversible loops during 
cyclic loading for 5 cycles. b) Indentation stress-strain curves for the data shown in a. 
Also plotted are the indentation stress-strain curves when grade C loaded up to 100 mN. 
The latter are shifted by 0.1 to the right for clarity. The dashed inclined lines represent a 
modulus of 61 GPa. Note, unlike grades A and B, the plastic deformation starts prior to 
the pop-in (short horizontal arrows). Also important is the fact that in the absence of a 
pop-in, the initial slope upon reloading is again 61 GPa. The short vertical arrow 
highlights the much lower slopes of the initial part of the repeat loading after the pop-in.
......................................................................................................................................... 153 

Fig. 8.11. The indentation – a) load-displacement; and b) stress-strain – response, at two 
different locations, when grade C was indented with a 5 μm indenter to a load of 200 mN. 
The dashed inclined lines represent linear elastic behavior. Note the elastic nature of 
deformation even after the large pop-ins. ....................................................................... 153 

Fig. 8.12. Log-log functional dependence of dissipated energy, Wd, on stress for the 3 
grades of mica tested here. Also included are the results for graphite and fine-grained 
(FG) and coarse-grained (CG) Ti3SiC2 obtained from both bulk deformation and 
spherical nanoindentation (Barsoum et al., 2005b). ....................................................... 154 

Fig. 8.13. Scanning electron microscope micrographs of indented regions when the 13.5 
μm indenter was loaded up to 500 mN into: a) Grade A mica; Note pile-up and kink 
boundaries around the indented region. b) Magnified picture of the deformation inside the 
indented region showing extensive delaminations and cracking, that occur during the 
pop-in event in Grade A. c) Grade B mica; Note again pile-up and extensive cracking 
around and inside the indent, respectively. d) Magnified image of a kink boundary, 



 xx

formed around the indented region in Grade B. e) Grade C mica; and f) Formation of 
kink boundaries and extensive rotation of basal planes under the indented region in Grade 
C. ..................................................................................................................................... 155 

Fig. 9.1 Relationship between hardening rate in spherical nanoindentation and the 
difference between Berkovich and Vickers hardness. .................................................... 168 

Fig. 9.2 Relationship of energy dissipation, per unit volume per cycle during cyclic 
spherical nanoindentation, with the c/a ratio of hexagonal crystals. Note that the 
magnitude of the slope depends on the tip size, which eventually determines the domain 
size for dislocation based fully-reversible behavior. ...................................................... 170 



 xxi

ABSTRACT 

On Spherical Nanoindentation Stress-Strain Curves, Creep and Kinking Nonlinear 
Elasticity in Brittle Hexagonal Single Crystals 

Sandip Basu 
Advisor: Prof. Michel W. Barsoum 

Co-advisor: Prof. Surya R. Kalidindi 
 
 

 

Despite the fact that they can accurately delineate the onset of the elasto-plastic 

transition of solids, spherical nanoindentation, NI, experiments are less common than 

sharp indenters. Herein a novel, robust technique to convert NI load-displacement to 

stress-strain curves was developed and applied to fused silica, aluminum, iron and the 

hexagonal single crystals: ZnO, LiNbO3, GaN, sapphire and mica. In all cases, the NI 

stress-strain curves clearly showed the onset of yield and subsequent strain hardening. 

We also show, by Weibull analysis, that the pop-in stresses are stochastic in nature and 

depend on the presence of dislocation-nucleating defects.  

The ability to calculate the NI or mean stress in real time allowed us to run, for 

the first time, constant NI stress experiments, which, in turn, was exploited to quantify 

the room temperature creep of A-oriented ZnO single crystals. Analyses of the results 

clearly showed that the creep is a power law creep, with an exponent of ≈ 3 and a 

threshold stress that was a function of time.  

Repeated cyclic NI experiments, in the same location, were used to successfully 

demonstrate the fully-reversible hysteretic nature of kinking nonlinear elastic, KNE, 

solids, indirectly confirming the presence of incipient kink bands, IKBs, in these 

materials. Our recently developed micro-scale model, based on the reversible dislocation 



 xxii

motion in the form of IKBs, shows excellent agreement with the nonlinear hysteretic 

behavior of C-oriented LiNbO3 single crystals. Combining the NI stress-strain results, we 

show that the energy dissipation per unit volume per cycle in KNE solids increases with 

increasing c/a ratios, as well as increasing domain sizes.  

In summary this work shows that spherical NI stress/strain curves are a powerful 

tool for quantifying and understanding the elastic-plastic transition in materials, 

especially brittle solids, where bulk uniaxial compression/tension experiments are not 

possible. 
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CHAPTER 1: INTRODUCTION 
 

 

 

1.1 Nanoindentation 

1.1.1 Introduction to Nanoindentation 

Since the 1990s a lot of attention has been paid to the development of micro and 

nano-scale devices both from bulk single crystals and thin films. Along that came the 

necessity of characterizing the mechanical properties at such a small scale. Since the 

conventional microhardness indentation requires imaging of the impressions, large errors 

can be introduced in measuring the length of the diagonals at such small length scale. 

During the last two decades, it has been well established that depth sensing 

nanoindentation technique is a powerful tool to determine the modulus and hardness of a 

material by probing a very shallow depth into the sample.1-5 Different methodologies 

have been proposed to analyze the load-displacement data from the nanoindenter, and 

different tip geometries are being used to determine different mechanical properties of 

solids.2,3,6-9  

There are a variety of tip geometries available. The most popular ones for sub-micron 

depth sensing indentation technique are spherical (sphero-conical) and Berkovich (three-

sided pyramid) indenters.5 Most of the indentation studies, with few exceptions, to date 

have concentrated on determining only the hardness and moduli values from  analysis of 
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nanoindentation results using either the Oliver and Pharr2 or the Field and Swain 

method.6 Somewhat surprisingly, very little work has been done on the determination of 

indentation stress-strain curves, which can be much more informative in terms of what 

occurs at the elastic-plastic transition upon contact loading.10-13 

Since the majority of the work has been carried out using Berkovich indenters, the 

emphasis has been more on extracting moduli and hardness values.2,4,5 Berkovich or cube 

corner indenters are quite sharp and result in plastic deformation almost instantly, 

consequently, much of the information about the purely elastic region and, as important, 

the elastic-to-plastic transition is lost, a fact that has long been appreciated.14 As 

discussed in this work, that information can be readily obtained by using spherical 

indenters.  

1.1.2 Spherical Nanoindentation 

Although it has been more than a century since Brinell15 proposed the spherical 

indentation technique, most of the work with spherical indenters was limited to bulk 

hardness testing. The potential of obtaining a stress-strain curve, by using spherical 

indenter, was also appreciated for a long time but the technique did not caught on partly 

because of the ease with which a stress-strain curve can be obtained from uniaxial tension 

or compression tests. Unfortunately, uniaxial tension or compression tests are not 

possible for studying the properties of thin surface layers and small volumes of individual 

material phases those are important for better stability of micro/nano-devices and, 

moreover, better understanding of the micromechanisms of deformation behavior in 

materials – especially brittle ceramic materials. The need can be addressed by combining 



 3

indenters of spherical geometry with the depth-sensing nanoindentation technique. 

Spherical nanoindentation makes use of a sphero-conical indenter tip with a certain tip 

radius. This technique can be used to investigate hardness (or, mean contact pressure) and 

elastic modulus as a function of penetration depth, produce representative stress-strain 

curves, and investigate strain hardening.3 As shown in this work, spherical 

nanoindentation can also be used for understanding the nonlinear elastic deformation in 

solids.11,12,16-18  

1.1.3 Previous Work on Spherical Nanoindentation Stress-Strain Analysis 

Given that the conversion of load-displacement curves to indentation stress-strain 

curves is almost as old as the technique14 of using indentations to probe the mechanical 

properties of solids, it is somewhat surprising that this conversion is not much more 

common than it is. This comment notwithstanding, there have been a number of papers in 

which spherical nanoindenters have been used.3,6,10,19,20 Roughly a decade ago, Field and 

Swain6 suggested a method to extract indentation stress-strain curves from load-

displacement curves. But for reasons that are not clear, and with some exceptions, their 

methodology has not caught on and as importantly, Swain et al.21,22 have not used this 

technique in their more recent work. Instead, in some recent publications,21,22 plots of 

hardness vs. indentation penetration were presented, but none as indentation stress-strain 

curves. Prior to this work (see Ch. 2), we used the Field and Swain method to convert 

load-displacement results obtained on Ti3SiC2,23 and single-crystals of mica11 and 

graphite,12 loaded parallel to the c-axis to indentation stress-strain curves.  
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Herbert et al.20 described a methodology that is almost identical to the one 

developed here and applied it to Al and concluded that the method was a qualified 

success in that more work was needed to better delineate the yield points of Al. Again for 

reasons that are not clear, and as far as we are aware, neither Pharr and co-workers, nor 

others, have attempted to develop the technique further. In the next chapter (Ch. 2) we 

describe, in detail, the methodology that has been developed during the current research 

to convert the load-displacement data to indentation stress-strain.24 

1.2 Kinking Deformation in Solids 

 A kink band is known to be the fundamental building block of kink folds. It has been 

explained as a tabular shear zone that cuts across layered media such as bedding, 

foliation, crystal lattices or cleavage planes.25 The formation of kink bands can be 

observed in many geological structures, as well as highly deformed crystals.26,27 Frank 

and Stroh have proposed the concept of nucleation of two oppositely signed dislocation 

walls attached at both ends in a material with limited slip systems27 – which we called an 

incipient kink band (IKB – Fig. 1.1a). They annihilate when the load is removed. They 

proposed that at much higher stresses the ends of an IKB get detached and form mobile 

dislocation walls (MDWs – Fig. 1.1b), hence an irreversible and permanent deformation, 

and damage in the form of delaminations. It is the coalescence of mobile walls that 

eventually produces the kink boundaries that result in the permanent kink bands (KBs – 

Fig. 1.1c) that have been documented extensively in the literature.26-29 Fig. 1.1 shows a 

schematic of this process. 
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Fig. 1.1 Schematic of the kinking deformation process. a) Incipient kink band (IKB). b) Mobile dislocation 
walls (MDW). Note a new IKB can form inside two MDWs. c) Permanent kink band (KB). 

1.2.1 Kinking Nonlinear Elastic Solids 

Kinking nonlinear elastic (KNE) solids are characterized by a marked anisotropy in 

their plastic properties at the single crystal level. One measure of that anisotropy is a high 

c/a ratio. It has been postulated that a sufficient condition for a solid to be KNE is a high 

c/a ratio.30 This condition renders dislocations other than basal and/or basal twinning 

prohibitively expensive. The material can thus only deform by basal slip, which leads to 

kinking. 

Fig. 1.2 plots C44/C33 vs. c/a for a number of solids, some of which are known to kink 

and others that are not. Based on this map it is clear that KNE solids lie to the right of the 

vertical line and hence constitute a huge class of solids. 

As noted above, high c/a ratios render non-basal slip prohibitively expensive. Thus 

only kink band formation - made possible by basal slip - can be activated during 

deformation. However, at c/a ratios of ~ 1.5, it is possible to activate non-basal slip in 

addition to basal slip. The IKBs - comprised of basal plane dislocation dipoles - are then 

activated in the dislocation cell structures developed giving rise to the fully reversible 

loops observed. The signature of KNE deformation is the large hysteresis loops in the 
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stress-strain curves.11,23,31 As the stresses become larger, the hysteresis loops become 

larger until the samples fail.  
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Fig. 1.2 Plot of c44/c33 vs. c/a ratio for different materials. The materials on the right of the vertical line (at 
c/a ~ 1.4) belong to the group called kinking nonlinear elastic solids. 

1.2.2 Kinking Deformation in MAX Phases 

The current research was mainly triggered by the unique deformation behavior of the 

Mn+1AXn - or MAX – phases synthesized in our laboratory, where M is an early transition 

metal, A is an A-group element, X is carbon and/or nitrogen, and n=1-3. The MAX 

phases, numbering over 50, are ternary carbides and nitrides that have received 

considerable attention in the past decade.28,31-37 The crystal structure of MAX phases is 

comprised of hexagonal nets of “A” atoms separated by three nearly close-packed “M” 

layers that accommodate “X” atoms in the octahedral sites between them.38 Some of 

these compounds – most notably Ti3SiC2 and Ti2AlC - are promising, lightweight 

candidates for high temperature structural and other applications. Their electrical and 
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thermal conductivities are higher than those of Ti metal.32,34 Despite having a density (~ 

4.5 gm/cm3) comparable to Ti, their stiffness are roughly three times as high,39 and yet 

are most readily machinable.34 With a Vickers hardness of ≈ 3 GPa, they are relatively 

soft, unusually thermal shock resistant34,40 and highly damage tolerant.34,41 Unlike most 

brittle solids, edge cracks do not emanate from the corners of hardness indentations.39,41 

Rather, intensive kinking, buckling and bending of individual grains take place in the 

vicinity of the indentations, resulting in pseudo-plastic behavior at room temperature.41 

More recently it has been shown that polycrystalline Ti3SiC2 samples can be 

cyclically loaded in compression at room temperature to stresses up to 1 GPa, fully 

recover on the removal of the load, while dissipating about 25 % (0.7 MJm-3) of the 

mechanical energy.31 These loss factors are higher than most woods, and comparable to 

polypropylene and nylon. The stress-strain curves outline fully reversible, rate-

independent, closed hysteresis loops that are strongly influenced by grain size, with the 

energy dissipated per unit volume per cycle, Wd, being significantly larger in the coarse-

grained material. In more recent papers it was established that Ti2AlC,42 graphite,12 

hexagonal-BN,11 mica,11 among many others, have similar deformation behavior. This 

phenomenon was attributed to the reversible formation and annihilation of incipient kink 

bands (IKBs), which is why we refer to them as kinking nonlinear elastic (KNE) solids.30 

1.2.3 Kinking Deformation in Geological Materials 

Most of the minerals near the earth’s crust are layered and so kink bands can readily 

be observed in the minerals as reported in the geological literature.11,13 These minerals 

also show non-linear elastic deformation behavior, which can be observed as reversible 
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hysteretic stress-strain curves and hence they have been labeled non-linear mesoscopic 

elastic (NME) solids. These solids are modeled phenomenologically by invoking the 

presence of hysteretic mesoscopic units (HMUs), as discussed in Ch. 8, whose physical 

underpinnings were unknown until recently.  

Barsoum et. al. studied the deformation in mica11 and graphite12 with both uniaxial 

compression and nanoindentation and have shown clear evidence of kink bands after the 

material is deformed. The reversible hysteretic deformation behavior has been explained 

with the IKB model, which finally gave a physical understanding to the HMUs. Thus 

IKBs play a much crucial role in the deformation of the earth’s crust than hitherto been 

appreciated.  

1.2.4 Microscale Model: Reversible Motion of Dislocations, forming IKBs 

under spherical nanoindentation 

Our recently developed model30,43 is based primarily on a theoretical paper by Frank 

and Stroh,27 (F&S), who considered the problem of the growth of a thin elliptical kink 

with dimensions 2α and 2β, such that 2α >> 2β (Fig. 1.1a). Initially, the elliptical kink is 

comprised of dislocation loops with components of opposite sign, such that the ends are 

attached and attracted to each other (Fig. 1.1a). However, because initially they increase 

the energy of the system, the kinks are subcritical or unstable. Using an energy approach, 

reminiscent of Griffith’s, F&S showed that the remote shear stress, τ, needed to render a 

subcritical kink band unstable – and hence grow – depended on α : 
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which can be simplified, by assuming w ≈ b, to 
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where b is the Burgers vector; G is the shear modulus (for single crystals, G is replaced 

by c44); w is related to the dislocation core width; σt is the threshold stress and k1 is a 

factor (assumed to be 2) relating the remote applied stress to the shear stress. It should be 

noted here that, during indentation in some materials, k1 can be higher than 2 – but that 

will only make a small difference in magnitude of the parameters, described below, and 

the overall physics will remain the same. This comment notwithstanding, more work is in 

progress to better understand the scaling factors. γc is the critical angle of kinking given 

by: 

GD
b c

c 2
)1(33 τνγ −

≈= ,             (1.3) 

where ν is Poisson’s ratio, D is the distance between dislocations in the wall (Fig. 1.1a).  

Recent ab initio and molecular dynamics calculations44 have shown that dislocations 

in perfect metal crystals nucleate when the critical shear stress: 

τc ≈ σc/2 =  G/n ,             (1.4) 

where τc and σc are the applied shear and normal contact stresses under the indenter, 

respectively. For polycrystalline metals n is ≈ 30.45,46 For the single crystals, studied 

during this work, the appropriate modulus is not G, but c44.  Also, as described in later 

chapters, the fact that in some cases IKBs nucleate at a very high stress implies that n is 
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much lower than 30. In general, it is not easy to experimentally determine n. The fact 

that τc is close to the theoretical strength of a crystal and can be readily measured here is 

one of several advantages of using spherical indenters and converting the results to stress-

strain curves. 

F&S modeled a two dimensional single crystal and assumed, correctly, that once the 

inequality in Eq. 1.2 was satisfied, the subcritical kink band would rapidly, and 

autocatalytically, grow to the edge of the sample and dissociate into two parallel mobile 

dislocation walls (MDW) (Fig. 1.1b). It is the repetition of this process that ultimately 

leads to the formation of KBs (Fig. 1.1c) that are irreversible.28,37,47 As shown in the 

chapters 3 to 8, this behavior is very similar to what happens in a single crystal under the 

nanoindenter. During the first cycle, most of the energy gets dissipated towards forming 

MDWs, KBs and/or twin boundaries in the material – which, in turn, act as domains for 

the formation of IKBs in the material. Thus the reversible hysteretic phenomenon can 

only be observed during 2nd cycle onwards.11-13,16-18,48  

 
Fig. 1.3 Schematic of the fully reversible cyclic deformation. 

An IKB is one in which the ends remain attached (Fig. 1.1a) at the domain boundaries 

and is therefore fully reversible upon the removal of the load.31 In an IKB, each 
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dislocation loop can be assumed to be comprised of two edge and two screw 

dislocation segments with lengths, 2βx and 2βy, respectively. In our model it is assumed 

that when σ  > σt, the IKBs grow by increasing β2 , assuming,27,43  

c
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=       (1.5a) 

for the edge components, and 

c
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for the screw components. 

Herein we assume that when σ  ≤ σt, the IKB has a finite length of 2α, with widths,43  
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The nonlinear strain, εNL due to the growth of these elliptical IKBs is thus given by:30,43 
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where, ΔV is the change in volume of one IKB, Nk is the number of IKBs per unit 

volume and, k2 is a factor (assumed to be 2) for converting local shear strain to the 

macroscopic linear strain. This is also acknowledged here that more work is needed to 

understand the value of k2 for different materials, and their orientations (as indicated in 

the PM space model studied in Ref 49).49 
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Consequently, the nonlinear energy stored, UNL (Fig. 1.3), is given by,30,43 

 UNL =
1
2

εNLσ ≈
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If Ω  is the energy dissipated by a dislocation line sweeping a unit area, then the area 

within each stress-strain loop or energy dissipated per cycle per unit volume, Wd, can be 

expressed as,30,43 

  ( )22
22

1

3

,,
)1(4)(22 t

c

k
cycxyxkd bGk

N
D

NW σσ
γ

ανπββββπα
−

Ω−
=Ω−=     (1.9) 

Combining Eqs. 1.7 and 1.9 yields,43 

NLd b
kW εΩ

= 23     (1.10) 

As demonstrated herein and previous work,11,12,16,17,31,43,49 the formation of fully 

reversible, reproducible hysteretic stress-strain loops upon cycling is one of the signatures 

of IKBs. In deriving Eq. 1.9, Wd is assumed to be solely due to the movement of IKB 

related dislocations; the motion of dislocations in pileups is neglected. Ω/b is a material 

property that is proportional to, if not identical to, the critical resolved shear stress, 

CRSS, of basal plane dislocations making up the IKBs.43 In the case of hexagonal metals 

we have shown that indeed, Ω/b is ≈ CRSS.43 It should be noted here that Ω/b is related 

to the ease of moving a dislocation on a particular slip plane and this may potentially vary 

with the amount of hydrostatic pressure present during the deformation. With that caveat, 

it is acknowledged that in case of spherical nanoindentation, where a much higher 

hydrostatic component is present compared to bulk uniaxial experiments, Ω/b can be 

higher than reported values of CRSS. 
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1.3 Kinking Nonlinear Elastic Deformation under Spherical 
Nanoindenter 

1.3.1 MAX Phases 

In the recent past Murugaiah et. al.13,23 reported on the load versus depth-of-

indentation response of Ti3SiC2 surfaces loaded with a 13.5 µm spherical tipped diamond 

indenter up to loads of 500 mN. Using orientation imaging microscopy, two groups of 

crystals were identified; one in which the basal planes were parallel to, and the other 

normal to, the surface. When the load-penetration depth curves were converted to 

indentation stress-strain curves the following was apparent: when the surfaces were 

loaded normal to the c-axis, the response at the lowest loads was linear elastic—well 

described by a modulus of 320 GPa—followed by a clear yield point at approximately 

4.5 GPa. And while the first cycle was slightly open, the next 4 on the same location were 

significantly harder, almost indistinguishable, and fully reversible. At the highest loads 

(500 mN) pop-ins due to delaminations between basal planes were observed. When pop-

ins were not observed the indentations, for the most part, left no trace. When the load was 

applied parallel to the c-axis, the initial response was again linear elastic (modulus of 320 

GPa) followed by a yield point of approximately 4 GPa. Here again significant hardening 

was observed between the first and subsequent cycles. Each cycle resulted in some strain, 

but no concomitant increase in yield points. This orientation was even more damage 

tolerant than the orthogonal direction. This response was attributed to the formation of 

incipient kink bands that lead to the formation of regular kink bands.13,31 Remarkably, 

these dislocation-based mechanisms allow repeated loading of Ti3SiC2 without damage, 

while dissipating significant amounts of energy per unit volume, Wd, during each cycle. 
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The values of Wd measured were in excellent agreement with corresponding 

measurements in simple compression tests, confirming that the same mechanisms 

continue to operate even at the high (∼ 9 GPa) stress levels typical of the indentation 

experiments.23 

1.3.2 Graphite 

Barsoum et. al. reported on the response of graphite single crystals – loaded parallel 

to their c-axis – to a 13.5 µm radius spherical diamond nanoindenter.12 Up to loads of 5 

mN, corresponding to stresses of ~ 0.5 GPa, fully reversible hysteresis loops are 

observed. At stresses more than 0.5 GPa, the first loops are slightly open; subsequent 

loops, in the same location, were fully reversible and harder than the first. Simple 

compression experiments on polycrystalline cylinders yielded qualitatively similar 

results. Their results, together with much of the literature on the mechanical properties of 

graphite,50 can be explained by invoking the formation of incipient kink bands, IKB’s, 

that give way to mobile dislocation walls that, in turn, coalesce into kink boundaries with 

increasing stress. The IKB’s are fully reversible; the dislocation walls result in plastic 

deformation, and the kink boundaries explain the hardening. Since the dislocations are 

confined to the basal planes, they cannot entangle and can thus move reversibly over 

relatively large distances resulting in the dissipation of substantial amounts (up to 100 

MJ/m3) of energy during each cycle. At stresses more than 1.5 GPa, massive pop-ins––of 

the order of 60 µm––are observed.12 Examination of the craters formed provided direct 

evidence for kink bands and the formation of a multitude of subgrains under the indenter. 

Based on this work, it is clear that graphite is a member of a larger class of solids – 
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kinking nonlinear elastic solids30 – that includes the Mn+1AXn phases, layered silicates, 

nonlinear mesoscopic elastic solids, among others. 

1.4 Goal and Motivation 

As described in recent literature one of the reasons behind non-linear elastic 

deformation is the formation of dislocation-based IKBs.11,31 Crystals with hexagonal 

structure show microscopic evidence of the presence of kink bands as can be seen in 

MAX phases,23,31 mica,11 and graphite.12 Due to the ubiquity of such crystal structures it 

is of immense interest to understand the micromechanisms of the formation and 

propagation of these dislocation bands. Also, from Fig. 1.2, it is evident that some 

proposed KNE solids (such as ZnO, LiNbO3, sapphire, GaN) also belong to the so-called 

brittle ceramics category. Hence, the motivation for this project is mainly two-fold. First, 

it is important to generate the representative indentation stress-strain curves for different 

materials, using the spherical nanoindentation technique, and correlate the behavior with 

underlying dislocation based deformation behavior. The stress-strain curves will be 

informative for understanding the micro-mechanics of deformation and, more 

importantly, for designing novel experiments where the macro-scale deformation theories 

(e.g. elastic/plastic anisotropy, creep etc.) can be validated at smaller length scales. 

Second and as important pertaining to the current project, is to demonstrate the kinking 

nonlinear elastic behavior in hexagonal brittle solids at micro/nano-scale and correlate the 

experimental results with our microscale dislocation-based theoretical model, discussed 

before. It is also important from a design point of view to understand the structural 



 16

changes occurring during nucleation and growth of IKBs and their transformation to 

KBs and how these changes affect structural properties of KNE solids.  

Consequently, in a broader sense, the purpose of this research is to investigate the 

following: 

A. Micromechanisms of the dislocation based deformation behavior during the 

nucleation and growth of IKBs and KBs in brittle KNE solids; and 

B. Design of novel micro/nano-mechanical characterization techniques for 

measuring room temperature time-dependent deformation in brittle solids and 

correlate the behavior with macro-scale models. 

This study will not only lead to a better understanding of the deformation mechanisms 

observed in KNE solids, but also enhance our capability to design more efficient and 

robust devices both at macro and micro scale. 

1.5 Structure of the Thesis 

The current research, and hence the thesis, is designed in the following way to 

achieve the above mentioned goals and to gain more insights into micro/nano-mechanical 

deformation of materials, specially hexagonal crystalline so-called brittle materials. 

The next chapter (Ch. 2) will discuss the details of determining indentation stress-

strain curves from the load-displacement data, including a proposed technique to correct 

for the effective zero-point of contact during the experiments. 
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Once the indentation stress is determined from the load-displacement data, it can 

potentially be controlled to achieve more insight into the deformation of the material. As 

per one of our goals to understand the kinking non-linear elasticity at micro-scale in 

materials, we considered single crystals of five different materials, from Fig. 1.2.  

The first one is ZnO (Ch. 3), where the c/a ratio is ~ 1.6 and also has a low shear 

modulus, c44, of ~ 45 GPa. The response of two different orientations, C (0001) and A 

(11 2 0), to spherical nanoindentation are discussed. 

Chapter 4 discusses a novel technique to control the indentation stress for extended 

periods of time, to determine room temperature creep deformation in ZnO single crystals, 

specially the A orientation. This chapter is a powerful example of the potential for 

calculating indentation stress-strain curves and comparing micro-scale deformation of 

materials to existing macro-scale theories. 

The second material is LiNbO3 (Ch. 5), where the c/a ratio is high (~ 2.69) but has a 

low c44 of ~ 59.5 GPa. Again, both C and A orientations are characterized. In the C 

orientation, the largest nonlinear hysteresis, during cyclic spherical nanoindentation, has 

been observed; and, for the first time the micro-scale model for kinking non-linear 

elasticity (see above) is applied to the nanoindentation data. 

Chapter 6 discusses the nanoindentation results on C and A orientations of free-

standing epitaxial GaN films. GaN has a c/a ratio of ~ 1.63 but it has a very high shear 

modulus, c44, of ~ 241 GPa. 
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The fourth material discussed, in Ch. 7, is sapphire (Al2O3), where both the c/a 

ratio (~2.73) and c44 (~148 GPa) are high. 

Chapter 8 discusses the spherical nanoindentation deformation behavior in different 

grades (based on their initial defect concentration) of mica (c/a ≈ 1.4, c44 ≈ 15 GPa) 

single crystals. This chapter, being a continuation of our earlier work,11 focuses more on 

the effect of initial defect population and delaminations on the deformation behavior in 

mica. 

Lastly, Ch. 9 summarizes the findings in different materials and correlates the 

deformation behavior with the material parameters. This chapter also discusses the future 

directions pertaining to the current research. 
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CHAPTER 2: CONVERTING SPHERICAL NANOINDENTATION 

RESULTS INTO INDENTATION STRESS-STRAIN CURVES 
 

 

 

2.1 Introduction 

As discussed in Ch. 1 and demonstrated herein, information regarding the elastic to 

plastic transition at micro/nano-scale can be readily obtained using spherical 

indenters.3,6,14 To do so, however, use is made of the continuous stiffness measurement, 

CSM, technique,2 with which, it is possible to apply a load to the indenter tip, while 

simultaneously superimposing an oscillating force, with force amplitudes that are roughly 

an order of magnitude smaller than the nominal load.51 This technique is thus capable of 

accurately measuring the contact stiffness at every load and eliminates the need to carry 

out multiple loading-unloading measurements, as described in the Field and Swain 

method,3,52 to calculate the variations in hardness and moduli values with load and 

displacement into the surface.  

Despite the use by some of spherical nanoindenters3,6,20,21,52,53 – and the ease by 

which the load can, in principle, be converted to stress - as far as we are aware, there has 

been little effort in trying to systematically study and convert nanoindentation load-

displacement results to their corresponding stress-strain curves.  
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The objective of this work is to apply a variation of the Herbert et al.20 technique to 

a number of quite different solids, viz. amorphous silica,24 polycrystalline aluminum, 

Al,24 iron, Fe,24,54 and single crystals of sapphire16 and ZnO.17 In all cases, the results 

were compared to the moduli reported in the literature and those measured using the 

Oliver and Pharr2 method and a Berkovich indenter. The hardness values obtained here 

were, in turn, compared to the results obtained using Vickers and Berkovich indenters. 

We show herein that this approach is quite powerful and versatile. 

2.2 Spherical Indentation Model 

Typically, a nanoindentation test results in load (P) and displacement into the surface 

(ht) data. Additionally, the CSM attachment provides the harmonic contact stiffness (S) 

values over the entire range of loading. The vast majority of spherical nanoindentation 

data analysis is based on the Hertz equation in the elastic region: 1,3,6,14 

   2/32/1*
3
4

ehREP = ,           (2.1) 

where R is the radius of the indenter, he is the elastic distance into the surface (Fig. 2.1) 

and E* is the system composite modulus given by: 

   
'
'11

*
1 22

EEE
υυ −

+
−

= ,           (2.2) 

where 'E  and 'υ , respectively, refer to the modulus and Poisson’s ratio of the diamond 

indenter (1140 GPa and 0.07). The other terms refer to those of the sample.  
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For a rigid spherical indenter, Sneddon55 showed that the elastic displacements of a 

plane surface above and below the contact circle are equal, and given by,  

                                           
R
ahh te

2

== ,                    (2.3) 

where a is the contact radius during indentation (Fig. 2.1). Combining Eqs. 2.1 and 2.3 

yields, 

        )(*
3
4

2 R
aE

a
P

ππ
=           (2.4) 

The left hand side of the equation represents the indentation stress or mean contact 

pressure, also referred to as the Meyer hardness.14 The expression in parentheses on the 

right-hand side represents the indentation strain.14 Henceforth, these will be referred to as 

indentation stress and indentation strain, respectively.  Note these are not same as the 

stresses and strains measured in uniaxial compression tests. 

In the remainder of this section we outline a method by which a can be calculated 

from a knowledge of P, S and the total displacement of the indenter into the surface, ht, 

first in the elastic regime, and then in the elasto-plastic regime. 

2.2.1 Elastic Regime 

Both the Oliver and Pharr2 and Field and Swain3 methods use the slopes of the initial 

portions of the unloading curves, dP/dh, to calculate he. Differentiating Eq. 2.1 with 

respect to h yields: 

   2/12/1*2 ehRE
dh
dP

= ,           (2.5) 
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which when substituted in Eq. 2.1, results in: 

   eh
dh
dPP

3
2

=             (2.6) 

Therefore, 

   
dP
dhPhe 2

3
=             (2.7) 

Since dP/dh is nothing but the stiffness, S*, of the system comprised of the specimen and 

the load frame, the stiffness of the material itself can be calculated from 

   
fSSS

1
*

11
−= ,                     (2.8) 

where Sf is the load-frame stiffness, which in our case is ~ 5.5 MN/m. This value is the 

one obtained from the instrument manufacturer. Replacing 
dh
dP  in Eq. 2.8 with S, one 

obtains: 

   
S
Phe 2

3
=             (2.9) 

Once he is known, a is calculated from Eq. 2.3. 

2.2.2 Elasto-Plastic Regime 

Again following Oliver and Pharr2 and Field and Swain3 we assume the “contact 

depth”, hc, defined as the distance from the circle of contact to the maximum penetration 

depth (Fig. 2.1) to be given by: 
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hc ≈ ht −
he

2
     (2.10) 

Combining Eqs. 2.9 and 2.10 yields: 

   hc = ht −
3
4

P
S

             (2.11)   

hc 

R 

2a 
htot 

≈ a 

he/2 

 

Fig. 2.1. Schematic representation of spherical indentation. 

For reasons discussed below, we modified this equation to read: 

 δ±−=
S
Phh tc 4

3 ,     (2.12) 

where δ is an adjustable parameter of the order of a few nm, discussed below. 

Once hc is known, a can be calculated from: 

   a = 2Rhc − hc
2  ≈ 2Rhc          (2.13) 
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Note the right-hand expression is only valid if hc « a, and the indenter tip is perfectly 

spherical. In the purely elastic regime, hc = ht/2 = he/2 and Eq. 2.3 and Eq. 2.10 become 

identical. Also note that, for the most part, in the plastic regime, since ht >>he/2 and thus 

hc≈ ht (Eq. 2.10). 

For an isotropic elastic solid, indented with a spherical indenter,2 

   aES *2=           (2.14) 

It is important to note here that, in principle for an isotropic solid, an S vs. a curve should 

be linear and it should go through the origin. Equation 2.14 is key to our work as it 

enables us to correctly, and objectively, determine the value of δ, mentioned above, by 

measuring the goodness of fit of the experimental data to a straight line passing through 

the origin (see below). 

To date the most commonly used method for measuring nanoindentation hardness 

values is the Oliver and Pharr method, in which hc is calculated from Eq. 2.11, and the 

contact area, A, is determined from a calibrated area function of the form:2 

  A(hc ) = C0hc
2 + C1hc + C2hc

1/ 2 + C3hc
1/ 4 + C4hc

1/ 8 + ....       (2.15) 

In this work we calculate a from Eq. 2.13. The validity of the results are then judged 

by two simple criteria: First, that the initial portion of the indentation stress-strain curves 

be linear, with a slope corresponding to the elastic modulus – which is verified with the 

slope obtained from Eq. 2.14, the one measured by the standard method, viz. a Berkovich 

indenter and the Oliver and Pharr method, and also from known elastic constants. 
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Second, that the stress level at higher strains (~ 20 %) corresponds to the stress 

measured on the same material using a Vickers microhardness indenter.  

2.3 Theoretical Elastic Modulus from Elastic Constants 

The elastic modulus along a particular direction in a crystal can be obtained from the 

components in the compliance, S, matrix. For example, for a hexagonal crystal system, 

the compliance matrix can be written as, 
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And, the elastic modulus for the [0001] direction will be 1/S33. As mentioned above, the 

value of elastic moduli, obtained from the slope of Eq. 2.14 for different materials and 

different orientations, are compared to the theoretical values from the compliance matrix. 

In tensor notations, the compliance matrix can be represented by Sij. 

In many instances, the stiffness, C, values are reported instead of compliance; and the 

stiffness matrix can be represented by Cij. The stiffness matrix will also have a similar 

structure as above, 
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where, the five independent parameters are C11, C12, C13, C33 and C44; and, C66 can be 

calculated from, 

 2
)( 1211

66
CCC −

=      (2.16) 

Once the complete stiffness matrix is known, it can be easily inversed to obtain the 

compliance matrix. 

2.4 Experimental Details 

The nanoindenter (XP System, MTS, Oak Ridge, TN) used in this work was equipped 

with a CSM attachment. The harmonic displacement for the CSM was 2 nm with a 

frequency of 45 Hz. The tests were carried out to various loads for different materials 

depending on their hardness. Once the surface is detected, the indenter is loaded at a 

constant value of (dP/dt)/P = 0.1 s-1 (the loading rate divided by the load),2 which has the 

advantage of logarithmically scaling the data density so that there are just as many data 

points at low strains than as high. Constant (dP/dt)/P tests have the advantage of 

producing approximately a constant indentation strain rate, (dh/dt)/h, provided the 

hardness is not a function of the depth.56 

Two diamond spherical tips - with radii of 13.5 µm and 1 µm - were used. As noted 

above we used a number of materials: fused silica (GM Associates Inc., Oakland, CA); 

sapphire single crystal (C-orientation) (Kyocera Industrial Ceramics, Vancouver, WA); 

C-orientation ZnO single crystal (Wafer World, Inc., West Palm Beach, FL) and two 

metals: Al (Puratronic 99.999%, Alfa Aesar, MA) and Fe (99.99 % Alfa Aesar, MA).  
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In all cases, the Vickers microhardness values of the same surfaces used for the 

nanoindentations were measured using a microhardness indenter (M-400 Hardness 

Tester, LECO Corp., St. Joseph, MI) and a 10 N load. We also used the Oliver and Pharr2 

method and a Berkovich indenter tip to measure the hardness, HBr, and moduli, EBr, of all 

samples. As noted above, the latter method will henceforth be referred to as the standard 

method. 

Lastly, to compare the indentation stress-strain curves with those measured in 

uniaxial compression, a Fe cylinder (9.7mm diameter x 35mm long) was loaded at a 

nominal stress rate of approximately 13.5 MPa/s. The strain was measured using an 

extensometer attached to the sample. 

2.5 Results 

2.5.1  δ–Correction and Effective Zero-point 

As discussed above, the real physical significance of the δ-correction is important for 

better understanding of the initial elastic deformation of materials. It is especially true for 

materials with lower yield points, viz. metals. After looking at materials with different 

elastic and plastic properties we came to the conclusion that the δ-correction is related to 

the determination of the effective zero-point of contact.54 

 For a properly zeroed experiment, according to Eq. 2.14, the S vs. a plot should be 

a straight line, with a slope of 2E*, and should go through the origin. This is due to an 

important assumption in Hertzian theory that the sample surface is perfectly flat at the 

first point of contact between the sample and indenter tip. Unfortunately, this assumption 

does not hold good for any experimental data as the sample surface always contains a 



 28

finite roughness to it. So, it is important to find a correction factor, δ in this case, 

which can render the experimental data in such a way that it fits with the Hertzian model 

and provides us with the complete deformation picture for that particular sample. In the 

following paragraphs, we describe the method of determining the effective zero-point of 

contact and how it applies to spherical nanoindentation results on fused silica. 

2.5.2 Method of Determining the Effective Zero-point for Spherical 
Nanoindentation 

We defined the effective zero-point correction, δ, as the difference in 

displacement between the correct effective zero point, Xz, and the first point of contact as 

determined by the instrument, X0, where S is 200 N/m.2 To start, we assume different δj 

values (± 10 nm) corresponding to a point Xj, where P definitely becomes positive. For 

finding the correct effective zero-point, we subtract the values of Pj and ht,j from the P 

and ht columns, respectively. Data points with negative ht values are then discarded and 

the S vs. a curves are plotted for different δ. The effective zero-point correction will then 

be the one for which the S vs. a curve best passes through the origin.54 

 To determine the best curve fit, linear regression is used on the S vs. a data. The 

best fit is then determined from the minimum value of standard error or the maximum 

value of correlation coefficient, R2, over the whole range of δ. A detailed explanation of 

the procedure can be found in Ref. 54.54 

2.5.3 Effective Zero-point Correction in Fused Silica 

 Figure 2.6a shows the load-displacement response on fused silica with a 13.5 μm 

indenter.  The as received data is shown in red and the data after δ correction of 7.5 nm 
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and 15 nm are shown in blue and green, respectively. It is evident from Fig. 2.6a that 

the difference between the three curves is very small and almost does not have any effect 

after plastic deformation. But, as mentioned earlier, the effective zero-point correction 

can make a difference in the very initial elastic part (Fig. 2.6b).  
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Fig. 2.2. a) Load-displacement curve resulted from a 13.5 μm indent on fused silica. Also plotted are the 
load-displacement responses after effective zero-point correction of 7.5 and 15 nm. b) Same curves as (a) – 
only showing the initial loading part. Note the difference in initial load-displacement response after 
effective zero-point correction. 
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As determined from the regression analysis described above, the effective zero-point 

for this dataset is at 7.5 nm shown by the blue arrow in Fig. 2.6b, which also plots the 

curve with a correction of 15 nm (green arrow) for comparison. 
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Fig. 2.3. a) S vs. a curve from 13.5 μm indent on fused silica. Also plotted are similar curves after effective 
zero-point correction of 7.5 and 15 nm. b) Same curves as (a) – only showing the initial elastic loading part. 
Note the excellent match, between the S vs. a curve and the straight line passing through the origin, after 
effective zero-point correction of 7.5 nm. 
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Fig. 2.4. a) The variation in correlation coefficient and standard error for different effective zero-point ( δ) 
correction, obtained from regression analysis of Fig. 2.7. b) Corresponding indentation stress-strain curves 
before and after the correction. Note the agreement between the initial stress-strain curve, after 7.5 nm 
correction, with the dashed line representing the elastic behavior. The horizontal arrow shows the 
approximate yield point for the silica sample. 

The difference is more evident in Fig. 2.7a, where the contact stiffness, S, is 

plotted against the contact radius, a – especially, in the initial elastic part (Fig. 2.7b). The 

‘as received’ data is clearly underestimating while 15 nm is overestimating the effective 
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zero-point. The blue curve in Figs. 2.7a and b, representing the correct effective zero-

point, matches very well with a straight line passing through the origin, giving us 

confidence in using this method.  

The correlation coefficient (or, goodness of fit) and the standard error calculated 

for each delta correction are shown in Fig. 2.8a. The resulting indentation stress-strain 

curves (Fig. 2.8b) also show the slight difference made by the effective zero-point 

correction. As evident from Fig. 2.8b, although the correction is important for the initial 

elastic part, it almost has no effect on the yield point (horizontal arrow) or the plastic 

deformation regime of fused silica. However, for a material with lower yield point (e.g. 

metals) the correction can be crucial. Detailed description of the effective zero-point 

correction on metals can be found elsewhere.54 

In the following sections, we follow the effective zero-point correction procedure 

to obtain the indentation stress-strain curves. 

2.5.4 Stiffness vs. Contact Radii Plots and Indentation Moduli 

Before plotting the indentation stress-strain curves for the materials, studied herein, it 

is crucial to determine the effective elastic moduli of the various materials examined.  

According to Eq. 2.14, and after the effective zero-point correction, plots of S vs. a 

resulted in straight lines with slopes proportional to Eeff as observed (Fig. 2.5a). (The 

results for Al are not shown in Fig. 2.5a, since they are almost identical to those for fused 

silica.) The linearity over the entire loading regime implies that S is not affected by pop-

ins or plastic deformation, at least for the materials studied in this work. The 

reproducibility is also noteworthy - each group of results was obtained from multiple 



 33

locations - as is the excellent agreement between the slopes obtained using the 1 µm 

and 13.5 µm indenters on fused silica and ZnO (see Ch. 3). In other words, Eeff is not a 

function of indenter radius, as one would expect.  
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Fig. 2.5. a) Plot of contact harmonic stiffness versus contact radius, as determined from spherical 
nanoindentation; and b) Comparison of moduli values determined from Berkovich and spherical 
nanoindentation. 
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The moduli values calculated from both spherical and Berkovich nanoindentation 

were also compared in Fig. 2.5b. The linear agreement between the values, for the wide 

range of solids used during this work, shows the potential for using the spherical 

nanoindenter in parallel to the more popular Berkovich nanoindenter. 

The elastic moduli values calculated from Eqs. 2.2 and 2.14, after the δ−correction, 

are listed in Table 2.1 as ESp (column 4) together with the literature data, E, (column 3) 

and the values determined using the standard method, viz. EBr (column 5). Comparison of 

the former two sets of results make it amply clear that ESp < E. Similarly, and with the 

exception of Fe, ESp < EBr.  

Table 2.1: Summary of Poisson’s ratios, ν, and Young’s moduli, E, or 1/s33 taken from the literature, the 
moduli values measured in this work using the spherical indenters, ESp, a Berkovich indenter, EBr, and the 
hardness values using the latter, HBr. Also listed in last column are the Vickers microhardness values 
measured herein using a load of 10 N.  

Material ν E or 1/s33 
(GPa) 

ESp (Fig. 2.2a) 
(GPa) 

EBr 
(GPa) 

HBr 
(GPa) 

Vickers µ-
Hard. (GPa)

Silica 13.5 
µm 0.18 72 

59±1 
71.7±0.7 9.3±0.2 5.6±0.6‡‡ SiO2 

1 µm 59±2 

Al 
13.5 µm 0.3 70 58±4 60±4 0.48±0.02 0.29±0.02 

Fe 
13.5 µm 0.3 210 

203* 163±9 155±1 1.2±0.1 1.3±0.1 

C-ZnO 
13.5 µm 0.2 1/s33 = 149 

130±4 
135±3 4.8±0.2 3.3±0.1 C-ZnO 

1 µm 131±4 

C-Al2O3 
1 µm 0.2 1/s33= 458 394±4 412±8 25±1 22.5‡ 

‡ According to manufacturer.  
‡‡ This value depends on load; lower loads yield higher values. 
* This work. 
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In the remainder of this chapter we discuss the indentation stress-strain response in 

fused silica, Fe and Al. The results on single crystal ZnO and sapphire are discussed 

separately in Chs. 3 and 7, respectively. 
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Fig. 2.6. Indentation results for fused silica. a) Load-displacement results for the 1 μm and 13.5 μm 
indenters used. b) corresponding stress-strain curves with no correction (i.e., δ = 0); the 13.5 μm results are 
shifted by 0.2 to the right for clarity. c) The same 1 μm results after δ-correction, the values of which are 
listed. In this figure we eliminated the data points to the left of the dashed line, which represents the elastic 
response. Also shown is a typical result obtained using 13.5 μm indenter. The agreement between the two 
sets of results is excellent. Dashed horizontal line represents the Vickers microhardness value measured on 
the same silica sample. 
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2.5.5 Fused Silica 

To best illustrate our methodology, consider the indentation load-displacement results 

for fused silica, shown in Fig. 2.6a, for the 1 µm and 13.5 µm indenters. Figure 2.6b plots 

the indentation stress-strain curves, for 5 different locations, for both the 1 µm and 13.5 

µm indenters; the results for the latter were shifted by 0.2, to the right for clarity. The 

reproducibility of the 13.5 µm results is excellent, those of the 1 µm ones less so, but 

acceptable, nevertheless. Least squares fits of the S vs. a curve, shown in Fig. 2.5a, yield 

slopes that correspond to an ESp = 59±2 GPa (Table 2.1), rather than the established value 

of 72 GPa measured by the standard method. 

Figure 2.6c re-plots the results shown in Fig. 2.6b, after the zero-point correction of 

the indentation data. The range of δ was quite small, ± 1.5 nm. The curves derived from 

the 1 µm and 13.5 µm indentations (Fig. 2.6c, open red squares) appear to superimpose 

onto each other lending great validity to our method. In other words, in the case of fused 

silica, the results obtained, after the yield point, do not depend on the indenter diameter. 

(For the sake of clarity only one indentation stress-strain curve, from the 13.5 µm data 

set, is plotted in Fig. 2.6c. The spread in the results for 5 locations was no more than the 

widths of 5 symbols across.) 

Based on Fig. 2.6c, a clear “yield” point is observed for both indenters at ≈ 6.5±1 

GPa. Interestingly, this yield point occurs at a stress that is slightly higher than the 

5.6±0.6 GPa obtained from our Vickers microhardness measurements for the same 

sample at 10 N (higher microhardness values are obtained at lower loads). Whether this is 

simply coincidental remains to be determined. The nature of the micro-yielding is not 
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clear at this time, but is most probably related to the densification of the amorphous 

silica under the indenter.  
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Fig. 2.7. a) Typical indentation load-displacement curve obtained by the 13.5 μm indenter on pure Al. b) 
Corresponding indentation stress-strain curves at different locations without any correction. c) Same as (b), 
but after δ–correction (see text). d) Indentation stress-strain curves after the curves in (c) are mechanically 
shifted to pass through the origin. Dashed horizontal line represents the Vickers microhardness on the same 
surface and dashed inclined line represents the elastic modulus of 58 GPa.  

Note that our method is valid for the 1 µm indenter tip only up to ht depths of the 

order of ≈ 300 nm. Above that the tip is no longer spherical and Eq. 2.12 is not valid, 

(c) 
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which is why there are no results beyond a strain of 0.7 in Fig. 2.6c. This is not a 

problem for the 13.5 µm indenter until penetration depths of ~ 4500 nm, but the 

maximum load applicable was 700 mN (Fig. 2.6a). 

2.5.6 Aluminum 

A typical load-displacement curve for 13.5 µm indentations of Al is shown in Fig. 

2.7a. The corresponding indentation stress-strain results are shown in Fig. 2.7b. While the 

steady state stresses converge onto the dashed horizontal line representing the Vickers 

hardness of the same surface (Table 2.1), the initial portions varied from location to 

location. The zero-point corrections for the results correspond to a δ of about 10 nm, with 

one exception where δ = 25 nm. The corresponding elastic modulus, calculated from the 

S vs. a curves, was 58 ± 4 GPa. The indentation stress-strain curves are shown in Fig. 

2.7c. In addition to obtaining the elastic modulus, the effective zero-point correction, has 

the added effect of rotating the initial points in Fig. 2.7b counterclockwise in such a way 

that they now all fall on the same straight line as the other data points (Fig. 2.7c). The 

initial hump is also greatly reduced. The reproducibility of the stress-strain curves is 

noteworthy; especially when it is appreciated that the Al tested was polycrystalline. 

The elastic-to-plastic transition for a majority of the curves is sharp and the stresses 

obtained hovered around the Vickers micro-hardness value measured on the same 

sample, viz. 0.29±0.02 GPa (Table 2.1). 
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Fig. 2.8. Indentation curves for Fe loaded with a 13.5 μm spherical indenter. a) Typical load-displacement 
response. b) Indentation stress-strain response at different locations before the δ–correction. c) Same results 
after δ–correction and mechanical shifting. Also plotted are bulk compression results (open squares) on the 
same Fe, after multiplying the stress by 3 and strain by 10. The agreement between the two sets of results is 
excellent. Dashed horizontal line represents the Vickers microhardness measured on the same sample. 

2.5.7 Iron 

The indentation load-displacement curves and the corresponding indentation stress-

strain curves for pure Fe were plotted in Figs. 2.8a and b, respectively. The indentation 

stress-strain curves – after the effective zero-point correction – are shown in Fig. 2.8c.  
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At 1.1±0.1 GPa, the steady state hardness values are in reasonably good agreement 

with the 1.3±0.1 GPa Vickers microhardness values measured on the same sample 

(horizontal dashed line in Fig. 2.8c). To compare the uniaxial compression results with 

those shown in Fig. 2.8c we multiplied the former stress by three and the strain by a 

factor of 10. The agreement between yield values of the two sets of results is surprisingly 

good.  

2.6 Discussion 

2.6.1 Critical Analysis of Method 

Based on the totality of the results, there is little doubt that our method is a relatively 

simple way to convert indentation load-displacement results into the much more 

informative and useful indentation stress-strain curves. The method is versatile and is 

applicable to Al, as well as sapphire (see Ch. 7), that between them span quite a large 

moduli and hardness values range. The method is relatively straightforward and, with the 

effective zero-point correction, devoid of any adjustable parameter and/or any calibration 

procedure. The approach described herein was not arrived at easily; for over two years 

we tried and discarded numerous techniques, before choosing the one described herein. 

Note that for the most part, the same conclusions are reached without the zero-point 

correction, specially for ceramic materials. For metals, however, the elastic regime is 

small and a better physical understanding of the effective zero-point correction was 

needed (Ref. 54).54 

The usefulness and acceptance of the method proposed here depends on a number of 

factors, the most important of which is whether the resulting indentation stress-strain 
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curves yield new information that is reliable, reproducible and meaningful. To answer 

these questions we compare the results obtained in this work to previous work, with 

special emphasis on the hardness and moduli values obtained by the standard method.  

2.6.2 Fused Silica 

It is clear from the results shown in Fig. 2.6c that the indentation stress-strain curves 

derived from the 1 µm and the 13.5 µm indenters are superimposable, not only at stresses 

below the ≈ 7 GPa “yield” point, but as important above that value. In other words, for 

silica we do not observe the indentation size effect that is well documented in the 

literature and observed in single crystal ZnO (see Ch. 3).17  

2.6.3 Aluminum 

For reasons that are not clear, the moduli values for Al obtained from S vs. a curves, 

are ≈ 20 % lower than those for pure Al, reported in the literature, and ≈ 4 % lower than 

EBr (Table 2.1). They are also lower than the value of 70 GPa reported by Herbert et al.20 

essentially using the same technique applied here. In this context, it is important to note 

here as a caveat that the standard method, used for determining the EBr, calibrates the 

results to provide a modulus of ~ 72 GPa on fused silica. As mentioned before, the fact 

that we actually observe a lower modulus on fused silica is consistent with the results on 

Al. This comment notwithstanding, more work is needed to determine the scaling factor 

for relating the elastic moduli from spherical nanoindentation to macroscopic Young’s 

moduli. 

The hardness values measured herein are also roughly 1/3 of the values reported by 

Field and Swain3 for pure Al. The reason for the discrepancy is unclear, but Field and 
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Swain did not work with the CSM attachment. Also for reasons that are not clear, the 

indentation stress-strain curves derived by Herbert et al.20 from spherical nano-

indentation experiments on 6066-T1 Al - essentially using the same technique described 

here - obtained quite different results. In the same paper, the hardness values did not 

asymptote or reach a steady state, but continually increased with strain. Two possibilities 

for the discrepancy could be that Herbert et al. used an Al-alloy rather than pure Al 

and/or the fact that they used much larger spherical indenters. These discrepancies 

notwithstanding, there is little doubt that our quasi-steady state hardness values, are in 

good agreement with the Vickers microhardness values measured on the same Al (Fig. 

2.7d and Table 2.1), which is comforting.  

2.6.4 Iron 

     For reasons that are not clear, the values of EBr and ESp we measure for Fe (Table 2.1) 

are ≈ 30 % lower than the value of 211 GPa reported in the literature, or the 203 GPa we 

obtained from our uniaxial compression results.  

It has long been appreciated that the Meyer hardness, 

P
πa2 ≈ 3σ y  ,     (2.17) 

where σy is the yield point.14 It was thus gratifying to obtain the excellent agreement 

between uniaxial compression results and the indentation results (Fig. 2.8c). Along the 

same lines, the indentation strain is related to the uniaxial strain, ε, by:14 

a
R

≈ 5ε        (2.18) 
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In Fig. 2.8c, a factor of 10 was used instead of 5. The fit is good, in part because the 

moduli we determine from indentation in the case of Fe are significantly lower than the 

moduli measured under uniaxial loadings (Table 2.1). The exact relationship between a/R 

and ε has not been studied in detail to date but is important that it be better understood. 

This is a fruitful area of research that we are embarking on.   

The agreement between the Vickers microhardness values measured here and those 

shown in Fig. 2.8c has to be considered excellent, given the polycrystalline nature of the 

Fe and the scatter observed. The scatter is believed to be real and due to the 

polycrystalline nature of the sample. More careful work, especially on Fe single crystals, 

is indicated, however, to better understand the subtleties of the elastic-to-plastic transition 

and the effect of grain boundaries on the local deformation. Note that in this case our 

Berkovich hardness values are in excellent agreement with our Vickers microhardness 

results.  

2.7 Summary and Concluding Remarks 

When load-penetration nanoindentation results, obtained with spherical indenters, are 

properly converted to indentation stress-strain curves, the latter can provide invaluable 

information about one of the most important transitions in materials: the elastic-to-plastic 

transition; information that, as has long been appreciated, is lost when sharp indenters are 

used.14 Indentation stress-strain curves can also shed light on work hardening, micro-

yielding, or simply whether what is occurring under an indenter is dislocation-based or 

not. The following chapters discuss, in details, about the micromechanisms of 

deformation behavior in ZnO (Ch. 3), LiNbO3 (Ch. 5), GaN (Ch. 6), sapphire (Ch. 7) and 
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mica (Ch. 8) based on the corresponding spherical nanoindentation stress-strain curves. 

Another potential application of calculating indentation stress-strain curves was to do 

controlled-stress experiments, which is exemplified in the novel constant-stress creep 

experiment on (11 2 0) oriented ZnO single crystal (Ch. 4). 

In this work we combine the CSM measurements, with Hertzian theory and the Oliver 

and Pharr method to convert spherical nanoindentation load-displacement curves to 

indentation stress-strain curves. The results are judged by how closely they match the 

Vickers microhardness measurements on the same solids, the latter an easy, 

straightforward, but crucial criteria that, as far as we are aware, has never been previously 

used in conjunction with nanoindentation results. The correlation that has been observed 

between the Vickers microhardness and the indentation stress-strain curves is discussed 

in Ch. 9. 
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CHAPTER 3: DEFORMATION MICRO-MECHANISMS UNDER 
SPHERICAL NANOINDENTATION IN ZnO SINGLE CRYSTALS 

 

 

 

3.1 Introduction 

Single crystal ZnO - a II-VI wide band-gap semiconductor - has received a good 

amount of attention in the recent past due to its potential application in short wavelength 

optoelectronic devices due to some advantages over the more popular GaN.21 For 

example, ZnO has a simpler crystal growth technology, which translates to a lower cost 

material. ZnO can also be easily etched in acids and alkalis, providing an opportunity of 

fabrication of small-scale devices. Recently, ZnO has shown potential for applications in 

transparent thin-film transistors as well.57 In all cases, knowledge about its mechanical 

deformation behavior is of great importance for the manufacture of such devices.  

Most of the earlier studies carried out on polycrystalline ZnO with sharp indenters58,59 

provided little information about the deformation behavior of this material. They mostly 

showed much variability in the hardness (~ 1.5 to 12 GPa) and moduli (~ 40 to 120 GPa) 

values.57 More recently, using a combination of spherical nanoindentation and cross-

sectional transmission electron microscopy (TEM), Bradby et al.53 showed that at loads 

greater than pop-in loads, deformation under the indenter was due to extensive slip on 

basal and pyramidal planes. In more recent work,60,61 they reported that the hardness 

values of A- and C-planes of ZnO were 2±0.2 GPa and 4.8±0.2 GPa, respectively, and 
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attributed these differences to the different orientations of the basal planes and the ease 

by which slip can occur along them.  

Recently, we have shown that spherical nanoindentation can be an important and 

powerful tool to characterize the mechanical deformation of single crystals.11,12,16,23,24 

This is especially true since we developed a technique to convert the load-displacement 

curves to indentation stress-strain curves (Ch. 2).24 In this work, we apply this technique 

to understand the response of two different ZnO surfaces to a highly localized stress. 

Herein repeated spherical nanoindentation, into the same location - of both C (basal) and 

A (prismatic) ZnO orientations - with two different tip radii were carried out.  

3.2 Experimental Details 

High quality, bulk wurtzite, ZnO, single crystals were purchased (Wafer World, West 

Palm Beach, FL) with two orientations: (0001) C-plane and (11 2 0) A-plane. The 

nanoindentation experiments were performed at room temperature, with a nanoindenter 

(XP system, MTS Corp, TN) equipped with a continuous stiffness measurement (CSM) 

attachment. Two diamond hemispherical indenters with radii, R, of 13.5 µm and 1 μm 

were used. A constant loading rate/load ratio of 0.1 was used. Typically, the tip was 

indented into the same location at least 5 times at a given load. Post-indentation surface 

features were examined using a scanning electron microscope, SEM (XL30, FEI 

Corporation, Hillsboro, OR). We also measured the Vickers micro-hardness (M-400 

Hardness Tester, LECO Corp., St. Joseph, MI) using a load, P, of 10 N. The hardness and 

moduli of the two surfaces were also measured using a Berkovich tip in the nanoindenter. 
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3.3 Results 

3.3.1 C-Plane 

Typical nanoindentation load-displacement results for the C orientation obtained with 

the 13.5 µm indenter are shown in Fig. 3.1a; those with the 1 µm indenter are shown in 

Fig. 3.1b. The loads at which a sudden displacement burst occurs (or, pop-in loads) are 

quite stochastic for the 13.5 µm indents. In case of 1 µm indents the variation is much 

smaller. The contact radius, a, was calculated according to the methodology described in 

Ch. 2, and the S vs. a curves are shown in Fig. 3.2. 
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Fig. 3.1. Typical load-displacement results obtained on the C-plane ZnO single crystal. a) 13.5 µm indents; 
Note stochastic nature of pop-ins. The curve connecting the square symbols trace the load-displacement 
when the indentation is made near the edge of the sample. b) 1 µm indents. In both cases, only one major 
popin event is observed during each loading. 

It is important to note here that the linearity observed in Fig. 3.2 is gratifying because 

the data were obtained from two drastically different tip sizes and even with the presence 

of huge pop-ins during the deformation. In other words, this validates our method for 

computing the stress-strain results that follow.  
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Fig. 3.2. The contact stiffness vs. contact radii plot for the C-plane sample; Note the excellent agreement 
between the 1 and 13.5 µm indents, and that the linearity is preserved even after huge pop-ins. 
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Fig. 3.3. Nanoindentation stress-strain curves obtained when 1 µm and 13.5 µm spherical indenters are 
introduced into a ZnO C-surface. Dashed horizontal lines represent the hardness values of the same surface 
measured by a Vickers indenter using a load of 10 N and a Berkovich nanoindenter. The slope of the 
dashed inclined line corresponds to a modulus of 135 GPa. Note the near disappearance of a popin when 
the indentation is made near the sample’s edge (square symbols). 
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Fig. 3.4. Spherical nanoindentation, a) load-displacement; b) stress-strain curves obtained when a 13.5 µm 
radius hemisphere is indented five times into the same location, to the same maximum stress, on a ZnO C-
surface. Dashed horizontal line represents the Vickers hardness. The slope of the dashed inclined line 
corresponds to a modulus of 135 GPa; and, c) Magnified view of cycles 2 to 5 in (b). Note fully reversible 
and reproducible nature of loops. The distance between the two dashed inclined lines represents the 
nonlinear strain during cyclic deformation. 

The C-orientation elastic modulus - determined from Fig. 3.2 and from Berkovich 

nanoindentation - were 130±4 GPa and 135±3 GPa, respectively. These values are in 

reasonable agreement with those of Coleman et al.,60 who reported values of 143±6 for 

(a) 
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the C-plane sample. Interestingly, both sets of values are also coincidentally close to 

the values of 1/s33 (149 GPa), calculated using the elastic constants for ZnO.57 

The corresponding stress-strain curves for both 13.5 and 1 µm indents are shown in 

Fig. 3.3. The dashed horizontal line in Fig. 3.3 represents the Vickers micro-hardness 

value of 3.3±0.1 GPa, measured herein. 

The repeat cycles in the C-orientation are fully reversible and reproducible (Figs. 3.4a 

and b). It is important to note that fully reversible loops are not observed when plastically 

isotropic solids, such as fused silica, Al or Fe, are tested (Ch. 2).24  

2 µm 

Pyramidal 
Slip 

 
 

Fig. 3.5. Secondary Electron Microscopy (SEM) image of indented C-plane ZnO surface. The 6-fold 
symmetry of slip lines is consistent with pyramidal slip underneath the indented region. 

The surface features after the C-plane sample was indented with the 13.5 µm indenter 

are shown in Fig. 3.5. Interestingly, the hexagonal symmetry of slip lines was evident 

and, as discussed below, was caused by pyramidal slip. 
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3.3.2 A-Plane 

The nanoindentation load-displacement results for the A plane crystal, obtained with 

the 13.5 µm indenter, are shown in Fig. 3.6a; those with the 1 µm indenter are shown in 

Fig. 3.6b. In this orientation, the scatter in pop-in loads was higher compared to the C-

plane. The S vs. a curves measured with both the indenter tips are shown in Fig. 3.7.  

0

50

100

150

200

0 200 400 600 800 1000 1200

Lo
ad

 (m
N

)

Displacement (nm)

13.5 μm
Indents

(a)

 

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

Lo
ad

 (m
N

)

Displacement (nm)

1 μm
Indents

 
Fig. 3.6. Typical load-displacement results obtained on a A-plane ZnO single crystals. a) 13.5 µm indents; 
b) 1 µm indents. Note stochastic nature of pop-ins and forward-displacement creep during unloading. Like 
the C-plane, only one major popin event is observed during each loading. 
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Fig. 3.7. The contact stiffness vs. contact radii plot for the A-plane sample; Note the excellent agreement 
between the 1 and 13.5 µm indents, and that the linearity is preserved even after huge pop-ins. 
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The elastic modulus in the A-orientation - determined from Fig. 3.7 and from 

Berkovich nanoindentation - were 128±7 GPa and 144±4 GPa, respectively. These values 

are again close to the values from Coleman et al.,60 who reported a modulus of 163±6 

GPa for the A-plane sample. Interestingly, the modulus from the spherical 

nanoindentation is also coincidentally the closest to the value of 1/s11 (128 GPa), 

calculated using the elastic constants for ZnO.57 

The corresponding stress-strain curves for both 13.5 and 1 µm indents are calculated 

using the methodology described in Ch. 2 and are shown in Fig. 3.8. 
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Fig. 3.8. Nanoindentation stress-strain curves obtained when 1 µm and 13.5 µm spherical indenters are 
introduced into A-surface. Inclined near-horizontal dashed lines are those for the C-plane shown in Fig. 3.3. 
Dashed horizontal line represents the hardness values of the same surfaces measured by a Vickers indenter 
using a load of 10 N. The slope of the dashed inclined line corresponds to a modulus of 144 GPa. 
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The dashed horizontal line in Fig. 3.8 represents the Vickers micro-hardness value 

– 1.7±0.1 GPa - measured herein. At 2.0±0.2 GPa, the hardness values for the A-surface 

measured by Coleman et al.60,61 are also in good agreement with our results. The hardness 

of the same surface measured by a Berkovich nanoindenter is found to be 2.7±0.1 GPa. 

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400

Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5

Lo
ad

 (m
N

)

Displacement (nm)

(a)

 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4

In
de

nt
at

io
n 

S
tre

ss
 (G

Pa
)

Indentation Strain (a/R)

A Plane
A

B

C D

(b)

O

 
Fig. 3.9. Spherical nanoindentation, a) load-displacement; and, b) stress-strain curves obtained when a 13.5 
µm radius hemisphere is indented five times into the same location, to the same maximum stress, on the A-
plane surface. Dashed horizontal lines represent the hardness values of the same surfaces measured by a 
Vickers indenter using a load of 10 N. Note that, unlike the C-orientation, there is no hysteresis in this 
orientation. 
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Fig. 3.10. Secondary Electron Microscopy (SEM) images of indented A-plane ZnO surface. The 2-fold 
symmetry is consistent with basal slip (see Figs. 3.13b and 3.15b below). 
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The repeat cycles in the A-orientation are shown in Figs. 3.9a and b. In this 

orientation no reversible hysteresis has been observed and the loops disappear with 

cycling. The post-indentation surface features are shown in Fig. 3.10. 

When the pop-in loads for both the indenter tips are normalized by πR2, R being the 

indenter radius, and plotted against the extent of the pop-ins, normalized by R, straight 

lines result (Fig. 3.11) in which the slopes for the C-direction were ~ 4 times steeper than 

the A-direction.  
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Fig. 3.11. The normalized popin load is plotted against normalized popin extension for both 13.5 µm and 1 
µm tips and both C and A-orientations. The results from Bradby et al. on C-plane (Ref. 22)22 are also 
shown for comparison. 

Bradby et al.22 have shown that the slopes of such lines scale with hardness. This is 

clearly confirmed here. For both surfaces, studied herein, the slopes were a function of 

indenter radius (Fig. 3.11).  The effect on the C-plane, however, was more noticeable. 
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Our results for the C-plane straddle those of Bradby et al.,22 who used an indenter tip 

radius of 4.3 µm.  

3.4 Discussion 

A perusal of the results, presented above, indicates that: i) The C-surface is about 

twice as hard as the A-surface (Figs. 3.3 and 3.8). ii) The repeat cycles in the C-

orientation are fully reversible and reproducible (Fig. 3.4). Similar fully reversible loops 

were not observed when plastically isotropic solids, such as fused silica, Al or Fe, are 

tested.24 The same is true when the stress can be relieved without the formation of IKBs, - 

as in the case of A-surface, where the loops disappear with cycling (Fig. 3.9). iii) At 

12.2±0.6 GPa for the 1 µm indenter and 5.3±1.6 GPa for the 13.5 µm indenter, the pop-in 

stresses in the A-surface are quite stochastic (Fig. 3.8). The same trend is observed in the 

C-direction, but the variations are smaller (Fig. 3.3).  iv) Not only is the C-surface harder, 

but, as important, its strain hardening coefficient is also higher (compare slope of dashed 

lines in the center of Fig. 3.8 that correspond to the C-plane to those of the A-plane). v) 

In the C-direction the hardness is a function of indenter radius (Fig. 3.3). The effect in the 

A-direction is either absent or much milder (Fig. 3.8).  

To understand the results shown above, we make the following four conjectures. 

First, the difference in hardness values between the two planes is due to the orientation of 

basal planes with respect to the indentation axis. Two, the intrinsic flow stresses of the 

pyramidal dislocations are higher than those for the basal dislocations, and the 

combination of these two slip systems accounts for the higher strain hardening coefficient 

of the C-plane. Three, dislocation nucleation is heterogeneous, stochastic, defect 



 56

dependant and occurs at the pop-in stress. Four, the strain energy released when the 

pop-ins occur determine their extent. In the remainder of this chapter evidence for these 

conjectures is presented. 

For the C-plane, the dislocation flow stress, τo is 1.25±0.3 GPa (Fig. 3.3); for the A-

plane, τo is 0.5±0.1 GPa (Fig. 3.8). (Here it is assumed that τo ≈ σo/2, where σo is the y-

axis intersection of the stress-strain curves after the pop-ins). Given that in both cases, at 

least initially (see below), the same basal plane dislocations are nucleated and move, the 

difference has to be related to the resolved shear stress on the basal planes which is 

presumably higher for the A-planes. In other words, we are in agreement with Bradby et. 

al.53 and Coleman et. al.61 
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Fig. 3.12. Weibull plots for the popin stresses for the 1µm and 13.5 µm indenters on, a) C-plane; and, b) A-
plane. The Weibull moduli, m, are shown on the figures. 

Based on Figs. 3.3 and 3.8, there is little evidence for plastic deformation prior to the 

pop-ins. The wide variations in pop-in stresses thus suggest that dislocation nucleation is 
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the rate-limiting factor in the deformation. Consistent with this interpretation is the fact 

that the pop-in stresses for the A-surface are a function of indenter radii (Fig. 3.8). Given 

that the volume probed by the 1 µm indenter is roughly 2500 times smaller than the one 

probed by the 13.5 µm indenter, it is reasonable to assume that the probability of finding 

a dislocation-nucleating heterogeneity would be greater under the 13.5 µm indenter. If 

that were the case the Weibull moduli, m, for both indenters should be comparable. The 

fact that they are not; at 16 and 3, m for the 1 µm and 13.5 µm indenters (Fig. 3.12b), 

respectively, in the A-direction (Fig. 3.12b) are quite different we conclude that the 

difference is probably due to different defect populations, near the surface and deeper in 

the bulk. The results also suggest, somewhat surprisingly and for reasons that are unclear 

at this time, that the defect population and size at, or near, the surface may be smaller 

than deeper in the material. These comments notwithstanding, it is hereby acknowledged 

more work in needed to better understand the nature of the dislocation nucleating defects. 

In contradistinction the difference in the m values - 8 and 12 - for the two indenters in 

the C-plane (Fig. 3.12a) is smaller, suggesting that in this orientation the defect 

populations are more comparable with respect to the tip radii.  

To confirm the fact that the popin stress is a function of inherent defect population we 

carried out indentations near (≈ 10 µm) the edge of the crystal, where the defect 

concentration/population is presumably higher due to machining. The indentation results 

from the sample’s edge (represented by large square symbols in Fig. 3.1a and Fig. 3.3) 

are indirect evidence that the pop-in stresses are indeed governed by the initial defect 

population. Moreover, since the 1 µm indenter is probing a much smaller volume, but 
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results in lower average pop-in stresses (Fig. 3.3) and a lower Weibull modulus (Fig. 

3.12a), it is fair to conclude that in this case the defects are more densely populated in a 

thin surface layer, as compared to deeper inside the bulk. The reason for this state of 

affairs is not clear, but could be related to the polishing of the surfaces. Note, however, 

that the highest pop-in stresses are of the order of c44/4, and thus quite close to the 

theoretical limit.  

The fact that for a given indenter size, the load-displacement curves, after the pop-ins, 

for both surfaces, follow a single trajectory is noteworthy (Figs. 3.1a and 3.6a), because it 

implies that the evolution of the microstructure under the indenter is quite insensitive to 

strain rate. For example, in Fig. 3.8, the indentations with pop-ins at X and Y, at a strain 

beyond Y, fall on the same curve. It is reasonable to assume that the microstructure 

formed at Y developed at a much higher strain rate than the one that followed the 

trajectory X to Y. Note that this is consistent with a system in which dislocation 

nucleation is rate limiting.  

As important the energy dissipated during the popin is roughly equal to the strain 

energy stored in the material just before the pop-in, i.e. resulting from the elastic 

deformation. This is best seen in Figs. 3.4b and 3.9b. In Fig. 3.9b, it is clear the areas 

OAC and ABDC are roughly equal.  Similarly, area OPQ is roughly equal to area PRSQ 

in Fig. 3.4b. Said otherwise, during the pop-ins the strain energy is used into nucleating 

and moving a large number of dislocations. The equality also suggests that relatively little 

energy is dissipated as heat and/or sound waves. The details of how the strain energy in 
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converted to cascades of dislocations and why the microstructure under the indenter 

appears to be insensitive to strain rate are not understood at this moment. 

 Recently we postulated that most solids with c/a ratios > 1.5 belong to the same class 

of solids we labeled kinking nonlinear elastic, KNE (Ch. 1).11,30 Experimentally, the 

signature of KNE solids is the formation of fully reversible, hysteretic stress-strain loops 

on repeat loadings to the same stress.31 As discussed in Ch. 1, this full reversibility is due 

to the formation of incipient kink bands, IKBs, that are comprised of two nearly parallel, 

dislocation walls of opposite polarity attracted to each other such that when the load is 

removed they annihilate. Given that the response of the C-planes to repeated indentations 

(Fig. 3.4) is indeed fully reversible, we conclude that IKBs are responsible. This response 

is very similar to the deformation behavior observed in other KNE solids such as layered 

ternary carbides,23,31 mica11 (Ch. 8), graphite,12 sapphire16 (Ch. 7), and, more recently, C-

plane GaN48 (Ch. 6) and C-plane LiNbO3 (Ch. 5).18 

As noted above, high c/a ratios render non-basal slip prohibitively expensive. The 

results of this work clearly show that at c/a ratios near 1.5 – for ZnO it is 1.6 - it is 

possible to activate non-basal slip, but only under highly constrained conditions. At ~ 

17.3±2.6 MJ/m3, the energy dissipated per cycle for the C-plane (Fig. 3.4c) is 

considerable and can only be attributed to to-and-fro motion of dislocations.31 The other 

two possibilities – fracture and phase transformation – can readily be ruled out as fracture 

cannot lead to hardening as observed in Fig. 3.3 and no cracks have been observed on the 

surface (Fig. 3.5) or in cross-sectional TEM.53 No evidence of a phase transformation in 

ZnO, at the stresses reported here, has ever been reported. 
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To examine the assumptions of our IKB model30 - embodied in Eqs. 1.1 to 1.10 - 

we need to estimate γc. As noted above, the threshold stress for the formation of the 

initial KBs/dislocations for the C-plane is ≈ 1.25 GPa. Equating this value to τc in Eq. 

1.3, c44 for ZnO to be 45.1 GPa, and consequently, τc ≈ c44/36, which is not unreasonable, 

and is what Frank and Stroh27 estimated that value to be. It is important to note that this 

value is in the presence of IKB nucleating heterogeneities and/or defects; in the absence 

of these defects, τc can be close to the theoretical limit, viz. ≈ c44/2π. 

Thus taking τc ≈ c44/36 and assuming, G = c44 = 45.1 GPa, ν = 0.2, and b = 0.324 

nm,57 from Eq. 1.3 we calculate γc ≈ 0.06. Hence, the distance between two dislocations 

in a wall, D is ≈ 5.4 nm. In other words, a dislocation is present along the c-axis every ≈ 

54 Å. The c-lattice parameter57 is 5.20 Å and the total length of an IKB, 2α, as calculated 

from Eq. 1.2, is ≈ 50 nm. In other words, each IKB is comprised of roughly 10 

dislocation loops.  

The IKB strain, εΙΚΒ - approximated to be the distance between two lines drawn 

parallel to the initial loading and unloading portions of the reversible hysteretic cycles as 

shown in Fig. 3.4c - was of the order of 0.009±0.001 and Wd was of the order of 17±3 

MJ/m3.  Using those values in Eq. 1.10, results in a Ω/b of ≈ 308 MPa. This value is 

reasonable and comparable to the estimated flow stress of basal plane dislocations 

obtained from Fig. 3.8, viz. 500±100 MPa (see above).  Note the purpose of these 

calculations is not to prove our IKB model, but rather to show that they are consistent 

with our other observations. They also suggest that the fully reversible nonlinear 

deformation is due to the to-and-fro motion of basal plane dislocations.  
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The fully reversible loops and the considerable energy dissipated during each cycle 

suggest that ZnO single-crystals behave like other KNE solids. From this work, however, 

it is also obvious that the KNE deformation of hexagonal crystals with c/a ratios near 1.5 

depends on orientation. With increasing c/a ratios, the formation of IKBs becomes more 

ubiquitous and independent of orientation, as in the case of sapphire.16 More single 

crystal work is needed to better understand the effect of orientation on the formation of 

IKBs when the c/a ratios are close to 1.5. 

  

        

Fig. 3.13 a) Bright-field XTEM image of a spherical indent (tip radius ≈ 4.2 μm) in C-plane at a maximum 
load of 50 mN. Arrows denote slip bands along the basal planes. (taken from Ref. 53)53 b) Bright-field 
XTEM image of a 50 mN spherical indent (tip radius ≈ 4.2 μm) in A-plane. The arrow shows the direction 
of indentation. (taken from Ref. 61)61 c) Room temperature monochromatic CL image of a 200 mN 
spherical indent in C-plane. The field width for the image is ~ 65 μm and the CL wavelength is 376 nm. 
(taken from Ref. 53)53 d) Room temperature monochromatic CL image of 200 mN spherical indents in A-
plane. The field width for the image is ~ 170 μm and the CL wavelength is 390 nm. (taken from Ref. 61)61 

(a) (b) 

(c) (d) 
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Using the totality of our results and previous work21,53,60-62 it is possible to 

reconstruct a highly simplified scenario of what happens at the atomic scale. When C-

plane indentations were imaged in a SEM, a clear 6-fold pattern was observed (Fig. 3.5). 

When this information is combined with the XTEM (Fig. 3.13a) and 

cathodoluminescence (CL – Fig. 3.13c) observations of Bradby et al.53 we conclude that 

in this direction pyramidal slip is also activated along with basal slip. Evidence for the 

activation of the former is clearly seen in the hardening rates for the C-plane after the 

pop-ins; they are clearly higher for the C-plane than the A-plane - compare the slopes of 

parallel dashed lines in Fig. 3.8 with the slope of the line XY - where presumably little 

pyramidal slip is observed.61 

Consistent with the XTEM (Fig. 3.13b) and CL (Fig. 3.13d) observations of Coleman 

et. al.61, when the A-plane indentations were imaged only one set of parallel slip lines, 

presumably due to basal slip, was observed (Fig. 3.10).  

The different nature of dislocation structures in C and A orientations of ZnO were 

also verified by executing novel constant-stress indentation creep tests on both the 

surfaces. While – due to the inherent reversible nature of IKBs – the C orientation shows 

high resistance to creep, the A orientation exhibits creep because of dislocation pile-ups 

on basal planes. The details of this novel creep experiment are described in Ch. 4. 

Combining these insights, with the fact that ZnO - in the C-direction at least - is a 

KNE solid allows us to propose the following scenarios for what is occurring at the 

atomic level. At pop-in, in the case of the C-plane, like in Ti3SiC2,63,64 kink boundaries of 

opposite polarity are nucleated on either side of the indentation. The kink boundaries 
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under the indenter are of the same sign and merge together to form a high angle kink 

boundary right below the indenter. The ones at the edges are mobile, and what we termed 

mobile dislocation walls,64 and are swept away along the [11 2 0] directions (Fig. 3.14b). 

This explains both the pile-up around the indentation mark and the formation of the Star 

of David with dimensions that are roughly twice as large as a (Fig. 3.14a). Note that these 

kink boundaries could not occur without concomitant delaminations and/or the formation 

of dislocation pileups or arrays – shown as near horizontal lines in Fig. 3.14a - along the 

basal planes, viz. parallel to the surface.  Later in the process pyramidal slip bands at 60° 

to the surface are activated. With increasing stress, more basal slip bands are formed 

deeper into the material nucleating more pyramidal slip, etc., as observed.53  

 
Fig. 3.14. a) Schematic showing formation of dislocation based kink bands and/or mobile dislocation walls 
during spherical indentation of the C-orientation. The horizontal lines represent basal plane dislocation 
arrays/pileups. b) Schematic of dislocation movement on basal plane to form the Star of David, as observed 
by Bradby et. al. (Ref. 53)53. 

 
Fig. 3.15. a) Schematic of creation of basal plane dislocation loops when the A-surface is indented. b) 
Schematic of the cross-sectional view (along the line AA’ in a), as confirmed from the XTEM study of 
Coleman et. al. (Ref. 61)61. 

(a) (b) 

(a) (b) 
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In the case of the A-planes the situation is different; at pop-in basal dislocations of 

opposite signs are nucleated from the surface (Fig. 3.15a), on either side of the 

indentation mark (Figs. 3.15a and b). The presence of dislocations of one sign in turn 

results in a bending of the shear bands to form the hour-glass shape (Fig. 3.15b) clearly 

seen in the XTEM studies of Coleman et. al. (Fig. 3.13b).61 This scenario explains the 

presence of the parallel slip lines observed in the SEM (Fig. 3.10), as well as high amount 

of creep during constant-stress indentation experiments (Ch. 4). 

3.5 Conclusions 

By converting load-depth of penetration curves to stress-strain curves, together 

with post indentation SEM observations and previous TEM work,53,61 we conclude that: 

a) In agreement with previous work,61 we conclude that the factor of ≈ 2 

difference in the hardness values of the C- and A-surfaces of ZnO is most probably due to 

the orientation of the basal planes with respect to the indentation axis.  

b) The higher hardening rates of the C-plane are due to the nucleation of 

pyramidal dislocations, in addition to basal dislocations. 

c) During the pop-ins, the strain energy is converted to the nucleation and 

movement of a large number of dislocations. The strain energy, released when the pop-

ins occur, determines their extent.  

As far as we are aware this is the first example of how indentation stress-strain 

curves can be used to shed important light on the atomistics of the deformation processes 

in ZnO single crystals, that would be otherwise very difficult, if not impossible, to obtain. 
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CHAPTER 4: ROOM TEMPERATURE CONSTANT-STRESS 
CREEP IN ZnO 

 

 

 

4.1 Introduction 

With recent advancements in micro/nano-scale devices, such as micro/nano 

electromechanical systems (MEMS/NEMS), dimensions are shrinking and stresses, 

thermal and other, can become significant. It follows that understanding the time 

dependent deformation, around room temperature, becomes crucial in predicting the 

failure modes and/or lifetimes of such devices. Currently, there are no satisfactory 

techniques by which such information can be rapidly and easily gathered and quantified, 

especially at the micro, or nano-scales. The problem is most acute for brittle solids; the 

latter is important since most MEMS/NEMS devices are typically made with brittle solids 

such as Si. 

Studying room temperature plastic deformation in brittle solids and thin films has 

been an important topic of research. One of the most common, and popular techniques, 

has been depth-sensing nanoindentation (NI).2,3,5 And while there were some attempts to 

use spherical indenters, over the last two decades, the vast majority of NI studies have 

been carried out using sharp Berkovich indenters.2,4 Recently we developed a technique 

to convert spherical NI load/displacement results to NI stress-strain curves24 and 

successfully applied it to solids with vastly different elastic moduli and elasto-plastic 

properties, such as single crystals of sapphire,16 ZnO,17 GaN,48 LiNbO3,18 and 
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polycrystals of Al, Fe and others.24 It is this breakthrough that, in turn, led us to the one 

described herein. 

It has long been appreciated that because of the high stresses during indentation 

experiments, many materials will exhibit time dependent deformation, or creep, even at 

room temperature.51,65,66 All of the studies to date, however, have been saddled with two 

problems. The first is not knowing the magnitude of the stresses under the indenter, 

especially when Berkovich tips are used. The second, related problem, is that 

microhardness and/or NI-based creep experiments are typically carried out at constant 

loads. Under those circumstances, the deformation of the material under the indenter 

results in a continual decrease of the stress with time, which in turn renders data analysis 

– at a more than qualitative level –difficult, if not, impossible. With the exception of a 

study carried out by Mayo and Nix67 on Pb, Sn and their alloys, in which they maintained 

a constant loading rate, over a time period of 20 s, as far as we are aware, there are no 

reports of constant-stress NI creep tests in crystalline solids.  

Screw components 
forming surface 
steps 

Pure edge 
components 
moving deeper 

   

Fig. 4.1. Schematic of basal dislocation loops under the indented ZnO (11 2 0) surface. 
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In general, steady state creep is represented by the following power-law 

relationship.68 

nKσε =& ,      (4.1) 

where ε&  is the steady-state strain rate, K is a temperature dependent constant, σ  is the 

applied stress, and n is the stress-exponent. Whether this relationship also applies under a 

NI has to date not been established. Since our recently developed method24 allows us to 

calculate the stress under a spherical NI in real time we were able - using proportional-

integral-derivative (PID) control - to keep it constant over relatively long (~ 4000 s) time 

periods. As shown here, this method also allowed us to test the validity of Eq. 4.1 at the 

submicron-scale.  

The II-VI semiconductor, ZnO, has been selected for this study because of its 

technological importance in nonlinear electrical devices.69 In the recent past, ZnO single 

crystals have gained popularity in applications such as short-wavelength optoelectronic 

devices and transparent transistors, because of their simpler crystal growth technology 

and better etching characteristics, as compared to GaN.21,57 It is thus important to 

understand the mechanical behavior of ZnO single crystals, not only for better 

understanding of the underlying mechanisms, but also for better manufacturing and 

mechanical stability of devices based on this oxide.  

 Despite its increasing importance, until recently, little was available about the 

contact induced mechanical deformation in single crystal ZnO. Recently, using a 

combination of spherical NI, and cross-sectional transmission electron microscopy 
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(XTEM), Coleman et al.60-62 showed that the deformation under the indenter was due 

to extensive slip on basal planes when indented in the [112 0], or, A direction, with loads 

higher than pop-in loads. They also reported a lower hardness as compared to the [0001], 

or, C direction, where the deformation was reported to be due to slip on both basal and 

pyramidal planes.21,53 More recently, we concluded that when indented in the A-direction, 

the deformation was accommodated by the formation of dislocation pile-ups (DPs – Fig. 

4.1) on basal planes underneath the indenter.17 This observation, together with the fact 

that no cracks - that could clearly complicate the analysis - are observed around the 

indenter at any load, led to this work.17  

4.2 Experimental Details 

High quality ZnO single crystal was purchased (Wafer World, West Palm Beach, FL) 

with (11 2 0) orientation (A-plane). The NI experiments were performed at room 

temperature, with a nanoindenter (XP system, MTS Corp, TN) equipped with a 

continuous stiffness measurement (CSM) attachment. A diamond hemispherical indenter 

with nominal tip radius of 5 µm, calibrated on fused silica, was used. The details of the 

indentation load-displacement data to indentation stress-strain conversion procedure can 

be found in Ch. 2.24 

 As mentioned earlier, the NI creep experiments were carried out during the 

second loading cycle. Thus, each location on the sample surface was first preloaded up to 

40 mN, unloaded to 4 mN, and then reloaded to a different load (33 mN, 35 mN, or 38 

mN, etc.) at which point the PID control took over to maintain the indentation stress at a 

constant value. The PID parameters, used to control the stress, are as follows: 
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proportional gain, kP = 2, integral gain, kI = 1, derivative gain, kD = 1, maximum speed 

= 10 mN/s and minimum speed = 0 mN/s. Two sets of experiments were carried out with 

holding segments of 400 s and 4000 s. 
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Fig. 4.2. a) Typical load-displacement response when a ZnO (11 2 0) surface is indented with the 5 μm 
spherical tip. To keep the stress constant during the second cycle, the load had to be continually increased. 
b) Corresponding NI stress-strain curves. Note the constant nature of applied stress during the creep tests. 
c) Time dependence of NI strain at stresses shown. Horizontal arrow points to a run that was interrupted for 
50 s, 200 s into the creep run. No evidence for backpressure was noted. 
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 Experimentally one of the difficulties in carrying out long term NI tests is 

thermal drift. In order to minimize its effect, all tests were begun only when the 

maximum allowable drift was < 0.05 nm/s. In other words, the results were considered 

for creep calculation, only when the increase in displacement during the holding period 

was higher than 20 nm over 400 s, or 200 nm over 4000 s. 

4.3 Results and Discussion 

The load-displacement curves into a (112 0) ZnO surface are shown in Fig. 4.2a. 

As noted above, due to the stochastic nature of the elastic-to-plastic transition, or pop-in 

stresses (Fig. 4.2a),17,22 the first cycle was not used. Instead, the creep measurements 

were carried out during the second cycle into the same location (Fig. 4.2a). The 

corresponding NI stress-strain curves, in 4 different locations and stresses, are shown in 

Fig. 4.2b. In each location, at a strain > ≈ 0.43, the stress was held constant. The resulting 

NI strain, ε, - defined here, as previously,24 as a/R where a is the contact radius, and R is 

the indenter radius – versus time, t, plots clearly show that ε increases with t (Fig. 4.2c). 

Note that in order to keep the stress constant, the loads had to increase with displacement 

more or less linearly (Fig. 4.2a).  

When log-log curves of σ versus ε&  (Fig. 4.3a) – where ε&  was determined from 

the slopes of the strain-time curves (Fig. 4.2c) - were plotted, they did not follow Eq. 4.1, 

i.e. the slopes, or napp, defined as: 

 
σ
ε

ln
ln

∂
∂

=
&

appn       (4.2) 

were not constant, but decreased with time, t.  
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Fig. 4.3. a) The log-log plot of strain rate vs. applied stress from the data obtained at different times during 
the 400 s holding segment. Note the decrease in slope with increasing time. b) Corresponding variation of 
strain rate with indentation stress at different times during the 400 s holding period. The intercept on the x-
axis represents the threshold stress at a particular time. c) Log-log plot of strain rate, ε& , vs. effective stress, 
σ – σth, where σth is a threshold stress. Hollow symbols represent the data up to 400 s, where σth is estimated 
from (b). Solid symbols represent the creep data up to 4000 s. To determine σth, it was varied until the solid 
data points they fell on the n = 3.1±0.3 line. i.e. σth was an adjustable parameter. 

This behavior suggests a threshold-type creep deformation for which:70,71  

   n
thK )( σσε −=& ,     (4.3) 

(a) (b) 

(c) 
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where thσ  is a threshold stress, which is also time dependent. To obtain thσ at each t, 

we plotted appn
1

ε&  vs. σ (Fig. 4.3b). 

According to Eq. 4.3, thσ at each t is simply the x-axis intercept. Once the 

threshold stresses were determined, ε&ln  was plotted vs. )ln( thσσ −  (hollow symbols in 

Fig. 4.3c), which resulted in a straight line, with a slope of 3.1±0.3. It is thus reasonable 

to conclude, and despite some scatter, that Eq. 4.3, governs the creep of ZnO when 

loaded in the [11 2 0] direction under a spherical NI, with n ≈ 3, which is not 

incompatible with a dislocation glide mechanism along a limited number of slip systems, 

i.e. < 5.72  

To understand the creep response at longer times, another set of experiments was 

carried out with a holding period of 4000 s. Here again ε&  was measured at different 

times (1000 s, 2000 s, 3000 s, etc.). However, because of increasing values of thσ , the 

strain rates dropped significantly and, could no longer be determined accurately from 

plots such as those shown in the Fig. 4.3b. Instead we first assumed a thσ  of 1.7 GPa – 

which was the lowest applied stress - and plotted the results on Fig. 4.3c as solid symbols 

on lower right hand-side of the plot. If one then makes the reasonable assumption that the 

dominant creep mechanism does not change by extending the creep time from 400 to 

4000 s, then the creep behavior should follow the same line with a slope ~ 3, that 

describes the short-term creep tests (i.e. hollow symbols in Fig. 4.3c). This can be done 

by varying thσ  until the solid symbols fell on the inclined solid line with the slope of ~ 3. 
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Said otherwise, for the 4000 s results, thσ  was treated as an adjustable parameter. Note 

that a different thσ  is determined at every t.  
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Fig. 4.4. a) Time dependence of σth; b) Functional dependence of NI strain with σth and applied stress, σ; c) 
Time and σ dependence of number of pile-up dislocations; and d) time and σ dependence of average 
distance between pile-up dislocations. 

When the resulting variations in thσ with t were plotted, the best fit (solid line in 

Fig. 4.4a) was one where thσ scaled with log t. The fact that the same fit can be used to 

describe the changes in ε&  with t (Fig. 4.2c) is gratifying and indirectly validates our 

(a) (b) 

(c) (d) 
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methodology. The same time dependencies, in turn, lead to the linear relationship 

between ε and thσ shown in Fig. 4.4b.  

Based on these results we propose the following micromechanism to explain the 

observed creep response. During the first cycle, and as a direct result of the pop-ins, basal 

plane dislocation pileups (Fig. 4.1) are created.17 To render further analysis possible, we 

make the assumption that the number of pile-up dislocations, increase with time, resulting 

in the creep observed. The XTEM work20 also showed that the lengths of the pileups, L, 

is of the order of 2a, which is estimated to be ≈ 4.3±0.1 µm after the pop-ins. 

 If this picture is accurate, and assuming that the threshold shear stress, τ th ≈
σ th

2
, 

then the number of DPs per unit volume, Ns, can be estimated from the slopes in Fig. 

4.4b, assuming,46 

  
t

S d
d

L
GN

σ
ε

νπ 3)1(
2
−

=  ,    (4.4)   

where G is the shear modulus - assumed to be equal to c44 or 45.1 GPa;57 ν, is Poisson’s 

ratio (0.2). Using these values Ns is of the order of 6±1x1016 m-3. 

Once NS is known, the number of dislocations in a pileup, nd, can be estimated 

assuming,46 

bLN
n

S
d 2

ε
= ,     (4.5) 
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where b is the Burgers vector (0.324 nm). Equation 4.5 implicitly assumes that the 

increase in strain is accommodated by the formation of new dislocations. Consequently, 

the average spacing between dislocations becomes, 

d
d n

Lx =      (4.6) 

The dependencies of nd on t and stress are shown in Fig. 4.4c; the corresponding 

dependencies of xd on t and stress are shown in Fig. 4.4d. Under those conditions, 

dislocation density, ρ, which can be estimated from, 

SLnN3=ρ      (4.7) 

is ≈ 1011 cm-2, which is quite reasonable considering the highly localized deformation and 

the high stresses under the NI.  
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Estimated dislocation dynamics - i.e. the rates of dislocation generation and 

movement as a function of time (i.e. thσ ) - at different applied stresses (Figs. 4.5a and b, 

respectively) were obtained by differentiating the curves shown in Figs. 4.4c and d, 

respectively. Similar time dependence at different applied stresses (Fig. 4.5), most 

presumably, indicates that both the rate of dislocation generation and dislocation velocity 

are governed primarily by thσ . 

These calculations notwithstanding, it is hereby recommended that the values of 

nd, xd, dislocation nucleation rate and dislocation velocity calculated be taken with a 

modicum of skepticism because of the complicated, non-uniform, stress-state under the 

indenter, the definition of strain used, as well as the simplifying assumptions for which 

Eqs. 4.4 to 4.7 are valid. However, while the actual numbers may vary, we believe our 

approach captures the fundamental physics of what is occurring under the indenter.   

In order to probe whether the dislocation pileups had any back stresses, a number 

of interrupted runs - one of which is shown by a horizontal arrow in Fig. 4.2c - in which 

the load on the indenter was removed for 50 s, and reloaded, to the same stress. No 

evidence of negative creep was observed suggesting that these pileups had no 

measureable back-pressure. 

 In conclusion, a constant-stress spherical NI method was used to study room-

temperature indentation creep in (11 2 0) ZnO single crystal. Consistent with our previous 

conclusions concerning dislocation distributions under a spherical NI, we find that the 

room-temperature creep in ZnO can be attributed to DPs.  
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Fig. 4.6 a) Typical load-displacement response when a ZnO (0001) surface is indented with the 5 μm 
spherical tip. To keep the stress constant during the second cycle, the load had to be continually increased. 
b) Corresponding NI stress-strain curves. c) Time dependence of NI strain at stresses shown. Note the 
strain rates are significantly lower compared to the A-plane (Fig. 4.2c). 

When similar experiments were carried out on the (0001) orientation (Fig. 4.6), the 

load-displacement and indentation stress-strain curves showed similar behavior. But the 

strain rates observed – even at little higher stresses – were roughly an order of magnitude 

smaller than those for (11 2 0) orientation, which is consistent with our conjecture that in 

the (0001) orientation, the formation of domain walls and/or kink boundaries, along with 
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pyramidal slip, act as hurdles for the dislocations.17 This comment notwithstanding, 

more work is needed to understand time-dependent deformation in materials at 

micro/nano-scale. 

The ramifications of this work go beyond understanding the creep response of ZnO 

single crystals for several reasons. First, understanding the micro/nano-scale time 

dependent deformation at high stresses and low temperatures, which in turn can be 

compared to more conventional macro-scale creep experiments, is crucial in bridging the 

gap between different lengths scales during creep. Currently the link between the micro 

and macro-scales has not been established, and therefore there is no paradigm, or 

framework, for even thinking about the problem; the equations to use are simply 

unknown. Needless to add, without that knowledge the design of devices, where long-

term mechanical stability is an important consideration, cannot be carried out.   

Second, the real-time calculation and control of stress during NI experiments opens 

the door to understanding other stress/time dependent phenomena, such as fatigue and 

subcritical crack growth. Here again the crucial link between the nano/micrometer and 

macro-scales - that currently does not exist - can be established, understood and modeled. 

It is important to note that, in most cases, large pop-ins lead to the emanation of cracks 

from the indents,16,18,48 rendering this technique almost ideally suited to the study of 

subcritical crack growth. In that case, however, it is important to decouple creep from 

subcritical crack growth. 

Third, the fact that we can now, rapidly and non-destructively, estimate the number of 

dislocations, their separations and dynamics is noteworthy. This kind of information 
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should help theoreticians and modelers in fine-tuning their dislocation-based models, 

as well as explore the effect of confining, or hydrostatic conditions, on dislocation 

dynamics. The work carried out herein was done with a 5 µm radius spherical indenter. In 

principle, there are no reasons why the tip radius cannot be reduced further to the point 

where one is truly probing the nano-scale, at which time, theoretical models and 

simulations can fully mimic what is occurring under the indenter. Said otherwise, when 

the volume probed is comprised of a few million atoms, they can all be simulated 

simultaneously.  

In short this paper presents a powerful and new way of exploiting NI stress/strain 

curves to understand the time-dependent, deformation of materials, in general, and brittle 

solids in particular at the nano/micrometer scale. The same principle – real time feedback 

of the stress - can also be used to quantitatively study fatigue and subcritical crack growth 

at the same scales. 
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CHAPTER 5: KINKING NON-LINEAR ELASTIC BEHAVIOR IN 
LiNbO3 SINGLE CRYSTALS 

 

 

 

5.1 Introduction 

Lithium niobate – LiNbO3 – has attracted a good amount of attention because of its 

important nonlinear optical properties for applications in electro-optic, acousto-optic, and 

optical storage devices.73 Precise knowledge of the mechanical deformation behavior is a 

prerequisite for successful manufacturing and operation of these devices. Despite the 

importance, very little is available on the elastic-plastic transition and dislocation 

movement during contact deformation in LiNbO3. 

Earlier studies on LiNbO3 single crystals have been limited to mostly uniaxial 

compression74 and Vickers microhardness.75 When single crystals are loaded in uniaxial 

compression at temperatures > 1150 °C, (10 1 2)[ 1 011] twins form.74 Within these twins, 

basal slip is observed. More recently, Park et al.76,77 confirmed the existence of this twin 

system (Fig. 5.1). Subhadra et al.75 reported a Vickers microhardness of ~ 6.3 GPa, at 2 N 

load, for a single crystal loaded along [0001] and showed that, with increasing load, the 

hardness dropped.  

The phenomenon of fully reversible dislocation motion is not very widespread. 

Recently, there have been some reports of reversible plastic deformation in Au and Si, 

nanospheres.78,79 For example, Gerberich et al.79 presented evidence and proposed a 
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model for small reversible plastic deformation in Si nanospheres. The model – based 

on the backstress of dislocation pileups - successfully explained such strains during their 

contact loading experiments. More recent wok by the same group,80 however, suggests 

that phase transitions may be the origin of these observations. Our work on indentation 

creep of ZnO also suggests the absence of such back stresses due to dislocation pileups 

(Ch. 4). Herein, we suggest that reversible dislocation motion – but not in the 

configuration of pileups – is responsible for the reversible strain measured in LiNbO3 

single crystals.  

 

Fig. 5.1 A photograph of transmission polarizing microscope showing three sets of intersecting twin 
lamellae in LiNbO3 single crystal (taken from Ref. 77).77 

Recently it was postulated that most solids with c/a ratios > 1.5 belong to the same 

class of solids which were labeled kinking nonlinear elastic, KNE.11,30,42 The signature of 

KNE solids is the formation of fully reversible, hysteretic stress-strain loops on repeat 

loadings.11,31 This full reversibility is attributed to the formation of incipient kink bands, 

IKBs, that are comprised of multiple parallel dislocation loops (Fig. 1.1a) that either 
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annihilate or shrink when the load is removed.31 In other words, solids that are highly 

plastically anisotropic, deform at least initially by the formation of dislocation-based 

IKBs. At higher stresses, as for example under a nanoindenter, the IKBs are sundered and 

devolve, first into mobile dislocation walls, MDW, and then ultimately into kink 

boundaries, KBs. The latter are irreversible.11,16,17,23,48,63,64 Based on work by Frank and 

Stroh,27 we developed a microscale model for this unique deformation behavior,30 which 

is discussed in details in Ch. 1.  

Recently, we have also shown that spherical nanoindentation can be a powerful tool to 

understand the deformation of single crystals under point contacts. This is especially true 

when the load-displacement data are converted to indentation stress, 2a
P

π
, and 

indentation strain, 
R
a .3,11,16,17,20,24,81 where P, E*, a and R are the load, reduced modulus, 

contact and tip radii, respectively. The indentation stress-strain conversion procedure is 

discussed in Ch. 2. In this work, repeated nanoindentation - into the same location, with 3 

different R’s - was used to understand the response of LiNbO3 single crystals indented 

along the [0001] and [11 2 0] axes.   

5.2 Experimental Details 

High quality, bulk, LiNbO3, single crystals with (0001) and (11 2 0) orientations – 

denoted by C-plane and A-plane, respectively – orientation were purchased (MTI 

Corporation, Richmond, CA). The nanoindentation experiments were performed at room 

temperature in a nanoindenter (XP system, MTS Systems Corp, TN) with a continuous 

stiffness measurement (CSM) attachment. Three diamond sphero-conical indenters with 
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tip radii of 1, 5 and 13.5 μm were used. The loading rate/load ratio was held constant at 

0.1. Post-indentation surface features were examined using a scanning electron 

microscope, SEM (XL30, FEI, Hillsboro, OR). We also measured the Vickers 

microhardness using a load of 2 N.  

5.3 Results and Discussion 

The repeated spherical nanoindentation behavior for all three different tip sizes were 

dependent on the orientation of the crystal (i.e. C and A). As discussed below the 

discrepancy is, most probably, due to different arrangement of twinned domains, and the 

arrangement of slip planes therein. Hence, we discuss the response of the C and A 

orientations separately. 

5.3.1 C-Plane 

The load-displacement results for the 13.5 μm indenter (Fig. 5.2a) clearly show that 

while the first cycle is open, the repeat cycles are closed, fully reversible and 

reproducible.18 Note that true reproducibility is only achieved somewhere between cycles 

5 and 10; cycles 10 to 30 are, within the resolution of our indenter, identical. Figures 5.2b 

and c show similar cyclic deformation behavior for 5 and 1 µm indenters, respectively. 

As discussed previously,11,12,16,17,23,48  such a response can only be explained by invoking 

the formation and annihilation of dislocation loops. 
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Fig. 5.2. Typical load-displacement results obtained when a C-plane LiNbO3 single crystal was cyclically 
loaded using a spherical indenter with tip radius of; a) 13.5 μm; b) 5 μm; and c) 1 μm. 

To study the reversible motion of dislocations according to our KNE model – 

discussed in Ch. 1 – the crystal was also indented up to different maximum loads during 

cyclic loading (Fig. 5.3). 

(b) (c) 
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Fig. 5.3. Typical load-displacement results obtained when a C-plane LiNbO3 single crystal was cyclically 
loaded up to progressively increased loads using a spherical indenter with tip radius of; a) 13.5 μm; b) 5 
μm; and c) 1 μm. 

When the contact stiffness was plotted against the calculated contact radii for three 

different tip sizes (Fig. 5.4), the curve was linear over the whole deformation range. The 

indentation modulus calculated from the slope was 186±2 GPa, which is in good 

agreement with the modulus measured from Berkovich nanoindentation on the same 

(a) 

(b) (c) 



 86

surface (200±2 GPa) and the value of 1/s33 (199 GPa) calculated using the elastic 

constants for LiNbO3.82 
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Fig. 5.4. Change in contact harmonic stiffness with contact radii for indentation on C-plane LiNbO3 with 1, 
5 and 13.5 μm spherical indenters. Note the excellent agreement in slope from three extremely different tip 
sizes. 

The first cycle indentation stress-strain curves (Fig. 5.5a) - for the 3 tips explored 

herein - clearly show that, in both the linear elastic, and early on in the plastic regime, 

they are not a function of R, lending credence to our method of obtaining these type of 

curves.24 Furthermore, at ≈ 4.5±0.2 GPa, the minima in the stress-strain curves are in 

excellent agreement with the Vickers microhardness value (dashed horizontal line) 

measured on the same sample. The hardness measured with Berkovich nanoindentation is 

also shown in Fig. 5.5a. 



 87

    

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6

In
de

nt
at

io
n 

S
tre

ss
 (G

Pa
)

Indentation Strain (a/R)

Berkovich

Vickers

1 μm

5 μm

13.5 
μm

Y

Z

A

B

 

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

In
de

nt
at

io
n 

S
tre

ss
 (G

Pa
)

Indentation Strain (a/R)

1 μm

5 μm

13.5 μm

30 cycles 
13.5 μm

Vickers

 
Fig. 5.5. a) Indentation stress-strain curves of the first cycle for results shown in Fig. 5.2. Dashed and solid 
horizontal lines represent the Vickers microhardness and the hardness measured by Berkovich 
nanoindentation, respectively. The dashed inclined line represents the elastic modulus, measured from S vs. 
a curves. b) Indentation stress-strain response for cyclic loading. The curves on the left are for the results 
shown in Fig. 5.2a. Center loops, and those on the right, were obtained after a location was indented to the 
highest load (500 mN for 13.5 µm, 100 mN for 5 µm, and 9 mN for 1 µm indents) for 2 cycles, unloaded 
and progressively loaded to higher stresses (Fig. 5.3). The nested loops, with one loading trajectory, were 
shifted from their original position to the right for clarity. 

(a) 

(b) 
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~ 170 nm

Twins 

 

~ 80 nm 

2 µm 

 

Fig. 5.6. SEM image of indentation mark made with the a) 13.5 µm tip loaded to 500 mN; and b) 5 μm tip 
loaded to 100 mN. Note 3-fold symmetry of the linear surface features. 

The repeat loops shown in the center, and on the right in Fig. 5.5b, were obtained by 

loading a given indenter twice to the maximum load, unloading and then reloading to 

(a) 

(b) 
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progressively higher loads to generate the nested loops observed. Note that in all cases, 

as for all other KNE solids,30,31,42 there is only one loading trajectory. 

Despite the sphericity of the indenters, the indentation marks - made by both 13.5 and 

5 µm indenters - clearly exhibits 3-fold symmetry (Fig. 5.6). The relationships of the 

terraces and steps - clearly visible on the micrograph – to each other are remarkably 

similar to those observed by Park et al.76,77 (Fig. 5.1) which leads us to conclude that they 

are indeed (10 1 2)[ 1 011] twins.74,76,77   

Given that the cyclic indentation stress-strain curves for LiNbO3 (Fig. 5.5b) are quite 

similar to those observed in other KNE solids, in that they are fully reversible and 

hysteretic, it is reasonable to explore whether the results obtained here are consistent with 

our IKB model.30,43 To do so we assumed: G = c44 = 59.5 GPa, ν = 0.2, b = a-lattice 

parameter = 0.515 nm, γc ≈ 0.07, and k1 = k2 = 2.  According to Eqs. 1.8 and 1.9, UNL vs. 

εNL
1.5 and Wd vs. σ2, plots should result in straight lines, as observed in Figs. 5.7a and b, 

respectively. The minimum in the square of the least squares correlation coefficients, θ2, 

(shown on figures) is 0.97; most are > 0.99. This agreement between theory and 

experiment has to be considered exceptionally good given the many simplifying 

assumptions made in deriving Eqs. 1.8 and 1.9, and the fact that the model assumes a 

uniform stress state, while the situation under the indenter is highly non-uniform.  

Further analysis is possible. First, σt can be determined from the x-axis intercept of 

Fig. 5.7b. Eq. 1.2 can then be used to estimate the lengths of the IKB or the domain size, 

2α. Next 2βx and 2βy at any σ, can be calculated. Making use of Eq. 1.8 and the slope of 
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the lines shown in Fig. 5.7a, Nkα3 can be determined. When the latter is combined with 

Eq. 1.9 and the slope of the lines shown in Fig. 5.7b, Ω
b

 can be estimated. Lastly, the 

dislocation density, ρ, can be estimated by assuming:83 
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Fig. 5.7. Plots of, a) UNL with εNL

1.5 and, (b) Wd vs. σ2, as a function of indenter radius.  Note high 
correlation coefficients (θ2 > 0.9). c) The variation of domain width, estimated from both the theoretical 
model (squares) and microstructural observations in SEM (circles), with R. 
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Plane

Twin 

 

 

5 µm 

 
Fig. 5.8. a) A schematic of an IKB inside a twinned region. b) SEM image of a flake that formed in the 
vicinity of a Vickers indent, showing the curvature presumably due to the presence of basal dislocations. 

Table 5.1: Dependencies of measured and calculated parameters, obtained herein, on indenter radii.   

Tip radius (µm) 13.5 5  1 
σt (GPa) from Fig. 3b 1.2 2.0 3.0 
2α (nm) calculated 309 110 47 
Nkα3 4.6 3.0 0.5 
Nk (m-3) 1 x 1021 2 x 1022 4 x 1022 
Ω/b (MPa) 153 222 579 
2βx, (nm) at 5 GPa 150 53 22 
2βy, (nm) at 5 GPa 186 66 28 
ρ (m-2), at 5 GPa 3 x 1016 5 x 1016 2 x 1016 

 

(a) 

(b) 
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The values for σt, α, β, Nk, 
b
Ω and ρ for the 3 different tip sizes are listed in Table 

5.1.  The calculated dimensions of the IKBs – 2α ≈ 310 nm for the 13.5 µm indents, 110 

nm for the 5 µm indents, and 47 nm for 1 µm indents – are quite reasonable and scale 

with the indenter radius. More important, as shown in Fig. 5.7c, the latter also scale with 

the widths of the steps formed by the 13.5 µm (Fig. 5.6a) and 5 µm indenters (Fig. 5.6b) 

estimated to be ≈ 171±37 nm and 80±19 nm, respectively. The steps for the 1 µm 

indenter were beyond the resolution of our microscope. Note that in this geometry, the 

IKBs should form normal to the long dimension of the step (Fig. 5.8a). Figure 5.8b shows 

a flake, around a Vickers indent, with a clear curvature. Since the elastic stress needed to 

maintain that curvature is of the order of 10 GPa, we conclude that the shape can only be 

maintained by the presence of basal plane dislocations, most probably arranged in a series 

of parallel dislocation walls.28  

The resulting ρ’s (of the order of 1016 m-2) are comparable to heavily deformed 

metals46 and are, again, reasonable considering they are calculated at a stress of 5 GPa. 

More importantly, and despite some differences in the shape of the loops shown in Fig. 

5.5b, clearly, at the same stress, ρ is a weak function of R (Table 5.1). The importance of 

this conclusion lies in the fact that the crystal responds to the applied stress by forming 

dislocation loops whose total lengths per unit volume is apparently only a function of σ.   

Combining the aforementioned results and calculations, the atomistics of the contact 

deformation of LiNbO3 single crystal loaded along the [0001] can be reconstructed. At 

popin, the strain energy is converted to a large number of (10 1 2) twins, kink boundaries 
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and possibly, dislocation pileups. Twins and kink boundaries, in turn, reduce the 

domain size to a size proportional to the indenter radius, R (Fig. 5.7c). This is clearly 

manifested by the increase in σt with decreasing R (Table 5.1). Furthermore, that the 

domain size was independently confirmed from the SEM micrographs to scale with R 

and be comparable to that calculated from our model cannot be overemphasized. 

As defined here, Ω/b should not be a function of stress and yet it is (Table 5.1). The 

reason for this state of affairs is unclear at this time but could be due to the large 

hydrostatic component that exists under the indenter. 

5.3.2 A-Plane 

A typical load-displacement result for the 13.5 μm indenter (Fig. 5.9a) clearly shows 

large pop-in during loading. Figures 5.9b shows similar deformation behavior for 1 µm 

indenter, with not-so-pronounced pop-in event.  
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Fig. 5.9 Typical load-displacement results obtained when a A-plane LiNbO3 single crystal was loaded 
using a spherical indenter with tip radius of; a) 13.5 μm; and b) 1 μm. 
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When the contact stiffness was plotted against the calculated contact radii for 13.5 

and 1 μm tip sizes (Fig. 5.10), the curve was linear over the whole deformation range. 

The indentation modulus calculated from the slope was 190±3 GPa, which is saddled in 

between the modulus measured from Berkovich nanoindentation on the same surface 

(234±5 GPa) and the value of 1/s11 (173 GPa) calculated using the elastic constants for 

LiNbO3.82 The reason for the discrepancy between these numbers is unclear at this 

moment and more work is underway to better correlate the modulus values measured 

with different methods. 
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Fig. 5.10. Change in contact harmonic stiffness with contact radii for indentation on C-plane LiNbO3 with 
1 and 13.5 μm spherical indenters. Note the excellent agreement in slope from two extremely different tip 
sizes. 

The first cycle indentation stress-strain curves (Fig. 5.11) - for the 2 tips explored 

herein - clearly show that, in the linear elastic regime, they are not a function of R, 
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lending credence to our method of obtaining these type of curves.24 Although after the 

pop-in the curves exhibit a size effect, more work is needed with different tip sizes. 

Furthermore, at ≈ 5.7±0.2 GPa, the minima in the stress-strain curves are in reasonable 

agreement with the Vickers microhardness value (dashed horizontal line) measured on 

the same sample. The hardness measured with Berkovich nanoindentation is also shown 

in Fig. 5.11. 
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Fig. 5.11. Indentation stress-strain curves of the first cycle with the 1 and 13.5 μm indenters. Dashed and 
solid horizontal lines represent the Vickers microhardness and the hardness measured by Berkovich 
nanoindentation, respectively. The dashed inclined line represents the elastic modulus, measured from S vs. 
a curves. 

Interestingly, and in contradistinction to ZnO (Ch. 3),17 the A-plane shows higher 

hardness compared to the C-plane. This is most probably due to higher resistance to form 

the (10 1 2) twins in this orientation. This comment notwithstanding, some in-situ 
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indentation work is needed to better understand the effect of orientation on 

deformation twinning. Another interesting feature observed in Fig. 5.11 is the higher pop-

in stresses for 13.5 μm indents compared to 1 μm ones. Again, from our study on pop-in 

stresses in ZnO,17 it is not unreasonable to assume that there might be a very thin layer – 

thickness more comparable to 1 μm – of surface defects present in the A-plane sample, 

studied herein. It is also possible that radius of curvature might have an effect on the 

stress to form deformation twins – that is what happens during the pop-ins in LiNbO3 

single crystals. 

5 μm

Twins

Twins

 

Fig. 5.12. SEM image of indentation mark made with the 13.5 µm tip loaded to 500 mN. Note the twinning 
outside the indented region and linear features, with two-fold symmetry, inside the indent. 
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The indentation marks on the A-plane sample - made by the 13.5 µm indenter – are 

more or less spherical (Fig. 5.12). The terraces formed by twins in this orientation are 

more pronounced outside the indented region and displays a four-fold symmetry. The 

linear features inside the indented region – with a two-fold symmetry – most probably are 

evidence of slip on the basal planes, oriented parallel to the indentation axis. Similar 

linear features have been observed when A orientation of ZnO single crystal was 

indented (Ch. 3).  

The cyclic load-displacement results and the corresponding stress-strain curves for 

the 13.5 μm indenter (Fig. 5.13a and b, respectively) clearly show that while the first 

cycle is open, the repeat cycles are closed, fully reversible and reproducible. Note that 

cycles 6 to 10 are, within the resolution of our indenter, almost identical. 
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To study the reversible motion of dislocations according to our KNE model – 

discussed in Ch. 1 and in a similar way as the C-plane – the crystal was also indented up 

to different maximum loads during cyclic loading (Fig. 5.14). 
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Fig. 5.14. Typical a) load-displacement; and b) stress-strain – results obtained when a A-plane LiNbO3 
single crystal was cyclically loaded up to progressively increased loads using a spherical indenter with tip 
radius of 13.5 μm. 
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Fig. 5.15. Plots of, a) UNL with εNL

1.5 and, b) Wd vs. σ2, for the indents with 13.5 μm indenter.  Note the 
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The repeat loops shown in Fig. 5.14a, were obtained by loading the 13.5 μm 

indenter four times to the maximum load, unloading and then reloading to progressively 

higher loads to generate the nested loops observed. Note that in all cases, as for all other 

KNE solids,30,31,42 there is only one loading trajectory. The corresponding indentation 

stress-strain curves are shown in Fig. 5.14b. 

To better understand our KNE model in this orientation, UNL vs. εNL
1.5 and Wd vs. σ2 

plots are shown in Figs. 5.15a and b, respectively. According to Eq. 1.8 and 1.9 these two 

curves should result in a straight line, which is clearly not the case here. Hence, it is not 

reasonable to consider the deformation in this orientation of LiNbO3 to be similar to that 

of the C-plane. Whether this is caused by the different arrangement of twins, that formed, 

or there are dislocation pileups – as observed in ZnO A-plane – affecting the deformation 

behavior still needs to be answered. Despite the deviation from the KNE model (Ch. 1), 

reversible dislocation motion inside the twinned domains is the most plausible 

explanation behind the hysteretic loops observed in Figs. 5.13 and 5.14. 

5.4 Conclusions 

In conclusion, we have shown that the C and A orientations of LiNbO3 single crystals 

behave differently under spherical nanoindenter and twinning plays an important role in 

the deformation behavior. We note that the areas of the loops observed in C-plane 

LiNbO3 are some of the largest seen to date, which translates to exceptionally high values 

of Ω/b (Table 5.1). This is especially true when Ω/b is normalized by G.  For example, 

for the 1 µm indenter, Ω/bG for sapphire16 was estimated to be ~ 0.007; for LiNbO3 that 

value is ∼ 0.01.  This is true despite the fact that the stress under the indenter in sapphire 
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is substantially higher than the ones applied here. If the high values of Ω/b are not an 

artifact of our methodology, then it would represent an important discovery suggesting 

that, in addition to a high Peierls stress, another energy dissipating mechanism, most 

probably electrostatic in nature, is operative. In other words, it is reasonable to assume a 

relationship – the exact nature of which is unclear at this time - between IKBs and 

ferroelectric domains.  

This hypothesis gains traction when it is appreciated that ferroelectric domain 

switching under cyclic mechanical loading has been observed for several ferroelectric 

materials.84,85 For example, using in-situ neutron diffraction, during cyclic loading, on 

lead zirconate titanate, Pojprapai et al.84 showed that nearly 80 % of the macroscopic 

strain arose from ferroelastic domain switching. Similarly Kounga Njiwa et al.85  showed 

that ferroelastic domain switching can explain the hysteretic stress-strain behavior of 

some BiFeO3-PbTiO3 compositions. Interestingly, to date, and despite considerable work, 

there is no good explanation for the reversibility of these ferroelectric domains.  

Assuming them to be somewhat linked, or identical, to IKBs would provide the missing 

mechanism.   
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CHAPTER 6: SPHERICAL NANOINDENTATION AND 
DEFORMATION MECHANISMS IN FREE-STANDING GaN 

FILMS 
 

 

 

6.1 Introduction 

Single crystal GaN, a III-V wide band-gap semiconductor, has received a great deal 

of attention in the recent past due to its potential for the realization of photonic devices 

such as laser and light emitting diodes (LEDs) operating in the ultraviolet portion of the 

electromagnetic spectrum as well as solar-blind photo-detectors.86 Its wide band-gap, 

high breakdown field, and high electron saturation velocity also make it an attractive 

candidate for the development of electronic devices operating at high temperatures, high 

power, and high frequency relative to competing materials such as silicon and gallium 

arsenide.87,88 While GaN holds the promise for the advancement of a number of 

technologies, its ascension to maturity has been rather sluggish. Technological hurdles in 

the growth of bulk GaN by standard melt techniques and the nonexistence of a suitable 

lattice-matched substrate, have forced researchers to conduct the vast majority of studies 

in this material on heteroepitaxially grown thin films, with C-plane (0001) sapphire and 

silicon carbide being the traditional substrates of choice.89 The mismatch of lattice 

constants and thermal expansion coefficients in such heteroepitaxy results in high 

dislocation densities and a high level of residual strain in the GaN film post-growth, 

which inevitably affects measurement of its physical properties.  
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To date an accurate accounting of the various physical properties of GaN remains 

a task of significant interest in the scientific community, requiring a decoupling of the 

substrate influence from the GaN layer prior to measurement. Much effort has been made 

to develop processes to generate thick GaN layers and subsequently separate them from 

their substrates as evidenced by the open literature.90-93 Once separated, the GaN is said 

to be freestanding. In this work, the mechanical deformation of bulk freestanding GaN 

films under spherical nanoindenters is examined. Such knowledge is of great importance 

for realizing better manufacturing processes and device stability. 

Most of the earlier nanoindentation studies, carried out on GaN thin films or bulk 

single crystals,94-97 reported pop-in events during loading which were explained by the 

activation of pyramidal slip.95  Yu et. al.94 observed popins in GaN thin films deposited 

on sapphire substrates using both Berkovich and a 5 µm spherical indenter. 

Navamathavan et. al.96 reported similar behavior when thin films deposited on sapphire 

substrates were indented with a Berkovich indenter. Popins due to dislocation nucleation 

during spherical nanoindentation were also confirmed by Caceres et. al.97 and Kucheyev 

et. al.95 On the other hand, Nowak et. al.98 did not observe popin events when they used a 

Berkovich indenter on bulk crystals. Using a 4.2 µm spherical indenter, Kucheyev et. 

al.95 reported that the hardness of C-plane (0001) GaN epilayers on sapphire substrates to 

be 15.5±0.9 GPa at 150 nm displacement into surface. The modulus value reported was 

210±23 GPa. They also showed evidence of slip bands on the indented surfaces. In a 

more recent paper on similar films, Bradby et al.99 using a combination of spherical 

nanoindentations and cross-sectional transmission electron microscopy (TEM) showed 
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that at loads greater than the pop-in loads, the deformation in the C-plane under the 

indenter was due to extensive slip, mostly on basal planes. 

Recently, we have shown that spherical nanoindentation can be a powerful tool to 

characterize the mechanical deformation of single crystals.11,12,16,17,23,24  This is especially 

true since we developed a procedure to convert indentation load-displacement curves to 

indentation stress-strain curves for a wide range of materials.24 Prior to our work, there 

had been some attempts in that direction, but for reasons that are unclear, were not 

pursued and/or their usefulness was not emphasized.10,20 In this work we apply this 

technique to understand the response of two different GaN surfaces to a highly localized 

stress. Herein repeated spherical nanoindentations, into the same location - of both C 

(basal) and A (prismatic) GaN orientations - with two different tip radii were carried out. 

We also indented the surfaces with measured Vickers and Berkovich indenters. 

6.2 Experimental Details 

The bulk GaN free-standing films, used in this study, were grown by Adrian Williams 

and Theodore D. Moustakas at Boston University, MA, using the hydride vapor phase 

epitaxy (HVPE) method onto both C-Plane (0001) and R-Plane (10 1 2) sapphire 

substrates. The GaN deposited on (0001) sapphire is of [0001] orientation (C-plane), 

while the film deposited on the latter has a [11 2 0] orientation (A-Plane).100 Both GaN 

films were grown to a thickness of ≈ 1.3 mm. The separation of film and substrate was 

achieved through a novel process employing an engineered GaN buffer layer, 100 nm 

thick, at the hetero-interface. This buffer layer is designed to fail mechanically under the 

effects of thermal stress during the cooling phase of the growth process, thereby 
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liberating the GaN layer from the substrate. Details of this method can be found in 

Ref. 101.101  

The nanoindentation experiments were performed at room temperature, using a 

nanoindenter (XP system, MTS Corp, TN) with a continuous stiffness measurement 

(CSM) attachment. Two diamond hemispherical indenters with radii, R, of 13.5 µm and 1 

μm were used. The radii of the sphero-conical tips were verified by careful measurements 

in a scanning electron microscope, SEM. A constant loading rate/load ratio of 0.1 was 

employed. Typically, the tip was indented into the same location at least 5 times at a 

given load. To correct for a small instrumental drift, the unloading segments of the 

second and subsequent cycles were shifted so as to align them with the corresponding 

unloading segment of the previous cycle. This was only carried out, if and only, if 

successive cycles had identical areas under the load-displacement curves. Once corrected, 

the load-displacement data were converted to indentation stress-strain curves, following 

the protocol explained in Ch. 2. 

Post-indentation surface features were examined using a SEM (FEI, XL30). We also 

measured the Vickers microhardness using a load of 10 N. The moduli and hardness 

values of the two surfaces were also measured using a Berkovich indenter and the Oliver 

and Pharr method.2  
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Fig. 6.1. Load-displacement response for spherical nanoindentation of GaN free-standing films with a 13.5 
µm indenter up to a 500 mN load. a) C orientation; b) A orientation. 

6.3 Results and Discussion 

6.3.1 C-Plane 

Typical nanoindentation load-displacement results for the C-orientation obtained with 

the 13.5 µm indenter in 6 different locations (Fig. 6.1a) were characterized by pop-ins. 

The pop-in loads were quite variable; their extent increased as the pop-in loads increased. 

After the pop-ins, the loading and unloading curves taken to the same maximum load for 

all locations coincided. In one location (open squares in Fig. 6.1a) the response was linear 

elastic up to the maximum load of 500 mN.  

Since S = 2aE*, where E* is the effective spherical indentation modulus of the 

sample, it follows that the latter can be readily determined from S vs. a plots.24 Such 

plots, for both orientations and for both indenter tips, are shown in Fig. 6.2. (The results 

for the A-plane, are shifted to the right by 2000 nm for clarity.) The 13.5 µm indents on 

the C-plane resulted in a sample modulus, E, of 212±9 GPa, which is in excellent 

agreement with the value of 210±23 GPa, where a 4.2 µm radius spherical indenter was 
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used.95  The moduli values obtained when the 1 µm indenter was used - 297±15 GPa - 

are significantly higher. At 261±3, the Berkovich modulus is in between the two. Clearly 

the indentation moduli are tip size and shape dependent. At this time the origin of these 

differences are not understood; more work is needed to understand them. Note that 1/s33 

for GaN is 328 GPa57 and thus, for this orientation, the result for the 1 µm indenter are 

the closest to the theoretical value. This comment notwithstanding, it is hereby 

acknowledged that the indentation elastic modulus is not necessarily equal to 1/s33, but is 

a more complicated function of the elastic constants.102 
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Fig. 6.2. The variation in harmonic contact stiffness, S, with contact radii, a, for both C and A orientations 
measured with the 1 µm and 13.5 µm spherical tips. The results for the A plane are shifted by 2000 nm to 
the right for clarity. 

Typical indentation stress-strain curves, for both tips, obtained on the C-plane are 

shown in Fig. 6.3a. The zero-point corrections (see Ch. 2) were of the order of ± 2 to 5 

nm.  The curves are characterized by a linear elastic region (the dashed inclined lines 

correspond to the moduli determined from Fig. 6.2 for the two indenter tips), followed by 
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a, not too precipitous, drop in stress that accompanies the pop-ins. After the pop-ins, 

the stress either remains more or less constant at ≈ 10 GPa for the 13.5 µm indents (Fig. 

6.3a), or exhibits a shallow minimum, after which it increases more or less linearly at a 

slope that is significantly lower than the slope during the elastic regime. The pop-in 

stresses are quite stochastic for both indenter sizes. Note that for the former no results are 

obtained for indentation strains > 0.27 since that was the limit of our load; for the 1 µm 

indenter the results were truncated at a strain of 0.5, which corresponds to the maximum 

depth up to which the assumption that the indenter was spherical is valid.  

For reasons that are not clear, and despite the fact that the slopes of the S vs. a lines in 

Fig. 6.2 for the 1 µm and 13.5 µm are different, when these results are used to obtain the 

indentation stress-strain curves, the initial slopes of the latter are almost identical. In 

other words, they are not different, as one would expect. The same is true of the A-plane 

(see Fig. 6.3b). Such a discrepancy was not observed in either ZnO (Ch. 3),17  sapphire 

(Ch. 7)16 or LiNbO3 (Ch. 5)18 where both tips resulted in almost identical moduli and is 

thus not an artifact of our procedure. 

Interestingly, and possibly coincidentally, the stress level after the pop-ins for the 

most part fall in between the Vickers microhardness value – 10.9±0.1 GPa (shown as 

dashed horizontal line in Fig. 6.3a) and Berkovich nanoindentation values – 15.2±0.1 

GPa (shown as horizontal solid line in Fig. 6.3a).  The Vickers hardness values measured 

herein are in reasonable agreement with earlier reported values for GaN.103 This comment 

notwithstanding, defining a hardness value from the spherical nanoindentation stress-
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strain curves is problematic because of work hardening. The same was true for the 

single crystals of sapphire16 and ZnO.17 

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5

C - Plane

In
de

nt
at

io
n 

S
tre

ss
 (G

Pa
)

Indentation Strain (a/R)

(a)

1 μm Indents

13.5 μm Indents

E* = 185 GPa
From 13.5 μm Indents

E* = 244 GPa
From 1 μm

Indents

  

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5

A - Plane

In
de

nt
at

io
n 

S
tre

ss
 (G

Pa
)

Indentation Strain (a/R)

13.5 μm Indents

1 μm Indents

E* = 174 GPa
From 13.5 μm Indents

(b)E* = 235 GPa
From 1 μm

Indents

 

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1 μm Indents

In
de

nt
at

io
n 

S
tre

ss
 (G

Pa
)

Indentation Strain (a/R)

C-Plane

A-Plane

 
Fig. 6.3. Indentation stress strain curves for the first loading calculated from the load displacement results 
of both 1 and 13.5 µm nanoindenters for the, a) C orientation, and, b) A orientation. The dashed and solid 
horizontal lines represent the Vickers and Berkovich hardness values, respectively. c) Superimposed 
indentation stress-strain curves for the 1 µm indents on both C and A-orientation. Note almost similar 
hardening rate for the two orientations. 
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Fig. 6.4. a) Spherical nanoindentation load-displacement response on the C-orientation for repeated 
spherical nanoindentation on the same location with the 1µm indenter. The applied load was 30 mN for the 
first 10 cycles and 60 mN thereafter. b) The magnified view of cycles 11 to 15. Note the fully reversible 
hysteretic loops in this orientation. 
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Fig. 6.5. a) Spherical nanoindentation stress-strain response corresponding to the data shown in Fig. 6.4a. 
b) The magnified view of cycles 11 to 15. Note the fully reversible hysteretic loops in this orientation. 

Typical nanoindentation load-displacement plots for the repeat cycles in a given 

location are shown in Fig. 6.4a. Here the same location was indented first to a load of 30 

mN for 10 cycles with the 1 µm spherical tip before increasing the load to 60 mN for 

another 10 cycles. Note the fully reversible and reproducible nature of the loops at each 

(a) (b) 
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load (Fig. 6.4b). The corresponding indentation stress-strain curves are shown in Fig. 

6.5. As discussed below, we take that to be evidence for the formation and annihilation of 

incipient kink bands, IKBs, and/or the to-and-fro movement of mobile dislocation walls. 
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Fig. 6.6. a) Spherical nanoindentation load-displacement response on the A-orientation for repeated 
spherical nanoindentation on the same location with the 1µm indenter. The applied load was 30 mN for the 
first 10 cycles and 60 mN thereafter. b) The magnified view of the cycles 11 to 20. Note the hysteretic 
nature of the loops decreases with number of cycles. 
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6.3.2 A-Plane 

 Typical load-displacement plots for the A-plane are shown in Fig. 6.1b. In this 

orientation pop-in events were not observed. The S vs. a plots (Fig. 6.2) clearly show that 

the slopes obtained are a function of indenter diameter. The 13.5 µm indents yield a 

modulus of 196±5 GPa; the 1 µm indents, 284±6 GPa. The Berkovich indenter yielded a 

modulus of 255±3 GPa, viz. a value in between the other two values. Note that 1/s11 for 

GaN is 226 GPa.57 

The dashed inclined lines in Fig. 6.3b correspond to the moduli measured by the 13.5 

µm and 1 µm tips obtained from Fig. 6.2. Like in Fig. 6.3a, the initial slopes of the 

indentation stress strain plots are almost identical for the 1 µm and 13.5 µm indenters. In 

other words, the former are lower than one would expect based on the results shown in 

Fig. 6.2.  

Here again, coincidentally or not, our results are in reasonable agreement with the 

Vickers microhardness value of 9.9±0.3 GPa (horizontal line marked V in Fig. 6.3b) and 

the Berkovich nanoindentation value of 13.2±0.2 GPa (horizontal line marked B in Fig. 

6.3b) measured herein on the same surface.  Note that data shown in Fig. 6.3b represent 

the limits of the load on our nanoindenter and the sphericity of the 1 µm indenter. 

The typical indentation stress-strain curves, obtained for both tips in various locations 

(Fig. 6.3b), are characterized by a linear elastic regime, followed by what appears to be a 

“yield” point, beyond which the response is still linear, but at a different slope. In 

contradistinction to the results obtained for the C-plane (Fig. 6.3a), the variability 

between the results from the various locations is significantly reduced. The absence of 
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popins and the reduced variability is most probably due to a high defect concentration 

at and/or near the surface (see below).  

The spherical nanoindentation load-displacement plots for repeat cycles in the A-

orientation in a given location are shown in Fig. 6.6a. Here also the same location was 

indented, at 30 mN, for 10 cycles, and then to 60 mN for another 10 cycles with the 1 µm 

indenter. The corresponding indentation stress-strain curves are shown in Fig. 6.7a. In 

this orientation subsequent loop areas get progressively smaller with cycling until they 

saturate (Figs. 6.6b and 6.7b), but at an area much smaller than that obtained for the C-

plane (Figs. 6.4b and 6.5b). Figure 6.6b shows the repeated indentation result in the same 

location on the A surface with the 1 µm indenter and up to 60 mN. Note that, unlike the C 

surface, the areas encompassed by the loops are reduced to a considerable extent up to 

cycle 17, before becoming almost constant. 

6.3.3 Possible Deformation Mechanisms 

Earlier work has shown that when the C planes of GaN are indented, basal slip is 

activated. In agreement with previous work,24,48,95 there is little evidence for plastic 

deformation prior to the pop-ins (Fig. 6.3a). The excellent reproducibility of results - 

from location to location - after the pop-ins (Figs. 6.3a and b) is also consistent with a 

dislocation-based mechanism. 

The variations in pop-in stresses suggest that - like in ZnO17 - the initial defect 

concentrations on and/or near the surface is the rate-limiting factor.  The effect of defects, 

or lack thereof, on pop-in stresses was best illustrated by Nowak et. al.,104 who implanted 

Ni2+ and Au2+ ions into sapphire single crystals and showed that with increasing defect 
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concentrations, the popin stress decreased substantially. It follows that the fact that 

the A-plane did not exhibit popins could thus be either due to the fact the deformation is 

accommodated by basal slip for which nucleation of dislocations is not rate limiting 

and/or the surface is quite defective. The latter is the more probable, however, since 

popins were observed in this orientation in ZnO single crystals.17 The nature of these 

defects is not clear, but recent work suggests it could be threading dislocations.60 

In sapphire where presumably all slip is basal, the stress-strain curves both before and 

after the pop-ins for both C and A orientations were almost perfectly superimposable.16 

This is also true in this work. If the 1 μm indentation results were superimposed (Fig. 

6.3c), it becomes evident that the strain hardening rates after the pop-ins are almost 

identical. It is thus reasonable to implicate basal slip for the deformation in the A 

orientation as well.  In contradistinction, in ZnO single crystals, the flow stress for 

pyramidal slip was higher than basal slip and the hardening rates were quite different in 

the C and A-directions (Ch. 3).17   

6.3.4 Kinking Non-Linear Elasticity 

Recently we postulated that most solids with c/a ratios > 1.5 belong to the same class 

of solids we labeled kinking nonlinear elastic, KNE.11,30 Experimentally, the signature of 

KNE solids is the formation of fully reversible, hysteretic stress-strain loops on repeat 

loadings.31 This full reversibility is due to the formation of incipient kink bands, IKBs, 

that are comprised of two nearly parallel, dislocation walls of opposite polarity attracted 

to each other such that when the load is removed they annihilate. Given that the response 

of the C-plane to repeated indentations is indeed fully reversible and hysteretic (Figs. 6.4 
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and 6.5) we conclude that IKBs are implicated. This response is similar to the 

deformation behavior observed in other KNE solids such as layered ternary carbides,23,31 

mica,11 graphite,12, and more recently, sapphire,16 ZnO17 and LiNbO3
18 single crystals.  

The energy dissipation per cycle, per unit volume, Wd, is the area enclosed by the 

fully reversible hysteretic loops in the indentation stress-strain plots (Figs. 6.5b and 6.7b). 

To measure Wd usually the last cycle is used.  The Wd (~ 20 MJ/m3), for the repeated 

indentations on C-plane samples can be possible only by to-and-fro motion of 

dislocations.31 The other two possibilities – fracture and phase transformation – can 

readily be ruled out as fracture cannot lead to hardening as observed in Fig. 6.3a and 

there is no evidence of a phase transformation in GaN at the stresses reported here. 

To examine the assumptions of our IKB model30 - embodied in Eqs. 1.1 to 1.10 - 

we need to estimate γc. From Fig. 6.3a, the threshold stress for the formation of the initial 

KBs (the popin stress) is ≈ 12 GPa. Assuming the shear stress under the indenter is ≈ half 

the normal stress, it follows that τc in Eq. 1.3 is ≈ 6 GPa. For GaN c44 is 241 GPa57 and 

consequently, τc ≈ c44/40, which is not unreasonable. Assuming, G = c44 = 241 GPa, ν = 

0.2, and b = a = 0.319 nm, 105 from Eq. 1.3 we calculate γc to be ≈ 0.05. Hence, the 

distance between two parallel dislocation loops, D, inside an IKB, is almost 6.4 nm. In 

other words, a dislocation is present along the c-axis every ≈ 64 Å. (The c-lattice 

parameter is 5.185 Å105) and the total length of the IKB, 2α, as calculated from Eq. 1.2, is 

51.5 nm. Then according to Eq. 1.10, Ω/b ≈ 1±0.4 GPa. According to our previous work 

it was postulated that Ω/b should be of the order of, if not identical to, the critical 

resolved shear stress of basal plane dislocations.30 Therefore our values are, given all the 
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assumptions made in obtaining them, quite reasonable and lend credence to both our 

model and results. 

(a) 

Pile up 

 

(b) 

 
Fig. 6.8. Scanning electron micrograph of an indented region on, a) C-orientation; and b) A-orientation. 
The surface damage was caused by closely spaced (≈ 20 µm) square (4 x 4) array indentations made with 
the 13.5 µm tip and a 400mN load. 

Like in sapphire,16 we believe that the small hysteretic areas immediately after the 

pop-ins (i.e. during cycles 2 to 10 in Figs. 6.4a and 6.6a) is a consequence of the fact that 

the size of the domains (viz. 2α) that form at that juncture are too small for the initiation 

of IKBs, i.e. the applied stress is smaller than the threshold stress given by Eq. 1.2. This 



 116

is presumably why loading to the higher stresses results in larger loops, at least in the 

C-direction (Fig. 6.4b).  

When a close square array of 400 mN indents with the 13.5 μm spherical tip were 

imaged in the SEM (Fig. 6.8), no slip lines – as in ZnO17 - were observed. This does not 

mean they do not exist, however. Kucheyev et al.95 observed clear traces of slip lines in 

GaN thin films; interestingly the slip lines did not trace out hexagons but parallelograms. 

These slip lines cannot be due to basal slip.  More importantly, however, are the room 

temperature cathodoluminescence, CL, images of the indents by the same authors.95 In 

those images a 6-fold symmetry – Star of David configuration, consistent with basal slip 

in three directions at an angle of 60o (Fig. 3.13b) to each other and comprised of a series 

of parallel lines - is clearly visible. The star extends considerably beyond the contact 

diameter. This last observation cannot be overemphasized since it implies that the defects 

were mobile and clearly resulted from the indentation. It is important to note that another 

possible source of energy dissipation could be the to-and-fro motion of these mobile 

dislocation walls, MDWs.  

 
Fig. 6.9 Room temperature monochromatic CL image of a 900 mN indent in a GaN epilayer with a sphero-
conical tip of radius 4.2 μm (taken from Ref. 95).95 The horizontal field width is 50 μm. 
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As discussed earlier in case of ZnO single crystals,17 Fig. 3.13 shows how basal 

slip can cause the formation of MDWs and/or permanent kink boundaries.64 It also 

explains the formation of pile-ups around the indented region, shown in Fig. 6.8a and 

also reported in Ref. 95.95 In light of the above discussion and in conjunction with the 

results obtained on ZnO,17 which has a similar crystal structure, it is reasonable to 

conclude that the defects observed in the CL images (Fig. 6.9)95 are nothing but MDWs – 

the precursors of kink boundaries – and/or kink boundaries.23,64 Note that neither 

pyramidal nor prismatic slip can account for these features. In situ CL studies, while a 

surface in being indented, are indicated and could prove to be invaluable. Also consistent 

with this conclusion is the lack of pileup in the A direction (Fig. 6.8b). Here presumably 

the kinking occurs, along with dislocation pileups, directly under the indenter in a similar 

way as in ZnO.17 CL and/or XTEM studies of indents in this direction should confirm this 

hypothesis. Lastly in the section we note that Fig. 6.8b is quite reminiscent of 

indentations in the A planes of Ti3SiC2
23,63 in that there are no pile-up around the 

indentation, and microcracking – presumably parallel to the basal planes - is observed. 

Since in Ti3SiC2 deformation occurs strictly by basal slip, we assume the same occurs 

here. And while these observations do not prove that basal slip alone is implicated, they 

certainly show that the features observed can be obtained by basal slip alone.   

It was postulated earlier that high c/a ratios render non-basal slip prohibitively 

expensive. Thus only kink band formation - made possible by basal slip - can be activated 

during deformation.11,31 The results of this work are consistent with these notions since 

our results for the C-plane can be explained by invoking only basal slip. The fully 
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reversible loops (Wd is ~ 20 MJ/m3) during the repeat cycles observed herein (Fig. 

6.4b) suggest the GaN films explored herein belong to the larger group of KNE solids. 

Also based on our results, it is clear that the extent or even the observation of kinking 

nonlinear elastic deformation of hexagonal crystals depends on orientation since what is 

occurring in the A-direction is less clear. What is clear, however, is that in this orientation 

the area within the reversible loops are smaller than those that form when the C planes 

are indented. More single crystal work is needed to understand the variations in response 

of various orientations. 

6.4 Summary and Conclusions 

 By converting load-depth of penetration curves to stress-strain curves, together 

with post-indentation SEM observations and previous work95,99 we conclude that basal 

slip is initiated when both C- and A-orientations of GaN are indented with spherical 

nanoindenters. This is in contradistinction to our results on ZnO17 single crystals where a 

large hardness anisotropy is observed due to the activation of two different slip systems.  

The reversibility during the cyclic nanoindentation – specially in the C-orientation – 

was similar in nature to other KNE solids suggesting that IKBs form under the indenters. 

The formation and annihilation of these IKBs, in turn, result in considerable amounts of 

energy dissipation per cycle. The possibility of the to-and-fro motion of MDWs also 

cannot be excluded at this time.  

The results presented herein should in principle be helpful when understanding 

machining damage and ultimately device stability. Lastly, this work is another example 

of how nanoindentation stress-strain curves can be used to shed important light on the 
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atomistics of the deformation processes in single crystals, that would be otherwise 

very difficult, if not impossible, to obtain.  
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CHAPTER 7: KINKING NONLINEAR ELASTIC 
DEFORMATION IN SAPPHIRE 

 

 

 

7.1 Introduction 

Understanding the room temperature plastic deformation of sapphire (α−Al2O3) 

single crystals is important for applications involving high speed loading or localized 

high stresses, as well as the polishing and machining of sapphire single crystals.106 It is 

reasonably well established that at temperatures greater than ≈ 1100 °C, basal slip - with 

a Burgers vector of 0.476 nm - is the easy slip system. Sapphire single crystals loaded 

nearly parallel to their basal planes, above 1350 °C, form easily identifiable macroscopic 

kink bands.107 At room temperature, sapphire will plastically deform, provided the 

hydrostatic pressure is sufficient to suppress fracture.108 Since such conditions are 

naturally present under an indenter tip, and with the advent of instrumented 

nanoindenters, a number of papers have been published lately that have attempted to 

understand the deformation of sapphire single crystals. A comprehensive recent review 

can be found in a paper by Tymiak et al.109  

Of special interest to our work are the basal C (0001) and prismatic A (12 10) planes, 

subjected to spherical indentations.109,110,111,112 During loading, sudden pop-ins are 

recorded. In analogy with metals, these pop-ins have been assumed by some to be 

evidence of a plastic or yield-point transition. It should be noted here however, that pop-
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ins as large as the ones measured herein, and in previous work on sapphire, have 

never been reported for metals. To date the exact nature of what is occurring at the “yield 

point” is unclear. Some maintain the yield point corresponds to the nucleation of 

dislocations, others that dislocations nucleate before the observed yield point, with the 

latter a plastic instability that commences upon reaching a critical condition of a certain 

kind. 

Recently we postulated that most solids, if not all, with c/a ratios > 1.5 belong to the 

same class of solids we labeled kinking nonlinear elastic, KNE.11,30 The logic being that 

high c/a ratios render both non-basal slip and twinning prohibitively expensive. Thus 

only basal slip and kinking (made possible by basal slip) can be activated during 

deformation. Experimentally, the signature of KNE solids is the formation of fully 

reversible, almost rate-independent, hysteretic stress-strain loops on repeat loadings.31 

This full reversibility has been attributed to the formation of incipient kink bands, IKBs, 

that are comprised of two, nearly parallel, dislocation walls of opposite polarity attracted 

to each other such that when the load is removed they annihilate (see Ch. 1).31  

The purpose of this work is to shed more light on the room temperature deformation 

of sapphire and provide compelling evidence that sapphire can deform by the formation 

of kink bands even at room temperature. This was carried out by repeatedly (up to 30 

times in some cases) loading a 1 µm radius diamond sphere, into the same location, on C 

and A sapphire planes. 
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7.2 Experimental Details 

In this work we tested two - C and A orientations - sapphire single crystals (Kyocera 

Industrial Ceramics, Vancouver, WA). A 1 µm radius spherical diamond tip indenter was 

used with our nanoindenter (XP System, MTS Corporation, Oak Ridge, TN). A constant 

loading rate over load ratio of 0.1 was used in each test. Typically, each location was 

indented 5 times, to a load of 50 mN, followed by up to 30 indentations in the same 

location to a load of 100 mN. The protocol, described in Ch. 2, was then used to convert 

the load-displacement plots to indentation stress-strain curves. 

The post-indentation surface features were scanned with atomic force microscopy, 

AFM, (MFP-3D, Asylum Research) in a non-contact mode using an Olympus AC 240 

tip. The indented surfaces were also coated with Pt and examined using a field emission 

scanning electron microscope, FESEM (XL30, FEI Corporation, Hillsboro, OR). 

An estimate of Wd was obtained by measuring the loop areas from figures similar to 

the ones shown in Figs. 7.1b and 7.3b, and dividing the result by πa3. In so doing it is 

implicitly assumed that the volume under the indenter affected is a cylinder of radius and 

height a. This assumption has previously been shown to be reasonably valid.23 

7.3 Results 

7.3.1 C-Plane 

Typical load-displacement results for the C-plane are shown in Figs. 7.1a and b; the 

S vs. a curves are shown in Fig. 7.2. The corresponding indentation stress-strain curves 

are shown in Fig. 7.5a. In this orientation a relatively large ( ≈ 100 nm) pop-in is 

observed at ≈ 20 mN (Fig. 7.1a).  
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Fig. 7.1 Cyclic nanoindentation results obtained when a 1 µm radius sphere is indented into the same 
location of a sapphire C (0001) crystal surface. (a) Load-displacement for 5 cycles to 50 mN, followed by 8 
cycles at 100 mN. Inset is a schematic of an IKB. (b) Magnified view of the center of select loops for an 
area indented 24 times to 100 mN. The reproducibility of the loops is noteworthy. In both a and b only a 
fraction of the data points collected are plotted. 

This load corresponds to a stress of ≈ 44 GPa (Fig. 7.5a). The slope of the inclined 

dashed line corresponds to an elastic modulus of 381 GPa, calculated from Fig. 7.2, and 

is little different than 1/s33 (458 GPa) – estimated using the elastic constants reported in 
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the literature for sapphire.113 The pop-ins result in a rapid reduction in stress, to ≈ 27 

GPa, as the contact area increases suddenly, before it rises again to ≈ 32 GPa.  
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Fig. 7.2 Variation in contact stiffness with contact radius when the C-plane sample was indented with 1 μm 
indenter. 

At this juncture unloading and reloading (cycles 2 to 5) results in fully reversible, 

reproducible hysteretic loops. The areas enclosed by the loops are quite small, however. 

In cycle 6 (Fig. 7.1a) the load is increased to 100 mN, which causes the stress to increase 

to ≈ 40 GPa, before the load is reversed (Fig. 7.5a). Cycles 7 and 8, however, once again, 

result in fully reversible, reproducible loops; in this case the areas enclosed are clearly 

visible.  

In another experiment, the same procedure was employed except that 24 cycles at 

100 mN, in the same location, were carried out. Select cycles are plotted in Fig. 7.1b, 

with emphasis on the center of the loop. Even at that magnification the reproducibility of 

cycles 8 to 24 is evident. 
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Fig. 7.3 Cyclic nanoindentation results obtained when a 1 µm radius sphere is indented into the same 
location of a sapphire A crystal surface. (a) Load-displacement for 5 cycles to 50 mN, followed by 8 cycles 
at 100 mN. (b) Magnified view of the center of select loops for an area indented 22 times to 100 mN. The 
reproducibility of the loops is noteworthy. In both a and b only a fraction of the data points collected are 
plotted. 

7.3.2 A-Plane 

The response of the A-plane is qualitatively similar to that of the C-plane (Figs. 7.3a 

and b). A slightly smaller (50 nm) pop-in is observed at ≈ 16 mN. This load corresponds 
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to a stress of ≈ 44 GPa (Fig. 7.5a). The S vs. a curves are shown in Fig. 7.4. Figure 

7.3b plots the central portions of cycles 10, 15, 20 and 22 obtained from another location. 

Here again it is clear that the later cycles are fully reversible and reproducible.   
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Fig. 7.4 Variation in contact stiffness with contact radius when the A-plane sample was indented with 1 μm 
indenter. 

7.4 Discussion 

As discussed in our previous work,11,12,23 any model put forth to explain the results 

presented here has to account for the large pop-ins, the fully reversible nature of the loops 

shown, the cyclic hardening after the pop-ins, as well as the substantial - 0.5 to 1.0 GJ/m3 

- energy dissipated per unit volume per cycle, Wd. Based on the extreme values of Wd (≈ 

0.5 GJ/m3, see below) the reversible nature of the transformation, and our previous 

work,12,23,30 there can be little doubt that Wd is due to the to and fro motion of 

dislocations. The only two other possibilities – fracture or phase transformations – can be 
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readily ruled out. Fracture cannot lead to hardening and phase transitions have not 

been reported for sapphire at the stresses reported here.  
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Fig. 7.5 a) Indentation stress-strain curves corresponding to the results shown in Fig. 7.1a (triangles) and 
7.3a (squares). Dashed line on left represents elastic response assuming elastic constant is ≈ 500 GPa. Note 
almost identical response after pop-ins. b) Variation of pop-in load with pop-in length for both orientations. 
Note the similarity in slope. 
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Furthermore, the results presented here are in total agreement with, and can be 

interpreted in the context of, our kink-band based model (Ch. 1).11,30,31 The pop-ins result 

in the formation of a large number of mobile dislocation walls, that end up in the kink 

boundaries.31 In other words, the majority of the area under the stress-strain curves in the 

initial cycles is due to the motion of these walls. More importantly, in analogy with 

graphite12 and mica,11 it is reasonable to assume that the massive pop-ins result in the 

formation of multiple domains – with a size that is smaller than a, the contact radius 

under the indenter. Upon reloading to 50 mN, presumably the domain size is too small to 

initiate many IKBs and the response is almost – at higher resolution loops are clear - 

linear elastic (cycles 2 to 5 in Figs. 7.1a and 7.3a). When in the sixth cycle the load is 

increased to 100 mN, this presumably results in: i) the formation of more mobile 

dislocation walls, that again end up in the KBs. This is evidenced by new area under the 

stress-strain curves and the permanent deformation observed, and, ii) the nucleation of 

fully reversible IKBs. After a few more re-loadings to 100 mN, an equilibrium 

microstructure (see below) is reached. Based on the results shown in Fig. 7.1b, cycles 6 

and 7 are the ones that are not fully reversible. By the 10th cycle, the response is fully 

reversible, and reproducible. This is best seen in Fig. 7.1b, where it is clear that 

differences between cycles 8, 18, 22 and 24 are quite small. The very slight decrease in 

area with increasing cycling is anticipated and is most likely due to the development of 

an equilibrium microstructure, defined as one where only IKBs are nucleated. In other 

words, a microstructure where all other dislocations are swept into the KBs and are thus 

non-reversible.12,17,18,23,30,48 Similar results were also obtained for the A-plane, where it is 

clear that cycles 10 and 22 are nearly identical (Fig. 7.3b).  
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We emphasize again that Wd is substantial and can thus only be due to dislocation 

motion. It is also remarkable that - despite cycling to a stress of ≈ 40 GPa up to more than 

20 times - the loops are as reproducible as they are in Figs. 7.1b and 7.3b. This implies 

that fatigue, creep, subcritical crack growth, and other time dependent phenomena do not 

play a role – at least for up to ≈ 20 cycles - despite the ultra high stresses. This results 

most certainly rules out that the source of Wd is microcracking and/or friction.  

An excellent correlation was found between the extent of the pop-ins and the loads at 

which they occurred (Fig. 7.5b). The variations in pop-in stresses suggest that - like in 

ZnO17 and GaN48 - the initial defect concentrations on and/or near the surface is the rate-

limiting factor.  The effect of defects, or lack thereof, on pop-in stresses was best 

illustrated by Nowak et. al.,104 who implanted Ni2+ and Au2+ ions into sapphire single 

crystals and showed that with increasing defect concentrations, the popin stress decreased 

substantially. This observation is important because it suggests that no plastic 

deformation is occurring before the pop-in and that the strain energy stored, during the 

elastic deformation, is almost completely utilized in nucleation and multiplication of 

dislocations forming kink boundaries. This can also be verified by the fact that the areas 

OPQ and PQRS in Fig. 7.5a are almost equal – this behavior has also been observed in 

case of ZnO (Ch. 3), GaN (Ch. 6) and LiNbO3 (Ch. 5) single crystals. This is further 

bolstered by the excellent linear elastic response – with moduli corresponding to sapphire 

– obtained in Fig. 7.5a. It is also worth noting that if loaded to loads below the pop-in 

stresses no trace of the indentations is found in the SEM and/or the AFM. 

According to our AFM scans (Fig. 7.6), the pop-ins resulted in impressions with 

depths that corresponded to the extent of residual penetration, or plastic deformation, 
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registered in the first cycle. A material pileup was also seen around the impressions; 

similar pileups have been observed by others.109,110  

  

  
Fig. 7.6 Atomic force microscopy (AFM) scans showing residual displacement after the pop-in and pileup 
around the indents in a) C-plane; and b) A-plane. 

Figure 7.7a shows a typical SEM micrograph of an indentation impression made 

when the indenter was loaded to 200 mN into the A-plane. Four cracks aligned at roughly 

90° emanate from each impression. The cracks and their orientation are almost identical 

to the ones shown by Nowak et al.110,112 Furthermore, two sets of near parallel linear 

features (labeled LF in Fig. 7.7a) are clearly visible. Note that the crater sides at ≈ 90° to 

the linear features are smooth. Direct evidence of a feature that can result from a kink 

boundary, but not a twin, is shown in Fig. 7.7b (see below). 

The impressions left – after pop-in - on the C-plane were significantly different than 

those made on the A-plane. In general they were more difficult to find since the craters 

(a) (b) 
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were remarkably smooth, especially at lower loads. To help find these indentations, a 

3x3 indentation array, using a load of 200 mN, was introduced.  

1 μm 

LF

LF

 

 
200 nm 

Kink Boundary 

 
Fig. 7.7 ESEM images of the indented surface of sapphire A surface. (a) The crater after a 200 mN indent. 
Note the two-fold symmetry of the linear surface features. (b) Surface feature near the edge of a indent that 
is most likely a kink boundary. 

A corner of such an array is shown in Fig. 7.8a. The near proximity of the 

indentations (~ 5 µm) resulted in substantial damage to the areas between them. In 

agreement with previous work, no linear features were observed in this direction.109-111 In 

analogy with graphite loaded in the same direction,12 and again in agreement with 

(a) 

(b) 
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previous work on sapphire,110 the crack pattern exhibits 6-fold symmetry (Fig. 7.8b). 

At the same time it should be mentioned that there was no such pronounced linear 

features confirming active pyramidal or prismatic slip as can be seen in case of ZnO 

while indenting in the C direction.17 
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Fig. 7.8 Continued... 
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Kink Boundary 

500 nm 
 

Fig. 7.8 ESEM images of the indented surface of sapphire C crystal. (a) A severely damaged region of a 
3x3 array of 200 mN indents. (b) A 200 mN indent. Note the six-fold symmetry around the indentation. (c) 
Damaged area under the impression labeled A in a. Note presence of regular shaped pores at a distance of ≈ 
a below the indentation mark. (d) Surface feature near the edge of a 200mN indent that is most likely a kink 
boundary. 

When the region just below the indentation (i.e. indent A in Fig. 7.8a), was imaged 

its polycrystalline nature is again suggested. Most surprising, however, was the presence 

of a number of ≈ 100 nm pores (Fig. 7.8c), roughly 500 nm below the indentation 

impression visible in top left of Fig. 7.8c. The implications of these pores are discussed 

below.  

(c) 

(d) 
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One of the major assumptions made in this work is that of the formation of small 

domains below the indenter after the massive pop-ins. In porous Ti3SiC2,114
 graphite12 

and mica11 single crystals, the material under the indenter, after massive pop-ins, was 

unambiguously transformed into multiple domains wherein the domain size was << a, the 

contact radius. The results shown in Figs. 7.7 and 7.8 suggest the same is occurring here. 

Interpretation of the SEM micrographs shown in Fig. 7.8, are consistent with our 

kink band-based model. In the case of the C-plane the situation is not unlike the one 

studied by Molina-Aldareguia et al.64 who nanoindented epitaxial thin films of Ti3SiC2 

and imaged the indentations by AFM and their cross-sections by TEM. In this orientation 

clear unambiguous evidence for the formation of kink bands below the indenter was 

obtained. Pileups occur without any of the basal planes intersecting the surface; we 

believe the same is true here, which explains why no surface linear features have ever 

observed in this orientation.109,110 Mica basal planes also behave in a similar fashion 

when loaded parallel to the c-axis (see Fig. 3 in Ref. 1111). The nature and cause of the 

terraces and bumps shown in Figs. 7.8a and c is not clear at this time.  

It is important to note that the elastic residual stresses required to maintain the 

features labeled kink bands in Figs. 7.7b and 7.8d would have to be ≈ 100 GPa. Since this 

is impossible we conclude that the features must be kink, or high angle, tilt boundaries. In 

other words, these features are compelling evidence for the formation of kink boundaries. 

Furthermore, Saito et al. have reported on the formation of low angle grain boundaries in 

sapphire single crystals when the latter were polished at room temperature.106 

For impressions into the A-planes, however, the situation is different because basal-

planes can, and most probably do, intersect the surface. It is that intersection that we 
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believe gives rise to the linear features documented in the literature.109 How these 

features form and what role twinning and/or non-basal slip have in producing them is 

unclear at this time. It is worth noting here that one of the objectives of a recent study of 

Tymiak et al.109 was to try and resolve this question by studying the acoustic emission 

signal of a spherical nanoindentation since twinning and slip have different AE 

signatures. For the A and C planes they were not able to discern much of a difference, 

again consistent with our conclusions. This comment notwithstanding, we concede that 

how the KBs are created and what role twinning and/or prismatic slip, believed to be the 

easier slip system at room temperature, are playing remains an open question.  

In Fig. 7.5a we plotted a typical indentation stress-strain curve for the C plane 

alongside that of an A-plane. The similarity of the post pop-in curves is remarkable. The 

almost identical strain hardening rates over a relatively large strain is noteworthy and 

implies that after the pop-ins the microstructures under the indenter are nearly identical 

in every respect. We submit that can only be possible if no trace of the original 

microstructure is retained after the pop-in. The formation of a very large number of 

nanodomains (see below) is the simplest and most straightforward explanation. In other 

words, the response of the sapphire single crystal after the pop-ins is similar to other 

KNE solids, viz. graphite,12 mica11 and Ti3SiC2.114  

At 41±3 GPa the average pop-in stress for the C-plane was quite similar to that of the 

A-plane; a conclusion reached by Tymiak et al.109 The areas of the hysteresis loops, 

however, varied from location to location and were smaller for the A-plane. The averages 

and standard deviations for and the C and A planes were 0.5±0.1 GJ/m3, and 0.24±0.06 
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GJ/m3, respectively. This type of difference is consistent with our observation in 

GaN48 and LiNbO3.18 

To examine the assumptions of our IKB model - embodied in Eqs. 1.1 to 1.10 - we 

need to estimate γc. From Fig. 7.5a, the threshold stress for the formation of the initial 

KBs is ≈ 40 GPa. Assuming the shear stress under the indenter is ≈ half the normal stress, 

it follows that τc in Eq. 1.3 is ≈ 20 GPa. c44 for sapphire is 148 GPa113 and consequently, 

τc ≈ c44/7.5, which is not unreasonable. Assuming, G = c44 = 148 GPa, ν = 0.25, and b = 

0.476 nm, from Eq. 1.3 we calculate γc to be ≈ 0.3. In other words, a dislocation is present 

along the c-axis every ≈ 16 Å. (The c-lattice parameter is 13 Å). Previously30 we have 

shown that as the domain size shrinks, α3Νκ approaches 1. In other word as α decreases, 

it is unlikely that each domain can sustain more than one IKB. Given that for the C-plane, 

at 40 GPa, Wd ≈ 0.5 GJ/m3 and assuming a threshold shear stress of ≈ 20 GPa (small 

loops are present at 30 GPa), then according to Eq. 1.9, Ω/b ≈ 0.8 GPa. For a threshold 

stress of 35 GPa, Ω/b ≈ 1 GPa. Similarly, for the A-plane, assuming Wd ≈ 0.25 GJ/m3, 

Ω/b ≈ 0.4 GPa for a threshold stress of 20 GPa and ≈ 1 GPa for a threshold stress of 35 

GPa.  

In our previous work it was postulated that Ω/b should be of the order of, if not 

identical to, the critical resolved shear stress of basal plane dislocations.30 The room 

temperature critical resolved shear stress for basal slip in sapphire is estimated to be 

between 2 and 3 GPa at 227 °C.115 Therefore our values, while slightly lower than the 

ones reported in literature, are, given all the assumptions made in obtaining them, quite 

reasonable and lend credence to both our model and results.  



 137

There is a caveat, however. Using the aforementioned assumptions and Eq. 1.2, 

(assuming w = b) 2α  is calculated to be ≈ 37 Å. Given the extreme pressures under the 

indenter, and the considerable energy dissipated during the first and sixth cycles, this 

number is not too surprising. At such lengths scales, however, it is more likely than not 

that the F&S model breaks down since we are dealing with IKBs consisting of a few 

dislocations each. What we are dealing with is thus quite possibly the formation of 

dislocation dipoles within the domains.  

The transformation - or controlled “explosion” - that occurs under the indenter and 

the large amounts of energy dissipated in a short period is noteworthy. How the strain 

energy is transformed to mobile dislocation walls that self-assemble into kink boundaries 

is not understood at this time and more work is needed to better understand it. A careful 

transmission electron microscopy study of foils taken from the indentation impressions is 

called for and should be undertaken. The reason for the presence of pores under the 

indenter is a true mystery. The simplest explanation is that they existed in the original 

sample. This is quite unlikely, however, for several reasons. First the pores all appear 

roughly at a depth ≈ a, i.e. in the region of maximum shear. Second, the samples were 

transparent; pores are potent scatterers of light. Third, the highly polished surfaces 

appeared pore free in optical and SEM micrographs. Fourth, a similar set of pores was 

seen under impression B shown in Fig. 7.5a.  It is worth noting that it is not the presence 

of pores per se that is surprising, but rather the fact that they are well spherodized, the 

implication being that at some time during their formation atomic mobility was sufficient 

to cause spherodization. The energy dissipated during the pop-in is substantial (≈ 2.7 to 

5.5 GJ/m3) and it thus conceivable that if the energy released were focused in a small 
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enough volume, localized melting may occur. This comment notwithstanding we 

concede the presence of those pores is totally unexpected and not understood.  

Lastly we note that the results obtained here strongly buttress our claim that a 

sufficient requirement for a solid to be KNE is a high c/a ratio, regardless of the type of 

bonding. Based on our previous work,30 the critical c/a ratio above which a solid is KNE 

is ≈ 1.6. With a c/a ratio of 2.73, sapphire is far to the right of this critical ratio and it 

would thus have been a surprise had it not been a KNE solid. 

The implication of the results shown here can be far reaching. If the factors that result 

in the nucleation of IKBs are identified and manipulated to significantly reduce the stress 

at which they nucleate it may, in principle, be possible to endow otherwise brittle solids 

with some limited plasticity; an exciting possibility.   
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CHAPTER 8: KINKING NONLINEAR ELASTICITY IN MICA 
STUDIED BY SPHERICAL NANOINDENTATION, AND 

GEOLOGICAL IMPLICATIONS 
 

 

 

8.1 Introduction 

The importance of micas, and other layered silicates, in the deformation of geologic 

formations has long been appreciated.116-118 These layered minerals are geologically 

abundant and typically deform by dislocation glide along their basal planes under modest 

shear stresses, which renders them relatively weak and deformable.119 It has also long 

been appreciated that kinking is a favored mode of deformation mechanism in rocks and 

especially micaceous solids.118,120-122 Kink bands, KBs, have been observed in micas, at 

many scales, from the macroscopic, to the transmission electron microscope, TEM, 

level.118,122  

Mica belongs to a family of layered compounds that are formed by sheets of 

negatively charged silicate layers bonded together by interlayer cations, such as sodium 

or potassium. The interlayer bonding is typically weak compared to the in-plane bonds of 

the silicate sheets. Consequently, at 61 GPa, c33 is roughly 4 times c44 at 15 GPa.123  

On another front, the mechanical response of many rocks – labeled nonlinear 

mesoscopic elastic (NME) – is known to exhibit nonlinear elastic, hysteretic behavior and 

discrete memory.116,117,124 This behavior has been modeled mostly using the Preisach-

Mayergoyz space (P-M space) model, that assumes discrete elements of rudimentary 
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hysteretic mesoscopic units (HMUs).116,117 The HMUs are modeled as mechanical 

features, whose equilibrium lengths can switch hysteretically between one of two 

configurations – open, Lo, or closed, Lc, – at stresses σo and σc, respectively (Fig. 8.1a). It 

has been postulated that large numbers of such HMUs, with varying Lo, Lc, σo and σc 

values, can model the macroscopic response of these materials. The underlying 

mechanism of the HMUs, however, had until our recent work not been understood.11 
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Fig. 8.1. Schematic of, a) phenomenological hysteretic mesoscopic unit (HMU), used to explain the 
hysteretic behavior in geological materials (Guyer and Johnson, 1999; Guyer et al., 1995). b) cross-section 
of nested MDWs that can form below a spherical indentation. Note the MDWs cannot form without 
delamination. Once formed the MDWs can move away from the indented region. c) top view of hexagonal, 
Star of David configuration of MDWs that form and move away from central indentation mark denoted by 
circle (Basu and Barsoum, 2007). 

Recently we established a connection between kinking and NME solids. Using 

mostly cyclic nanoindentation we made the case that incipient kink bands (IKBs), that by 

definition are fully reversible (see below), are indeed the HMUs invoked to model NME 

solids.11 Using cyclic spherical nanoindentation in mica single crystals we showed that 

KBs play a more important role in the deformation of mica than hitherto been 

appreciated.11 When loaded up to 100 mN, the response was characterized by a first loop 

that was slightly open; all subsequent loops to the same load were fully reversible and 
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closed.11 The large amounts of energy dissipation per unit volume per cycle (≈ 80 

MJ/m3 at 3 GPa) were postulated to result from basal plane dislocations – making up the 

IKBs – sweeping large distances. The presence of basal plane dislocations has been 

observed earlier by Meike122 and Kronenberg et al.120 Not surprisingly, clear evidence of 

KB formation was obtained from post-indentation scanning electron microscope, SEM, 

micrographs.11 As noted above, that mica kinks has been long appreciated; the kinking, 

however, had only been associated with the fracturing process.125 

The purpose of this paper is to present further evidence confirming the KNE nature of 

mica and, more importantly, how different grades, with different defect concentrations, 

can affect this behavior. We apply our recently developed KNE model to spherical 

nanoindentation results.30,43 Also discussed are the implications of our results to geology. 

Before describing our work, it is important to shortly describe the physics of IKB 

formation and how we convert nanoindentation, NI, load-displacement curves to NI 

stress-strain curves.24 

8.2 Theoretical Considerations 

Our recently developed microscale model30,43 is discussed in Ch. 1 in details. The 

relevant constants those are needed for calculating different KNE parameters, for Mica, 

are the following: Burgers vector, b = 5.19 Å; shear modulus, G = 15 GPa (because these 

are mica single crystals, G is replaced by c44); Poisson’s ratio, ν = 0.25; local shear 

strength, τloc ≈ G/30; and hence the critical shear angle, γc = 0.065 or ≈ 4°.  
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A kink boundary is nothing but a low angle grain or tilt boundary. If such a 

boundary - of length 2α - is subjected to a shear stress, Stroh126 showed that cleavage in a 

metal single crystal would occur when: 

απ
γσσ

2
GM

sn ≥ ,      (8.1) 

where σn is the applied stress, σs the resolved shear stress, γ the surface energy of the 

cleavage planes, and M is a numerical constant of the order of unity, that depends on the 

elastic anisotropy of the crystal and, as discussed below, the state of stress. This 

mechanism is particularly suited to solids in which the cleavage and slip planes coincide 

such as mica.127 Equation 8.1 is important because it provides a mechanism for the 

delaminations observed in this work (see below). Note that the IKB to KB transformation 

cannot occur without delamination. Upon delamination, the IKBs are transformed into 

MDWs that are swept away from under the indenter and end up on the sides of the 

indenter mark, resulting in a pileup of material around the indentation marks (Fig. 8.1b) 

and give rise to a Star of David configuration of dislocations (Fig. 8.1c) around the 

indenter.16,17,48,53 

In deriving Eq. 8.1,126 Stroh only considered the situation where the crack grew 

unstably as a result of tensile stresses, which is why the numerator on the right hand side 

is essentially Griffith’s criteria for brittle failure, i.e. the square of critical stress intensity 

factor (K1c)2. The situation under the indenter, however, is not only more complex, but 

also highly constrained. These conditions do not alter the physics of the problem, but 
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simply increase the value of the right hand side. We thus believe Eq. 8.1 is still valid 

with the understanding that M can now be significantly larger than unity.  

The spherical nanoindentation stress, 2a
P

π
, and strain, a/R – where P, a and R are the 

indentation load,  contact radius and tip radius, respectively – are calculated from the 

load-displacement data. The details of the conversion procedure can be found in Ch. 

2.24,54  

8.3 Experimental Procedure 

Cyclic NI experiments were carried out on freshly cleaved mica surfaces - that 

revealed atomically flat basal planes - with a nanoindenter (MTS Nanoindenter XP 

System, MTS Corporation, Oak Ridge, TN) using a 13.5 µm radius sphero-conical 

diamond tip and the continuous stiffness measurement (CSM) attachment. The tip radius 

was calibrated with standard amorphous silica and viewed in a SEM (XL30, FEI 

Corporation, Hillsboro, OR). The tests were carried out - under load control, at loading 

rate/load ratio of 0.1 - parallel to the c-axis. All tests were performed only after the 

instrumental drift was below 0.05 nm/s. A few tests were carried out using a 5 µm 

spherical indenter tip radius. 

               
         Grade A             Grade B             Grade C 

Fig. 8.2. Photographs of three different grades of mica single crystals used in herein. Grades A and B are 
high quality; grade C, is the most defects, as evidenced from its lack of transparency. 
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To study the effect of cycling, typically multiple (mostly 5) indentations were 

carried out on the same location to a given load. In most cases, the first three cycles 

resulted in permanent residual displacements, while subsequent cycles were characterized 

by fully reversible hysteretic loops. In many of the repeat cycles a small (< 10 nm) 

residual deformation was recorded. By careful calibration with silica – which behaves 

elastically – we confirmed that these residual values were an artifact of the measurement, 

most probably due to thermal drift. In other words, the third, and subsequent loops are 

indeed fully reversible. As a further check on this important aspect, one sample was 

indented in the same location 30 times. Within the resolution of our measurements, there 

were no differences in the areas of the fourth and thirtieth load-displacement loops. To 

account for this artifact, the unloading curves on the fourth and subsequent loadings were 

forced to coincide with the unload curves of the third cycle.11,12 The corrected or shifted 

load-displacement curves were then converted to stress-strain curves as described above.  

Another indicator that the fourth and subsequent cycles are indeed fully reversible is 

the excellent reproducibility of these cycles. In materials that cyclically harden, the areas 

enclosed by the load-displacement loops decrease - and eventually vanish - when the 

response ultimately becomes linear elastic.17,24  

Three commercially available natural muscovite single crystals – differing in purity 

and quality - were studied. The grades are classified here as A, B and C (Fig. 8.2). Mica 

A was the highest purity grade available; B was a slightly lower grade (both obtained 

from Ted Pella Inc., Redding, CA, commercially available as grades V1 and V2, 

respectively). The sheets were approx ~ 150 to 200 µm thick. Grade C mica (Muscovite 
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from Custer County, SD – Geoprime Earth Materials Co.) had a high defect 

population evident from its lack of transparency, attributed to defects such as air pockets 

and delaminations (Fig. 8.2). The grade C sample was a few millimeters thick and was 

cleaved to expose atomically flat surfaces prior to testing. The post-indent surface 

features, for all grades, were also observed in a SEM (XL 30, FEI Corporation, Hillsboro, 

OR).  

8.4 Results 

From the inception of this work, it was clear that the response depended on grade 

(Figs. 8.3a and b). For the most part, A grade samples resulted in either a linear elastic 

response, or fully reversible hysteresis cycles after large pop-ins (see below). The elastic 

behavior and pop-in stresses of grade B were similar to those of A, but resulted in slightly 

higher values of Wd. Amongst the 3 grades studied herein, grade C resulted in the largest 

hysteresis loops and, as important also, exhibited some plastic deformation prior to the 

pop-ins.  

The variability of deformation behavior is clearly evidenced when the pop-in stresses 

are plotted on a Weibull plot (Fig. 8.3c). The Weibull distributions of A and B are quite 

comparable; both have Weibull moduli of ≈ 8; at 7±1 GPa, their average pop-in stresses 

are high. In contradistinction, the pop-in stresses and Weibull moduli for grade C were 

significantly lower (see dashed line in Fig. 8.3c). The results shown for grade C were 

taken on different days and on different areas. Interestingly, within a given region, the 

Weibull moduli are almost as high as those in grades A and B; the difference between the 

two regions, however, is significant.  
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Fig. 8.3. a) Typical load-displacement curves for the three different grades of mica when the surfaces are 
indented to a load of 100 mN using a 13.5 μm radius indenter. The curves for grades B and C results are 
shifted to the right by 100 nm and 250 nm, respectively. The response of grades A and B is mostly elastic; 
grade C, on the other hand, has some small pop-ins during the first cycle and dissipates considerably more 
energy during the repeat cycles. b) Typical load-displacement curves for the three different grades of mica 
when the surfaces are indented to a load of 500 mN using a 13.5 μm radius indenter. Note while the 
behavior of grades A and B are similar, grade C exhibits plastic deformation prior to the pop-in. c) Weibull 
plots for pop-in stresses for the 3 grades. Grade C exhibited the lowest pop-in stresses and lowest overall 
Weibull moduli. However, two different regions in grade C resulted in Weibull moduli that were similar to 
those for grades A and B. 
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 The variation in contact stiffness with contact radii, when the 13.5 μm 

indenter was loaded up to 500 mN, for grades A, B and C are shown in Fig. 8.4a, b and c, 

respectively. Grade A and Grade B show good agreement with the linear relationship 

over the complete deformation range (Ch. 2), indicating an elastic modulus of ~ 61 GPa.  

In contrast, Grade C samples show the linear agreement only in the initial elastic regime. 

The reason for this type of behavior is not clear at this moment but most probably it is 

caused by extensive rotation of the crystal (or, kinked domains) underneath the indenter. 

Given the variability, each grade is discussed separately below. 
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Fig. 8.4. Variation of contact stiffness with contact radii when a 13.5 μm indenter was loaded up to 500 
mN on a) Grade A; b) Grade B; and c) Grade C, mica. 
 

8.4.1 Grade A 

Cyclic NI load-displacement curves to the maximum load of 500 mN and the 

corresponding NI stress-strain curves for grade A are shown in Fig. 8.5. Similarly, the 

load-displacement and NI stress-strain plots to a maximum load of 100 mN are shown in 

Figs. 8.6a and b, respectively. At least 3 different responses were observed: 

A. linear elastic up to the highest load possible, viz. 500 mN, (open squares in Figs. 8.5a 

and c). When the load-displacement results were converted to stress-strain curves – 

according to the method mentioned above – the results confirmed the elastic nature of 
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the indentations prior to the pop-ins, as evidenced by slopes that corresponded to 

an elastic modulus of 61 GPa (dashed inclined line in Fig. 8.5c); the latter identical to 

the value of c33 reported for mica.123 This is gratifying because it indirectly confirms 

the validity of our methodology of converting the NI load-displacement curves to 

stress-strain curves. 
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Fig. 8.5. a) Spherical nanoindentation load-displacement response of grade A mica when a 13.5 μm 
indenter is introduced up to a load of 500 mN. In some locations, large pop-ins were observed, whereas, 
some locations were elastic up to 500 mN (open squares). b) Magnified view of the deformation during 
cyclic loading. Note that cycles 5–10 are almost identical and show repeatable hysteretic behavior. c) The 
corresponding indentation stress-strain curves for the load-displacement data shown in (a). Note linear 
elastic behavior prior to the pop-ins with a slope that corresponds to a modulus of 61 GPa (dashed inclined 
line). d) Illustration of the reversible nature of deformation during cyclic loading after the pop-in. The short 
vertical arrows in (c) and (d) highlight the lower modulus obtained during initial loading after pop-ins. 
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Fig. 8.6. Indentation – a) load-displacement; and b) stress-strain – response when the 13.5 μm indenter was 
loaded to 100 mN. The linear elastic behavior is represented by the inclined dashed line in (b). Although 
the deformation is almost elastic for 5 cycles, note reproducible appearance and disappearance of small 
undulations during loading and unloading, respectively. The residual deformation at the end of each cycle 
is due to instrumental drift. 

B. linear elastic, initially, with a modulus of 61 GPa up to a stress of ≈ 2.5 GPa, after 

which small undulations are observed, during both loading and unloading (Fig. 8.6). 

Upon unloading, the undulations disappear, again at a stress of ≈ 2.5 GPa and as 

important reappear upon reloading. As noted above, the small gap on unloading is an 

artifact of the experiment. 

C. linear elastic, followed by pop-ins of the order of ~ 2 µm during the first loading 

cycle (Fig. 8.5a); the second and third cycles do not have pop-ins but exhibit some 

minor plastic deformation. Subsequent cycles are hysteretic, reproducible and fully 

reversible (Fig. 8.5b). More importantly the shapes of the repeat stress-strain curves 

are quite different from those obtained during the first loading; they change from 

linear elastic with a modulus of 61 GPa, to one that is concave upwards (denoted by 
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short vertical arrow in Figs. 8.5c and d). As discussed below this is probably due 

to the closing of delamination cracks, formed during the pop-ins. 
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Fig. 8.7. The indentation – a) load-displacement; and b) stress-strain – response, at three different locations, 
when grade A was indented with a 5 μm indenter to a load of 200 mN. The dashed inclined lines represent 
linear elastic behavior. Note the elastic nature of deformation even after the large pop-ins. 

It is crucial to note here that only when loaded to the maximum load possible - 500 

mN - and only in some cases, massive pop-ins were observed. In the absence of such 

massive pop-ins, and despite the fact that the Hertzian stresses at the tip of the indenter 

were of the order of 8 GPa (Fig. 8.5c) or more, typically no trace of the indentations was 

found in the SEM. In other words, the indentation mark was only observed in the SEM 

after massive pop-ins. 

8.4.2 Grade B 

Like the grade A samples, indentations to 500 mN resulted in massive, sudden and 

irreversible penetrations of the order of 2 µm (Fig. 8.8a). When the results were 

converted to stress-strain curves, an elastic region, up to about 8 GPa (Fig. 8.8b), was 
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clearly observed, which was followed by a massive pop-in. Upon reloading, the 

second cycle showed small amounts of plastic deformation followed by the formation of 

fully reversible, reproducible loops.  
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Fig. 8.8. a) Typical load-displacement response of grade B mica when a 13.5 μm indenter was cycled 5 
times to 500 mN in the same location. b) Indentation stress-strain curves for the data shown in (a). Dashed 
inclined line represents a modulus of 61 GPa. Inset illustrates the reversible nature of deformation during 
cyclic loading after the pop-ins. The short vertical arrows highlight the lower modulus obtained during 
initial loading after pop-ins. 
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Fig. 8.9. The indentation – a) load-displacement; and b) stress-strain – response, at three different locations, 
when grade B was indented with a 5 μm indenter to a load of 200 mN. The dashed inclined lines represent 
linear elastic behavior. Note the elastic nature of deformation even after the large pop-ins. 
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Interestingly, Wd for the steady-state indentation loops were slightly higher for 

grade B than for grade A. As observed in grade A, the shape of the stress-stain curves 

during initial reloading in the latter cycles is << 61 GPa, which is, as discussed below, is 

most probably caused by delamination cracks. 

When grade B samples were indented up to 100 mN, the behavior was completely 

elastic (Fig. 8.3a). The discrepancy with the earlier study11 – where reversible loops were 

obtained at that load - is most probably due to the use of a different set of samples, with 

different defect concentrations. 

8.4.3 Grade C 

When grade C was loaded to 500 mN, typically one large pop-in followed several 

smaller pop-ins (denoted by horizontal arrows) during the first cycle (Fig. 8.10a). When 

the results were converted to stress/strain curves (Fig. 8.10b), like the other grades, the 

initial slope on loading corresponds to a modulus of 61 GPa. In contrast to the other 

grades, however, a yield point is observed between ~ 1 and 2 GPa, followed by a region 

of strain hardening, which is then followed by a massive pop-in event.  

When loaded to 100 mN, the cyclic load-displacement curves showed hysteresis 

loops, unlike other grades (Fig. 8.3a). Despite the absence of large pop-ins, and in 

contrast to grades A and B, here fully reversible loops were observed after the first cycle 

(see results labeled 100 mN and shifted by 0.1 towards the right on the strain axis in Fig. 

8.10b). Note the elastic regime during reloading. 
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Fig. 8.10. a) Typical spherical nanoindentation load-displacement response for grade C mica, when a 13.5 
μm indenter was loaded up to 500 mN. Note the smaller pop-in events (horizontal arrows) prior to the large 
pop-in and large hysteretic reversible loops during cyclic loading for 5 cycles. b) Indentation stress-strain 
curves for the data shown in a. Also plotted are the indentation stress-strain curves when grade C loaded up 
to 100 mN. The latter are shifted by 0.1 to the right for clarity. The dashed inclined lines represent a 
modulus of 61 GPa. Note, unlike grades A and B, the plastic deformation starts prior to the pop-in (short 
horizontal arrows). Also important is the fact that in the absence of a pop-in, the initial slope upon 
reloading is again 61 GPa. The short vertical arrow highlights the much lower slopes of the initial part of 
the repeat loading after the pop-in. 
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Fig. 8.11. The indentation – a) load-displacement; and b) stress-strain – response, at two different locations, 
when grade C was indented with a 5 μm indenter to a load of 200 mN. The dashed inclined lines represent 
linear elastic behavior. Note the elastic nature of deformation even after the large pop-ins. 
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Fig. 8.12. Log-log functional dependence of dissipated energy, Wd, on stress for the 3 grades of mica tested 
here. Also included are the results for graphite and fine-grained (FG) and coarse-grained (CG) Ti3SiC2 
obtained from both bulk deformation and spherical nanoindentation (Barsoum et al., 2005b). 

To better understand what is occurring during the pop-in events, different locations 

on all three grades were indented with the sharper 5 µm tip up to a load of 200 mN (Figs. 

8.7, 8.9 and 8.11). The resulting stress-strain curves were unlike any others; it is clear in 

this case that after the massive pop-ins, the response remains linear elastic.  

Figure 8.12 is a log-log plot of Wd versus applied stress for the various grades of mica 

tested here. Also included – in Fig. 8.12 - are the results for Ti3SiC2 and graphite for 

comparison with other KNE solids.30  

Figure 8.13 shows the surface features and kink band formation surrounding the 

indents, after loading to 500 mN, in the different grades of mica – A, B and C. In this 

case, like in sapphire,16 and for reasons that are not clear, but probably related to the large 

upheaval around the indenter, and in sharp contrast to graphite,12 the anticipated 6-fold 
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symmetry to the indentation mark was not observed. However, the fact that the 

indents are more or less round (Figs. 8.13a, c and e) is consistent with a 6-fold symmetry. 

Kink
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5 μm

 

10 μm
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Fig. 8.13. Scanning electron microscope micrographs of indented regions when the 13.5 μm indenter was 
loaded up to 500 mN into: a) Grade A mica; Note pile-up and kink boundaries around the indented region. 
b) Magnified picture of the deformation inside the indented region showing extensive delaminations and 
cracking, that occur during the pop-in event in Grade A. c) Grade B mica; Note again pile-up and extensive 
cracking around and inside the indent, respectively. d) Magnified image of a kink boundary, formed around 
the indented region in Grade B. e) Grade C mica; and f) Formation of kink boundaries and extensive 
rotation of basal planes under the indented region in Grade C. 
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8.5 Discussion 

8.5.1 Indentation stress-strain behavior 

The hallmark or defining characteristic of KNE solids is the formation of fully 

reversible, reproducible stress-strain curves.11,12,16,17,23,31 Based on that criterion alone, 

there is little doubt that mica is a KNE solid.11 The results of this work further confirm 

this conclusion, as well as, shed more light on the subject. The most important finding of 

this work, however, and the one that has the most bearing on geology, is the role of 

defects on the response. The highest quality mica - grade A - is clearly the most immune 

to kinking; in some cases; even at stresses up to ~ 8 GPa, the response was sometimes 

linear elastic (e.g. open squares in Figs. 8.5a and c). Similarly, the response of grade B 

resulted in either fully reversible hysteretic loops, after small pop-ins in the first cycle,11 

or large pop-ins - of the order of 2 µm - at stresses, again, of the order of 8 GPa (Fig. 

8.8b).  

In contradistinction, the “yield point” of grade C (Fig. 8.10b) is roughly four times 

lower than the pop-in stresses for A and B (Figs. 8.5c and 8.8b). This is consistent with 

the fact that grade C, with its high initial defect concentration, either does not need to 

nucleate dislocations during the first cycle because they are presumably already present, 

and/or the defects lower the barrier to their nucleation. 

Grade C, with the most defects, was not only the one where kinking occurred most 

readily at the lowest stresses (Fig. 8.10b), but also where the most stochastic response 

was observed (Fig. 8.3c) - most probably reflecting the distribution of flaws in that 

material. Two different regions clearly registered quite different pop-in stresses. At this 
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time the nature of the defects responsible for catalyzing the formation of KBs have 

not been identified, but as discussed below, delaminations and/or stacking faults are two 

distinct possibilities. Further TEM in-situ studies are needed to shed light on the 

mechanisms operating here. 

The grade C 100 mN indent results (Fig. 8.10b) - wherein no large pop-ins are 

registered - are the most readily explainable in the context of our KB-based model. At a 

yield point of ~ 2 GPa, dislocations, most probably in the form of mobile dislocation 

walls (MDWs), start moving away from each other, and merge to form permanent KBs, 

which in turn leads to strain-hardening, observed beyond the yield point in Fig. 8.10b. On 

reloading, IKBs form, but only in between the kink boundaries formed during the first 

cycle. A similar response was observed when Ti3SiC2 was deformed at higher 

temperatures, cooled and retested at room temperature.127 The fact that the slope of the 

initial part of the stress strain curves during repeat cycles agrees with the elastic modulus 

(~ 61 GPa) is noteworthy and is important evidence that delaminations do not play a role 

in this case (see below). 

 The results for the 500 mN indents (Figs. 8.5c, 8.8b and 8.10b) can also be 

explained by our model, by postulating that the pop-ins are caused by delaminations as a 

result of the tensile stresses generated according to Eq. 8.1. Here, during the pop-in, the 

response changes from one that is initially elastic, to one that is hysteretic, in which the 

second and third cycles are slightly open but all subsequent cycles to the same stress level 

are fully reversible (Figs. 8.5c, 8.8b and 8.10b). As discussed above this sequence of 

events has been linked to the presence of three interrelated microscopic events. Like in 
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ZnO,17 sapphire,16 and graphite12 where it has been shown that, during the pop-ins, 

the elastic energy stored is converted to multitudes of dislocations in the form of MDWs, 

that, in turn, form KBs. The latter, presumably, leading to the formation of a multiplicity 

of smaller domains under the indenter. The hysteretic repeatable loops during the repeat 

cycles are evidence, albeit indirect, that IKBs that form within the smaller domains still 

play an important role. Direct evidence, however, for the breakdown of what was initially 

a single crystal is obvious from the SEM micrographs shown in Fig. 8.13. We note in 

passing that in LiNbO3,18 during the pop-ins, at least part of the strain energy is converted 

to twins.  

Similar to graphite12 - but in sharp contrast to non-layered KNE solids, such as ZnO,17 

sapphire,16 and LiNbO3
18 - here delaminations play an important role. This is best 

evidenced by the shape of the stress-strain curves upon reloading – concave upwards 

denoted by short vertical arrows in Figs. 8.5d, 8.8b and 8.10b - during the initial parts of 

the repeat loadings. 

Contrast this response to that of the region loaded only to 100 mN in Fig. 8.10b, 

where presumably no delaminations occurred. Consistent with this view is the 

paradoxical result that a higher stress is actually sustained when the indenter is loaded to 

100 mN, rather than to 500 mN during the repeat cycles. This somewhat paradoxical 

situation is a direct result of the massive pop-ins sustained at 500 mN, and the relatively 

large craters – thus lower stresses - formed (Fig. 8.13). 

Other evidence that delaminations play a role can be seen in Fig. 8.6b, where the 

small undulations, introduced during loading, appear to heal upon unloading. It is well 
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established in the ceramics literature that microcracks can heal completely in 

conditions of high vacuum after the applied stress is removed as the broken bonds can 

reattach as long as there is no source of contamination or impurities, such as oxygen.128 

Most germane to this work, is the healing observed during cleavage tests on mica under 

very high vacuum conditions (< 10-8 Pa), where cracks were made to advance and retreat, 

with little loss of energy through successive cycles.128 Based on this information it is not 

unreasonable to conclude that the small undulations, or pop-ins, are associated with 

delaminations underneath the indenter that, because they are not exposed to the 

atmosphere, heal upon removal of the load. The excellent reproducibility of the stress-

strain curves (Fig. 8.6b), where many of the fine features are faithfully reproduced from 

cycle to cycle is consistent with such an interpretation. Note that, at lower stresses, the 

undulations disappear, only to reappear at higher stresses.  

Figures 8.7, 8.9 and 8.11 also clearly demonstrate the formation of delaminations 

during the pop-in events, when indented with a 5 µm indenter tip. Here multiple pop-in 

events occur successively, interspersed by regions of pure elastic response. Note that in 

all cases, the pileup of material around the indentation simply cannot occur without the 

rupturing of the basal planes, as well as the creation of the radial cracks observed (Fig. 

8.13). Consistent with this interpretation is the fact that these multiple pop-in events were 

much more common with the “sharper” - i.e. 5 µm radius - of the two indenters. Note 

that the origin of the tensile stresses acting parallel to the basal planes that cause their 

rupture, must be elastic and generated from the local curvature of the basal planes as they 

are pushed into the bulk.  
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Delaminations are inherent to the IKB to KB transformation; without them, all the 

lamellae would be expected to fracture, which is clearly not the case here (Fig. 8.13). 

Note that basal plane dislocation arrays121 are also inherent to the overall process; 

without them, the various lamellae could not shear relative to each other, the precursor 

for all that follows.28,37 

8.5.2 Energy dissipation per cycle 

Because of the high stresses possible under the indenter, Wd is not insignificant - it is 

of the order of ≈ 10 to 90 MJ/m3 (Fig. 8.12). As noted above, from Fig. 8.12 it is evident 

that grade C dissipates the most energy as compared to the other grades – even more so in 

the absence of a pop-in, where Wd was ≈ 90 MJ/m3.  As a check on these values, we note 

that when the area enclosed by the load/displacement curves is divided by a3 – assuming 

the latter is of the order of the volume affected by the indenter – a value of ≈ 67 MJ/m3 is 

obtained indirectly confirming the slightly higher values of 90 MJ/m3.  

To verify our model, the following calculations were carried out. First, the threshold 

stress for IKB formation/motion was estimated to be 1.4±0.1 GPa from the yield point of 

the repeat cycles (viz. from Fig. 8.10b). Using this value in Eq. 1.2, the domain size 2α 

was estimated to be ~ 16 nm. Although the number is relatively small considering the 

size of the indent, it is reasonable considering the fact that, presumably, the initial defect 

concentration, or the number of IKB nucleation sites, is quite high.  

According to our model, the high value of Wd can partially be attributable to the high 

value – 80 MPa - of the CRSS of the basal planes. The latter, or more accurately,
b
Ω  was 
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estimated based on Eq. 1.9 assuming Nkα3 = 1, and the 100 mN results on grade C 

(Fig. 8.10b). The assumption that Nkα3 = 1, is a reasonable one based on the number of 

IKBs per domain, a result that we have verified in previous work.18 A CRSS of 80 MPa 

however, is higher than what one would obtain for mica tested in uniaxial compression 

tests for example. The reason for this high value is not understood, but is likely due to the 

normal component of the applied stress. And while it is generally accepted that normal 

stresses do not greatly affect CRSS’s, it is not unreasonable to assume that the extremely 

high values developed here, and the geometry of the indenter relative the motion of the 

IKB dislocations under it, influences the CRSS. Solid solution effects cannot be 

neglected either at this time.   

Recent ab initio and molecular dynamics calculations44 have shown that dislocations 

in perfect metal crystals nucleate when: 

τmax ≈ σ/2 =  G/n ,         (8.2) 

where τmax and σ are the applied shear and normal contact stresses under the indenter, 

respectively. For polycrystalline metals n is ≈ 30.45,46 In this work the appropriate 

modulus is not G, but c44, which for mica is 15 GPa.123  In other words, based on this 

work, and the fact that in some cases IKBs did not nucleate even at a σ ≈ 8 GPa implies 

that for grade A, n is closer to 4 than 30.  A conclusion consistent with recent results 

obtained in sapphire16 and ZnO17 single crystals, where n was ≈ 7.5 and 8, respectively.  

In general, it is not easy to experimentally determine n. The fact that this value is 

close to the theoretical strength of a crystal and can be readily measured here is one of 
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several advantages of using spherical indenters and converting the results to stress-

strain curves. This becomes more relevant as we have shown that, for ZnO single 

crystals,17 the energy dissipated during the pop-in is roughly equal to the elastic strain 

energy stored before the pop-in. In other words, most of the elastic strain energy was 

used to nucleate dislocations. This comment notwithstanding, more work is ongoing and 

needed to understand the dislocation nucleation process during the massive pop-in events 

commonly observed when spherical, rather than sharp, nanoindenters are used.  

The fact that dislocations in mica are confined to the basal planes120,122 allows the 

dislocation loops to extend over relatively large distances, i.e. large values of 2β, which 

could partially explain the large values of Wd (Eq. 1.9).  Note the glide of dislocations on 

different slip systems cannot explain this phenomenon; were the dislocations allowed to 

entangle the process would not be reversible.118,120,122 

Typical SEM micrographs of post-indentation craters formed after the massive 

penetrations of the indenter (at 500 mN load) in different grades of mica are shown in 

Fig. 8.13. Examination of Fig. 8.13 reveals the segmentation of single crystal into 

multiple domains – a key component in our model - with some large cracks emanating 

from its center. The deformation induced segmentation of grains, is similar to that 

reported by Bell and Wilson in biotites,118 and is almost identical to the microdomains 

observed in indented graphite single crystals after massive pop-ins.12 Clear evidence for 

the formation of kink boundaries in the pileups around the indented region can be seen in 

all three grades. The massive rotation of some of the lattice planes (Fig. 8.13e) is 

unambiguous and striking in its severity. Similar rotations have been observed in recent 
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work on Cu single crystals subjected to spherical nanoindenters.129 Similar features 

were also observed in Ti3SiC2, and other ternary machinable carbide and nitride phases at 

all length scales.28,29,32,36,37,130 

8.5.3 Implications to geology 

A relationship between NI and geology may seem farfetched. But as we pointed out 

in our previous paper on the subject,11 since the deformation under an indenter is 

constrained it is possible to reach much higher stresses - and thus better mimic geologic 

conditions - than would normally be possible. Furthermore, the fact that the relationship 

between σ and Wd (Fig. 8.12) is apparently valid for over six orders of magnitude, 

demonstrates the predictive capability of our model to higher stresses with reasonable 

certainty. 

The relevance of the results presented herein to geology cannot be overemphasized. 

The most profound implication has to do with the energy stored in a formation and its 

relationship to, i) its deformation history and, ii) the quality of the mica, or any other 

layered silicate, that it is comprised of. Clearly the areas under the stress-strain curves 

shown herein are quite different. It is fair to argue that such variations would be reflected 

in the response of any such formation to stresses. Needless to add, these facts complicate 

our understanding and analysis of the deformation of rocks containing these phases. This 

is probably one of the reasons for the huge variability in responses of various types of 

micas that have been observed.119 

Second the confirmation that IKBs are the origin of the hysteretic mesoscopic units 

(HMU) in NME solids should lead to a much deeper understanding of the nature of 
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deformation in geological formations. This is especially true since micaceous 

materials form a major portion of the Earth’s surface and a better understanding of their 

deformation behavior can potentially have a major influence on designing structures for 

minimal damage due to earthquakes.117   

Third, with the knowledge of KNE deformation in micaceous solids and layered 

minerals, the elastic and damping properties, measured by ultrasound, can be analyzed in 

terms of residual stress and deformation history. Along the same lines, a solid under 

stress, with a high density of KB’s, will have innumerable dislocation loops that in turn 

will respond to a perturbation, such as ultrasound, quite differently than the same rock 

with a different density of KB’s. For example, the damping of Ti3SiC2, at room 

temperature and without stress, as measured by ultrasound is not exceptional.131 

However, a small deformation at high temperatures increases the damping by an order of 

magnitude.132,133  

Given our understanding of dislocations, the cross-fertilization that will ensue, 

together with the large amount of work already existing on geological materials, some of 

which may have to be reinterpreted, should yield to quantum jumps in our understanding 

of their deformation behavior, damping and ultrasound characteristics.   

8.6 Summary and Conclusions 

The results of this work demonstrate the power of spherical NI, in furthering our 

understanding of the deformation mechanisms of geologically relevant solids. The 

advantage of probing small amounts of materials at geologically relevant stresses, should 

lead to rapid advancement in our understanding of deformation in geological formations.  
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This is especially true when the load displacement curves are converted to NI stress-

strain curves. Such curves clearly demonstrate the effect of initial defect concentrations 

in mica single crystals on their mechanical response. The higher the defect concentration, 

the lower the stresses necessary for nucleation and/or growth of IKBs. As important the 

response of the mica is markedly different before and after the pop-ins, implying that the 

thermo-mechanical history is also an important consideration when trying to understand 

the deformation of such micas.  

The high stresses generated under the indenter allow us to explore the response of 

such solids under geologically relevant conditions, simply rapidly and reproducibly. 

Clearly more work is needed, especially in relating the response of mica under a 

nanoindenter, to the response of a geologic formation made of the same material. It is our 

sincere hope that this work will inspire others to explore this important question, 

especially given the relative simplicity of the technique and the wealth of information 

obtainable. 
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CHAPTER 9: SUMMARY, CONCLUSIONS AND FUTURE 
WORK 

 

 

 

9.1 Summary 

9.1.1 Summary of Elastic Moduli 

This section summarizes the elastic moduli values, for the hexagonal crystals studied 

herein, measured by spherical nanoindentation (Esph), Berkovich nanoindentation (EBr) 

and theoretical values calculated (1/S33 or 1/S11, for C and A orientations, respectively) 

from reported elastic constants. 

Table 9.1. Summary of elastic moduli values determined from spherical nanoindentation, Berkovich 
nanoindentation and theoretical elastic constants 

Material Orientation
Esph (GPa) EBr 

(GPa) 

1/S33 or 
1/S11 

(GPa) 1 μm 5 μm 13.5 μm 

ZnO C 131±4 128±2 130±4 135±3 149 57 
A 121±3 126±3 128±6 144±4 128 57 

LiNbO3 
C 184±4 184±6 186±2 200±2 199 82 
A 180±3 - 190±3 234±5 173 82 

GaN C 297±15 - 212±9 261±3 328 57 
A 284±6 - 196±5 255±3 226 57 

Sapphire C 381±7 - 361±6 412±8 458 113 
A 378±7 - - - 429 113 

 

It is evident from Table 9.1 that the theoretical moduli values are reasonably close to 

the values calculated from spherical and Berkovich nanoindentation. This comment 



 167

notwithstanding, it should be noted here that the stress-states under a nanoindenter is 

more complex than a simple uniaxial experiment – hence, the moduli values computed 

from indentation experiment should not exactly match with the theoretically determined 

numbers. Also, with the exception of 1 μm indents in GaN, Esph is lower than EBr. Further 

studies are underway to better understand the relationship between Esph, EBr and the 

theoretical values. 

9.1.2 Summary of Hardness 

This section summarizes the hardness values obtained by Berkovich nanoindentation, 

HBr, and Vickers microhardness indentation, HV, on ZnO, LiNbO3, GaN and sapphire 

single crystals. The values for fused silica are also shown in Table 9.2, for comparison. 

As shown in previous chapters (Chs. 3, 5, 6 and 7), it is difficult to define a particular 

hardness value for spherical nanoindentation, because often it exhibits strain hardening.  

Table 9.2. Hardness values as measured by Berkovich nanoindentation and Vickers microindentation 

Material Orientation HBr 
(GPa) 

HV 
(GPa) 

ZnO C 4.8±0.1 3.3±0.1 
A 2.7±0.1 1.7±0.1 

LiNbO3 
C 9.3±0.1 4.5±0.2 
A 12.6±0.2 5.7±0.2 

GaN C 15.2±0.1 10.9±0.1 
A 13.2±0.2 9.9±0.3 

Sapphire C 25±1 22.5‡ A - 
Fused Silica - 9.3±0.2 5.6±0.6 

‡ According to manufacturer 

To examine if there is any correlation between HBr, Hv, and the strain hardening rates 

observed for spherical nanoindentation, the latter is plotted against the difference of HBr 
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and HV (Fig. 9.1). Also plotted in this figure are the values for single crystals of TiO2 

(001), MgO (111), Si, and polycrystalline Fe and Al. Although the value for sapphire is 

shown in the figure, it is acknowledged that the hardening rate is probably incorrect 

because the deformation was already beyond the spherical limit of the 1 μm indenter (see 

Ch. 7). 
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Fig. 9.1 Relationship between hardening rate in spherical nanoindentation and the difference between 
Berkovich and Vickers hardness. 

It should be acknowledged here that, for the first time, Fig. 9.1 shows some kind of 

relationship between spherical nanoindentation, Berkovich nanoindentation and Vickers 

microindentation, although the exact nature of the relationship is not clear. More 

systematic work is in progress to understand this relationship. 
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9.1.3 Summary of Hysteretic Behavior under Spherical Nanoindentation 

It has been discussed in earlier chapters that the C-orientation of the hexagonal 

crystals, studied herein, show fully-reversible hysteretic behavior during cyclic loading 

under spherical nanoindenter.16-18,48,134 This section summarizes the experimentally 

determined parameters related to reversible hysteretic behavior in the C-orientation of the 

hexagonal crystals. Table 9.3 lists the crystals with their corresponding c/a ratio, C44, and 

Wd, as determined from the spherical nanoindentation stress-strain curves discussed in 

previous chapters. 

Table 9.3. List of c/a ratio, C44, energy dissipated per unit volume per cycle, and maximum stress, during 
cyclic spherical nanoindentation in the C-orientation of the hexagonal single crystals (except, Ti2AlC and 
Ti2SC – which were polycrystalline) 

Material c/a C44 
(GPa)

Wd 
(MJ/m3)

Maximum Stress, σmax 
(GPa) 

ZnO 
13.5 μm 1.6 45 18 3.1 

LiNbO3 
13.5 μm 

2.69 59.5 

204 5.4 

LiNbO3 
5 μm 157 5.4 

LiNbO3 
1 μm 233 9.2 

GaN 
1 μm 1.63 241 20 25.3 

Sapphire 
1 μm 2.73 148 500 40 

Mica 
(C-grade) 
13.5 μm 

1.4 15 90 3 

Ti2AlC 
13.5 μm 4.47 119 31 2.8 

Ti2SC 
13.5 μm 3.49 125 99 8 
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After calculating the above mentioned parameters, we try to find a possible 

relationship between the crystal structure (c/a ratio), the shear modulus (G, or C44), and 

the hysteretic behavior under spherical nanoindentation. In light of Eq. 1.9, we can define 

a parameter, 2
max

2
44

σ
CWd , which takes into account only theoretical and experimentally 

determined values. Figure 9.2 results when this parameter is plotted against the c/a ratio, 

and the slope is most probably proportional to the domain size, α (Eq. 1.9), for the 

reversible hysteretic behavior. 
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Fig. 9.2 Relationship of energy dissipation, per unit volume per cycle during cyclic spherical 
nanoindentation, with the c/a ratio of hexagonal crystals. Note that the magnitude of the slope depends on 
the tip size, which eventually determines the domain size for dislocation based fully-reversible behavior.  

First, the slopes for different indenter sizes in Fig. 9.2 clearly show that the domain 

size is governed by the size of the indenter for a wide range of c/a ratio. Second, it is also 
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evident that the fully reversible deformation behavior is mostly dominant in 

hexagonal crystals, because all the lines intercept the x-axis at ~ 1.4.  

Figure 9.2 is very important for better understanding of the reversible hysteretic 

behavior in single crystals under spherical nanoindentation, more specifically for 

hexagonal crystal structures. To check the validity of this plot, we added the result of 

13.5 μm indents on polycrystalline Ti2SC. The reason it does not fall on the same line as 

other 13.5 m indents is its small grain size of 2 – 4 μm. This is consistent with our work 

on KNE solids, where we showed that the domain size in polycrystalline materials is 

limited by the grain size.30,31 Hence, Fig. 9.2 is very important in terms of predicting the 

reversible hysteresis in hexagonal solids if the domain size is known, and vice versa. It is 

also important in moving forward from single crystal results to polycrystalline materials, 

as demonstrated by the data on Ti2SC. 

9.2 Conclusions 

1. Spherical nanoindentation is a powerful and important tool for studying micro/nano-

scale elastic-plastic deformation behavior in materials; more so for brittle ceramics, 

where bulk uniaxial compression/tension experiments are not possible. 

2. A detailed procedure is outlined, during this work, to convert spherical 

nanoindentation data into representative indentation stress-strain curves.24 Besides 

providing more quantitative information about yield point, hardening rate and 

nonlinearity, the indentation stress-strain curves were used to compare between 

different orientations of materials and different indenter sizes – the information, 

which is not intuitive from a load-displacement curve. 
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3. Although more research is needed, there is almost a linear relationship between 

the spherical nanoindentation strain hardening rates and the hardness values measured 

from Vickers microhardness and Berkovich nanoindentation. 

4. Stress-strain curves from cyclic spherical nanoindentation are very informative 

regarding dislocation based reversible hysteretic behavior in solids.  

5. The micro-scale model is successful in defining different parameters in dislocation-

based kink bands and the relationships between them. The experimental data from 

cyclic stress-strain curves, from both bulk and spherical nanoindentation experiments, 

match extremely well with the model, and hence the deformation behavior due to 

incipient kink bands (IKBs).18,30 

6. The micro-mechanisms of deformation in hexagonal single crystals and KNE 

parameters, computed from the micro-scale model, matches with the microstructural 

features that formed under the indenter.18 

7. The combination of the spherical nanoindentation results from the single crystals of 

hexagonal ceramics confirms the fully reversible, hysteretic behavior for high c/a (> ~ 

1.4) materials – which, for the most part, is due to the dislocation-based IKBs. The 

combined picture (Fig. 9.2) also enhances the possibility to transfer the knowledge 

from deformation in single crystals to polycrystalline materials. 

8. Calculation of representative indentation stress and strain enabled us, for the first 

time, to control these parameters, in real time, during indentation experiments. The 
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power of this novel technique is successfully demonstrated by the constant-stress 

creep in ZnO single crystals, studied herein (Ch. 4). 

9.3 Future Work 

As discussed in the previous chapters, we want to point out some interesting and 

important research directions, which will give us better understanding of the deformation 

under spherical nanoindenter in general, and kinking nonlinear elastic behavior in 

particular. 

1. Validation of the definition of indentation strain by theoretical modeling and finite 

element simulations. This will be important for obtaining better representative 

indentation stress-strain curves for different materials. 

2. Spherical nanoindentation experiments at elevated/lower temperatures. It will be 

important for studying the activation energy of dislocation nucleation and propagation 

in materials. 

3. Controlled stress or strain indentation experiments to study creep, fatigue, and slow 

critical crack growth in materials, specially for brittle solids. These new experimental 

methods will also have the advantage of comparing the results with bulk experiments 

and determining the scaling factors in the deformation behavior. 

4. Systematic cyclic spherical nanoindentation study of reversible hysteretic behavior in 

polycrystalline materials, with small grain sizes, in light of Fig. 9.2. It will be very 

informative for fabricating micro-devices with controlled damping properties. 



 174

5. It is also important to extend the proposed microscale model to incorporate effects 

of grain orientation and grain size distribution. 

6. Systematic in-situ TEM experiments to visualize the dislocation structures forming 

during indentation and, if possible, the IKBs. 

7. Systematic in-situ measurements of other functional properties (e.g. electrical, 

magnetic, optical) during indentation to study how different dislocation structures 

affect the functional behavior of the materials. 
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