

Hardware-in-the-loop Laboratory Performance Verification of Flexible Building Equipment in a Typical Commercial Building (HILFT)

U.S. DOE DE-EE0009153

Updates for the Industry Advisory Board

July 2024

Building Science & Engineering Group Drexel University

Team Members

Drexel University

Faculty: Jin Wen, PhD; James Lo, PhD Research Scientist: Zhelun Chen, PhD Student: Gabriel Grajewski, Yicheng Li

Texas A&M University

Faculty: Zheng O'Neill, PhD Research Engineer : Zhiyao Yang, PhD Student: Caleb Calfa

National Institute of Standards and Technology

Mechanical Systems and Controls Group Leader: Steven Bushby; Mechanical Engineer: Amanda Pertzborn, PhD; Vance Payne, PhD

Zhelun Chen

Caleb Calfa

Steven

Bushby

Amanda

Pertzborn

Vance Payne

Gabriel Grajewski

Building Science 8 Engineering Group Drexel University

Zheng O'Neill

Jin Wen

Zhiyao Yang

Agenda

- Background & Summary
- Method
 - Testbeds
 - Testing Scenarios
 - Postprocess Procedure
 - Data Schema
- Technical Validation
 - Uncertainty Analysis
 - Data Quality Control
 - Evaluation of Demand Flexibility
- Conclusion
- Discussions

Background & Summary: Goal

Potential

• buildings and building equipment can provide flexible electrical loads

Challenge

• lack of high-resolution end-use load and energy savings shape data

Goal

- publicly-available, high-fidelity datasets
- commonly-used commercial building HVAC and thermal storage equipment

Example grid-interactive efficient commercial building [1]

Background & Summary: Scope

IECC climate zone map [2]

Building flexibility load curves [1]

Weather	Building Type	Control	System	Occupancy	Behavior
Typical summer	90.1-2004	Heuristic rule	No TES	Typical	Typical
Extreme summer, typical winter (HP only)/shoulder	90.1-2019	MPC	TES	Dense (1.5 x typical)	Energy Saving

Background & Summary: Scope

- Intelligent Building Agents Laboratory (IBAL) facility at NIST [3]
 - Chiller
 - Ice thermal storage tank
 - AHU-VAV
- Heat Pump Environmental Testing Facility (ASHP) at NIST
 - Two-stage air-source heat pump
- Heat Pump Environmental Testing Facility (WSHP) at TAMU
 - Variable speed water-source heat pump

Chiller

Air-source heat pump indoor unit being installed

Air-source heat pump outdoor unit being installed

Water-source heat pump

Building Science & Engineering Group Drexel University

Water-source heat pump hydronic system

Method: Testbed

Virtual Building: Occupant Behavior Model

Adapt an existing field validated agent-based occupant thermal behavior model [6]

Virtual Building: Airflow Model

• **CFD modeling** Simulate occupant local environment at different coordinates

- Challenges computationally heavy, not suitable for HIL testing
- Solutions ANN models trained on CFD data [7]

Hardware-Software Integration: Real-time Communication

- 1-min time step
- Communication response time is typically 10-20 seconds for all testing facilities

ZoneCond: Zone air condition; OutCond: Outdoor air condition; CtrlSig: Control signals

Testing Scenarios: Control Strategies

IBAL

- Rule-Based Control
 - Load shedding: global temperature reset
 - Load shifting: global temperature reset or use ice tank, determine the reset schedule through limited real testing
 - ASHRAE 90.1-2004
 - ASHRAE 90.1-2019 and Guideline 36
- Model Predictive Control
 - Chiller, ice tank operation scheme
 - System and zone setpoints
 - Optimize energy use, peak demand, or TOU cost
 - Maintain zone temperature within a comfortable range

ASHP/WSHP

- Rule-Based Control
 - Load shedding: global temperature reset
 - Load shifting: global temperature reset, determine the reset schedule through simulation

Model Predictive Control

- Zone temperature setpoint
- Optimize energy use, peak demand, or TOU cost
- Maintain zone temperature within a comfortable range

Testing Scenarios: RBC for IBAL Ice Tank

• IBAL ice tank charge/discharge schedule when it is being tested

Testing Scenarios: FR for AHU Fan

- Approach: Local PID
- Static pressure setpoint of IBAL AHU supply fan
- Signals: 40-min RegA test signals provided by PJM [11]

Testing Scenarios: MPC

IBAL: Chiller/Ice Tank-AHU-VAV

ASHP, WSHP

Method: Postprocess Procedure

Building Science & Engineering Group Drexel University

Method: Data Schema

Technical Validation: Uncertainty Analysis

Technical Validation: Data Quality Control

Ensuring integration quality (What to check?)

- Communication delay
- Emulation response time
- Capacities
- Emulation accuracy (i.e., hardware-software mismatch)

Technical Validation: Evaluation of Load Flexibility

KPI [10, 11]	Unit	Need Reference?	Equation
Energy use [†]	kWh	No	$\mathbf{E} = \sum_{1 \le i \le N_{ts}} [\mathbf{Q}(\mathbf{t}_i) \cdot (\mathbf{t}_{i+1} - \mathbf{t}_i)]$
Average demand [†]	kW	No	$\overline{Q} = \frac{\sum_{1 \le i \le N_{ts}} Q(t_i)}{N_{ts}}$
Flexibility factor [†]	-	No	$FF = \frac{\sum_{t_i \in \text{nonpeak}} Q(t_i) - \sum_{t_i \in \text{peak}} Q(t_i)}{\sum_{t_i \in \text{nonpeak}} Q(t_i) + \sum_{t_i \in \text{peak}} Q(t_i)}$
Time-of-use cost [†]	\$	No	$Cost = \sum_{1 \le i \le N_{ts}} [Q(t_i) \cdot (t_{i+1} - t_i) \cdot TOU(t_i)]$
PJM regulation performance score ^{††}	-	Yes	$S_{c} = \frac{1}{3} (S_{p} + S_{cor} + S_{d})$ where $S_{p} = 1 - \frac{1}{N_{sample}} err(P_{g}, P_{r})$ $S_{cor} = r(P_{s}, P_{r}(\tau^{*}, \tau^{*} + 5min))$ $S_{d} = \frac{\tau^{*} - 5min}{5min}$

Building Science & **Engineering Group** Drexel University

t _i :	a specific time step,
$Q(t_i)$:	power demand at t_i ,
N_{ts} :	total number of timesteps
i ts·	for a specific time period,
TOU(t _i):	TOU price at t _i ,
P _g :	PJM regulation signal,
P_r :	response signal to Pg,
err(*,*):	the absolute error between
	two signals,
N _{sample} :	total number of signal
	samples,
r(*,*):	statistical correlation
	between two signals,
$ au^*$:	time shift when the
	maximum correlation
	between two
	signals occur
A., Nagy, Z.	and Marszal-Pomianowska, A.,

† Li, H., Johra, H., de Andrade Pereira, F., Hong, T., Le Dréau, J., Maturo, A., Wei, M., Liu, Y., Saberi-Derakhtenjani, A., Nagy, Z. and Marszal-Pomianowska, A., 2023. Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives. Applied Energy, 343, p.121217. †† PJM, 2022. PJM Manual 12: Balancing Operations. Revision 45.

	,		· · · · · · · · · · · · · · · · · · ·									
Location	CED	Default	ExtrmSum TypShldr ExtrmWin 7 10.13 6.86 8 8.96 - 5 9.87 - 3 9.82 6.21 5 8.42 - 0 8.43 - 4 9.77 6.86 9 8.39 6.10 5 8.76 6.18 2 9.31 6.27		Variation							
Location	GEB	Default	ExtrmSum	TypShl dr	ExtrmWin	MPC	HPB	DenOcc	NRGSave	TES	MPC&TES	
	Eff	9.47	10.13	6.86		6.87	6.86	11.98	9.54			12 k
Atlanta	Shed	8.48	8.96			6.57	5.77	9.67	8.17			
_	Shi ft	8.45	9.87			6.74	5.91	10.51	8.76	2.80	6.34	
	Eff	7.63	9.82	6.21		6.68	6.21	8.98	7.63			
Buffalo	Shed	6.75	8.42			6.62	5.59	8.19	6.80			
_	Shi ft	6.80	8.43			6.62	5.32	7.96	6.82	2.93	7.66	
	Eff	8.84	9.77	6.86		6.91	6.56	10.69	8.57			
New York	Shed	7.59	8.39	6.10		6.74	5.66	9.32	7.61			
-	Shift	7.75	8.76	6.18		6.85	5.34	9.27	7.68	3.04	6.59	
	Eff	9.52	9.31	6.27		7.15	6.72	10.98	8.95			
Tucson	Shed	8.15	8.35	5.81		6.77	5.65	9.88	8.19			
-	Shift	8.94	8.90	5.77		7.01	5.49	9.83	8.47	3.18	6.72	0 k
				Avorago	HVAC Domo	nd during Do	al Dariad					•

• IBAL (AHU-VAV): Peak demand

Average HVAC Demand during Peak Period

Rule-based Global Temp Reset

- Eff: $78^{\circ}FT_{cool}$
- Shed: relax w/ 80°F T_{cool}
- Shift: precool 3hr w/ 75°F T_{cool} then relax w/ 80°F T_{cool}
- All: T&R SP reset, and OAT-based chilled water temperature reset

Effectiveness

- All cases shown peak demand reduction (3-19%).
- Peak demand reductions are limited by ventilation need.
- Shift case underperforms compared to Shed case, often due to static pressure reset (precool \rightarrow higher fan static pressure), and lack of thermal mass.

High-Performance Buildings

- HPB has 6-14 % reduced peak demand when compared to non-HPB (Default).
- HPB has 10-19 % reduced peak demand.

T	CED						Variation				
Location	GEB	Default	ExtrmSum	TypShl dr	ExtrmWin	MPC	HPB	DenOcc	NRGSave	TES	MPC&TES
	Eff	9.47	10.13	6.86		6.87	6.86	11.98	9.54		
Atlanta	Shed	8.48	8.96			6.57	5.77	9.67	8.17		
	Shi ft	8.45	9.87			6.74	5.91	10.51	8.76	2.80	6.34
	Eff	7.63	9.82	6.21		6.68	6.21	8.98	7.63		
Buffalo	Shed	6.75	8.42			6.62	5.59	8.19	6.80		
	Shi ft	6.80	8.43			6.62	5.32	7.96	6.82	2.93	7.66
_	Eff	8.84	9.77	6.86		6.91	6.56	10.69	8.57		
New York	Shed	7.59	8.39	6.10		6.74	5.66	9.32	7.61		
_	Shi ft	7.75	8.76	6.18		6.85	5.34	9.27	7.68	3.04	6.59
	Eff	9.52	9.31	6.27		7.15	6.72	10.98	8.95		
Tucson	Shed	8.15	8.35	5.81		6.77	5.65	9.88	8.19		
-	Shift	8.94	8.90	5.77		7.01	5.49	9.83	8.47	3.18	6.72

• IBAL (AHU-VAV): Peak demand

Average HVAC Demand during Peak Period

Day-ahead charging. Discharge during peak.

Effectiveness

• 62-70% peak reduction, but overcharge

			· · ·									
Lagetian	CED	Default					Variation					
Location	GEB	Default	ExtrmSum	TypShl dr	ExtrmWin	MPC	HPB	DenOcc	NRGSave	TES	MPC&TES	
	Eff	9.47	10.13	6.86		6.87	6.86	11.98	9.54			12 kW
Atlanta	Shed	8.48	8.96			6.57	5.77	9.67	8.17			
_	Shift	8.45	9.87			6.74	5.91	10.51	8.76	2.80	6.34	
	Eff	7.63	9.82	6.21		6.68	6.21	8.98	7.63			
Buffalo	Shed	6.75	8.42			6.62	5.59	8.19	6.80			
_	Shift	6.80	8.43			6.62	5.32	7.96	6.82	2.93	7.66	
	Eff	8.84	9.77	6.86		6.91	6.56	10.69	8.57			
New York	Shed	7.59	8.39	6.10		6.74	5.66	9.32	7.61			
	Shift	7.75	8.76	6.18		6.85	5.34	9.27	7.68	3.04	6.59	
	Eff	9.52	9.31	6.27		7.15	6.72	10.98	8.95			
Tucson	Shed	8.15	8.35	5.81		6.77	5.65	9.88	8.19			
	Shift	8.94	8.90	5.77		7.01	5.49	9.83	8.47	3.18	6.72	0 kW
				Avorago	HVAC Domo	nd du ming D	al Dariad					

• IBAL (AHU-VAV): Peak demand

Average HVAC Demand di ring Peak Period

MPC design

- Optimizes setpoints at an **aggregated** level with limited individual zone and AHU dynamics knowledge.
- Practical for real-time application but may not be the most optimal strategy.

MPC performance

- MPC: MPC cases show significant peak demand reductions (12-27%) compared to Default cases. Most peak demand reductions come from reduced ventilation similar to occupancy-based demand ventilation.
- **MPC&TES**: The tested MPC underpredicts the cooling load which results in under utilization of the ice tank.

• IBAL (AHU-VAV): Peak demand, flexibility factor, and utility cost

Location	GEB	Default	Variation TES		Location	GEB	Default	Variation TES		Location	GEB	De	faul t	Variation TES	
	Eff	9.47		12 kW	_	Eff	0.26		+1		Eff	\$	14.07		\$ 18
Atlanta	Shed	8.48			Atlanta	Shed	0.32			Atlanta	Shed	\$	13.38		
	Shift	8.45	2.80			Shift	0.35	0.85		_	Shift	\$	13.63	\$ 15.26	
	Eff	7.63			_	Eff	0.14				Eff	\$	7.44		
Buffalo	Shed	6.75			Buffalo	Shed	0.27			Buffalo	Shed	\$	7.16		
	Shift	6.80	2.93			Shift	0.24	0.80		_	Shift	\$	7.14	\$ 7.17	
	Eff	8.84			_	Eff	-0.13				Eff	\$	9.74		
New York	Shed	7.59			New York	Shed	-0.07			New York	Shed	\$	8.50		
	Shift	7.75	3.04			Shift	0.01	0.72			Shift	\$	9.40	\$ 5.52	
	Eff	9.52				Eff	0.20				Eff	\$	6.26		
Tucson	Shed	8.15			Tucson	Shed	0.24			Tucson	Shed	\$	5.52		
	Shift	8.94	3.18	0 kW		Shift	0.27	0.80	-1		Shift	\$	6.24	\$ 5.76	\$ 0
Average H	Average HVAC Demand during Peak Period				HV	AC Daily F	lexibility Fac	tor		HV	AC Daily Ti	me-O	f-Use C	ost	

Insights

- Improved flexibility (high flexibility factor) does not lead to overall utility cost reduction for consumers. --Pricing structure needs to be carefully designed.
- TOU billed on maximum of the average demand (New York case) results in lower overall utility cost for the TES case when comparing against other cases billed on energy use.

• WSHP: Peak demand

Leastion	GEB	Defeul4				Vari	ation]
Location	GED	Default	ExtrmSum	TypShl dr	ExtrmWin	MPC	HPB	DenOcc	NRGSave	TES	
	Eff	1.14	0.99			0.83	0.53	1.53	1.18	0.88	1.9 kW
Atlanta	Shed	0.47	0.52			0.59	0.26	0.81	0.56	0.51	
	Shift	0.71	0.58			0.69	0.30	0.90	0.50	0.36	
	Eff	0.17	0.26		0.30	0.24	0.17	0.26	0.19	0.15	
Buffalo	Shed	0.15	0.18		0.19	0.21	0.15	0.19	0.15	0.15	
	Shift	0.15	0.19		0.19	0.21	0.14	0.19	0.15	0.12	
	Eff	0.30	0.53	0.49	0.12	0.19	0.23	0.54	0.30	0.30	
New York	Shed	0.19	0.26	0.26	0.11	0.25	0.18	0.28	0.18	0.19	
	Shift	0.23	0.29	0.40	0.11	0.24	0.16	0.30	0.23	0.16	
	Eff	1.50	1.66	0.90	0.14	1.08	1.07	1.84	1.56	1.61	
Tucson	Shed	0.87	0.99	0.40	0.12	0.60	0.58	1.61	0.73	0.85	
	Shift	0.73	0.76	0.36	0.13	0.63	0.51	1.41	0.69	0.77	0 kW

Average HVAC Demand during Peak Period

• A Shift case could be much worse than a Shed case

• WSHP: Peak demand mitigation

Elevated heat pump power due to precooling

• Overlooked control mechanism delays power reduction after precooling. Compressor speed can not reduce quickly after precooling.

Evaluation of Load Flexibility: Load Modulating

• IBAL AHU fan

PJM regulation performance score

			Variation		
Default	Extreme Summer	Typical Shoulder	High Performance Building	Dense Occupancy	Energy Saving Behavior
0,83	0.85	0.82	0.82	0,80	0,85
0.87	0.83	0.83	0.86	0.83	0.85
0.86	0.80	0.85	0.77	0.77	0.76
0.86	0.80	0.85	0.77	0.77	0.76
	0.83 0.87 0.86	0.83 0.85 0.87 0.83 0.86 0.80	Definition Definition Definition Summer Shoulder 0.83 0.85 0.82 0.87 0.83 0.83 0.86 0.80 0.85 0.86 0.80 0.85	Default Extreme Summer Typical Shoulder Performance Building 0.83 0.85 0.82 0.82 0.87 0.83 0.83 0.86 0.86 0.80 0.85 0.77	Default Extreme Summer Typical Shoulder Performance Building Dense Occupancy 0.83 0.85 0.82 0.82 0.80 0.87 0.83 0.83 0.86 0.83 0.86 0.80 0.85 0.77 0.77 0.86 0.80 0.85 0.77 0.77

				Variation		
Location	Default	Extreme Summer	Typical Shoulder	High Performance Building	Dense Occupancy	Energy Saving Behavior
Atlanta	0,86	0,90	0.85	0,87	0,82	0,88
Buffalo	0,86	0.76	0.22	0,85	0,86	0.86
New York	0.88	0.86	0.84	0.87	0.75	0.86
Tucson	0,88	0,86	0.84	0,87	0,75	0,86
HUSON			(a) AHU2		0,12	
	Fan a	t its minir	num spee	ed		

1

0.65

Evaluation of Load Flexibility: Building-Human Interaction

- **Real** chilled water AHU-VAV serving four medium office zones [3, 4, 8] lacksquare
- Capturing uncertainties from system and occupant behaviors

1000 **Cooling setpoint down** 800 600 15 16 17 18 19 20 **Chiller** power Baseline Shedding **Cooling setpoint down**

VAV 2 CFM Demand

Building Science & **Engineering Group** Drexel University

HILFT Updates

28

Perimeter Zone 3

Core Zone

Perimeter Zone 1

Evaluation of Load Flexibility: Building-Human Interaction

- **Simulated** air-source heat pump serving a small office zone [5, 9]
- Stochastic load profile
- Baseline vs. Load Shedding: 100 simulations each [9]
- Impact of fan/heater usage and setpoint changes on load profile

Evaluation of Load Flexibility: Summary of Insights

Building Science & Engineering Group Drexel University

Zone Temperature Reset: Effective in reducing peak demand but can cause complex system behavior changes, possibly increasing total system demand.

Advanced Control Strategies: Significantly improve efficiency

and reduce peak demand. The quality of MPC affect the performance of DR control. Thermal Energy Storage: Ice storage reduces peak demand by leveraging off-peak cooling. Cost-effectiveness depends on utility pricing and usage patterns.

Utility Pricing Structure: Significantly affect overall utility cost reduction, even with the same flexibility. Flexibility Factor: Enhanced flexibility does not always ensure overall utility cost reduction. **Building Thermal Mass:** Effectiveness of precooling varies with building thermal mass.

System Responsiveness:

Quick system adjustments to setpoint changes are crucial but not always feasible. Understanding system dynamics is vital for effective DR strategy design. Load Modulating: The AHU fan can be effectively modulated. However, it may change the power trajectory when a static pressure reset is also implemented. FR may fail when fan power is already at its limit.

Building-Human Interaction: Unpredictable occupant behaviors impact energy demand forecasts, necessitating their inclusion in demand flexibility studies.

Discussion

• How can we use the data?

Reference

[1] Neukomm, M., V. Nubbe, and R. Fares. 2019. Grid-interactive Efficient Buildings Technical Report Series: Overview of Research Challenges and Gaps. United States. <u>https://doi.org/10.2172/1577966</u>.

[2] Baechler, M. C., T. L. Gilbride, P. C. Cole, M. G. Hefty, and K. Ruiz, 2015. Building America Best Practices Series Volume 7.3: Guide to Determining Climate Regions by County. PNNL.

[3] Pertzborn, A. J. 2016. Intelligent Building Agents Laboratory: Hydronic System Design. US Department of Commerce, National Institute of Standards and Technology.

[4] Pang, Z., Y. Chen, J. Zhang, Z. O'Neill, H. Cheng, and B. Dong. 2020. Nationwide HVAC energy-saving potential quantification for office buildings with occupantcentric controls in various climates. Applied Energy, 279, p.115727.

[5] The United States Department of Energy. Commercial Prototype Building Models. <u>https://www.energycodes.gov/development/commercial/prototype_models/</u>.

[6] Langevin, J., J. Wen, and P. L. Gurian. 2016. Quantifying the Human–building Interaction: Considering the Active, Adaptive Occupant in Building Performance Simulation. Energy and Buildings, 117, 372-386.

[7] Zhang, Y., L. J. Lo, and G. Grajewski. CFD-Trained ANN Model for Approximating Near-occupant Condition in Real-time Simulations. Paper presented at the ASHRAE Topical Conference Proceedings. 2022

[8] Chen, Z., et al., 2022. Development of a Hardware-in-the-loop Testbed for Laboratory Performance Verification of Flexible Building Equipment in Typical Commercial Buildings. Presented at ASHRAE 2022 Annual Conference.

[9] Chen, Z., et al., 2023. A Simulation Framework for Analyzing the Impact of Stochastic Occupant Behaviors on Demand Flexibility in Typical Commercial Buildings. Presented at ASHRAE 2023 Annual Conference.

[10] Li, H., Johra, H., de Andrade Pereira, F., Hong, T., Le Dréau, J., Maturo, A., Wei, M., Liu, Y., Saberi-Derakhtenjani, A., Nagy, Z. and Marszal-Pomianowska, A.,

2023. Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives. Applied Energy, 343, p.121217.

[11] PJM, 2022. PJM Manual 12: Balancing Operations. Revision 45.