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Background & Summary: Goal
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Example grid-interactive efficient commercial building [1] 

Potential

• buildings and building equipment can 
provide flexible electrical loads

Challenge

• lack of high-resolution end-use load and 
energy savings shape data

Goal

• publicly-available, high-fidelity datasets

• commonly-used commercial building 
HVAC and thermal storage equipment



Background & Summary: Scope
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Weather Building Type Control System Occupancy Behavior

Typical summer 90.1-2004 Heuristic rule No TES Typical Typical

Extreme summer, typical winter (HP only)/shoulder 90.1-2019 MPC TES Dense (1.5 x typical) Energy Saving

IECC climate zone map [2] Building flexibility load curves [1]



Background & Summary: Scope
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• Intelligent Building Agents Laboratory 
(IBAL) facility at NIST [3]

• Chiller

• Ice thermal storage tank

• AHU-VAV

• Heat Pump Environmental Testing 
Facility (ASHP) at NIST

• Two-stage air-source heat pump

• Heat Pump Environmental Testing 
Facility (WSHP) at TAMU

• Variable speed water-source heat pump

Air-source heat pump 
indoor unit being installed

Air-source heat pump 
outdoor unit being installed

Chiller

Ice tank

Water-source heat pump

AHU
VAV

Water-source heat pump 
hydronic system



Method: Testbed
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Virtual Building: Occupant Behavior Model
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Adapt an existing field validated agent-based 

occupant thermal behavior model [6]

Behaviors considered in this study



Virtual Building: Airflow Model
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• CFD modeling
Simulate occupant local 
environment at different 
coordinates

• Challenges
computationally heavy, not 
suitable for HIL testing

• Solutions
ANN models trained on 
CFD data [7] Measured zone 

environment 4 - 14 cm 

from occupant's skin



Hardware-Software Integration: Real-time Communication
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• 1-min time step

• Communication response time is typically 10-20 seconds for all testing facilities

ZoneCond: Zone air condition; OutCond: Outdoor air condition; CtrlSig: Control signals



Testing Scenarios: Control Strategies
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IBAL

• Rule-Based Control

• Load shedding: global temperature reset 

• Load shifting: global temperature reset or use 
ice tank, determine the reset schedule through 
limited real testing

• ASHRAE 90.1-2004

• ASHRAE 90.1-2019 and Guideline 36

• Model Predictive Control

• Chiller, ice tank operation scheme

• System and zone setpoints

• Optimize energy use, peak demand, or TOU 
cost

• Maintain zone temperature within a 
comfortable range

ASHP/WSHP

• Rule-Based Control

• Load shedding: global temperature reset 

• Load shifting: global temperature reset, 
determine the reset schedule through 
simulation

• Model Predictive Control

• Zone temperature setpoint

• Optimize energy use, peak demand, or TOU 
cost

• Maintain zone temperature within a 
comfortable range



Testing Scenarios: RBC for IBAL Ice Tank
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• IBAL ice tank charge/discharge schedule when it is being tested



Testing Scenarios: FR for AHU Fan
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• Approach: Local PID

• Static pressure setpoint of IBAL AHU supply fan

• Signals: 40-min RegA test signals provided by PJM [11]



Testing Scenarios: MPC
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• MPC Formulation - Schematics

Schedules

MPC

Compressor

Heat Pump Local Controller

Fan

𝑻𝒛,𝒔𝒑𝒕

IBAL: Chiller/Ice Tank-AHU-VAV ASHP, WSHP



Method: Postprocess Procedure
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Method: Data Schema
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Technical Validation: Uncertainty Analysis
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Technical Validation: Data Quality Control
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Ensuring integration quality (What to check?)

• Communication delay

• Emulation response time

• Capacities

• Emulation accuracy (i.e., hardware-software mismatch)



Technical Validation: Evaluation of Load Flexibility
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KPI [10, 11] Unit Need Reference? Equation

Energy use† kWh No E = 
1≤i≤Nts

Q ti ⋅ ti+1 − ti

Average demand† kW No ഥQ =
σ1≤i≤Nts

Q(ti)

Nts

Flexibility factor† - No FF =
σti∈nonpeak

Q(ti) − σti∈peak
Q(ti)

σti∈nonpeak
Q(ti) + σti∈peak

Q(ti)

Time-of-use cost† $ No Cost = 
1≤i≤Nts

Q ti ⋅ ti+1 − ti ⋅ TOU ti

PJM regulation 

performance 

score††
- Yes

Sc =
1

3
Sp + Scor + Sd

where

Sp = 1 −
1

Nsample
err(Pg, Pr)

Scor = r(Ps, Pr τ∗, τ∗ + 5min )

Sd =
τ∗ − 5min

5min

ti: a specific time step, 

Q ti : power demand at ti, 
Nts: total number of timesteps 

for a specific time period, 

TOU ti : TOU price at ti, 
Pg: PJM regulation signal, 

Pr : response signal to Pg, 

err(∗,∗) : the absolute error between 

two signals, 

Nsample : total number of signal 

samples, 

r ∗,∗  : statistical correlation 

between two signals,

τ∗ : time shift when the 

maximum correlation 

between two 

signals occur

† Li, H., Johra, H., de Andrade Pereira, F., Hong, T., Le Dréau, J., Maturo, A., Wei, M., Liu, Y., Saberi-Derakhtenjani, A., Nagy, Z. and Marszal-Pomianowska, A., 

2023. Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives. Applied Energy, 343, p.121217.

†† PJM, 2022. PJM Manual 12: Balancing Operations. Revision 45.



Evaluation of Load Flexibility
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• IBAL (AHU-VAV): Peak demand

ExtrmSum TypShldr ExtrmWin MPC HPB DenOcc NRGSave TES MPC&TES

Eff 9.47 10.13 6.86 NaN 6.87 6.86 11.98 9.54 NaN NaN 12 kW

Shed 8.48 8.96 NaN NaN 6.57 5.77 9.67 8.17 NaN NaN

Shift 8.45 9.87 NaN NaN 6.74 5.91 10.51 8.76 2.80 6.34

Eff 7.63 9.82 6.21 NaN 6.68 6.21 8.98 7.63 NaN NaN

Shed 6.75 8.42 NaN NaN 6.62 5.59 8.19 6.80 NaN NaN

Shift 6.80 8.43 NaN NaN 6.62 5.32 7.96 6.82 2.93 7.66

Eff 8.84 9.77 6.86 NaN 6.91 6.56 10.69 8.57 NaN NaN

Shed 7.59 8.39 6.10 NaN 6.74 5.66 9.32 7.61 NaN NaN

Shift 7.75 8.76 6.18 NaN 6.85 5.34 9.27 7.68 3.04 6.59

Eff 9.52 9.31 6.27 NaN 7.15 6.72 10.98 8.95 NaN NaN

Shed 8.15 8.35 5.81 NaN 6.77 5.65 9.88 8.19 NaN NaN

Shift 8.94 8.90 5.77 NaN 7.01 5.49 9.83 8.47 3.18 6.72 0 kW

Location GEB Default
Variation

Atlanta

Buffalo

New York

Tucson

Average HVAC Demand during Peak Period

Rule-based Global Temp Reset

• Eff: 78°F Tcool

• Shed: relax w/ 80°F Tcool

• Shift: precool 3hr w/ 75°F Tcool  then 

relax w/ 80°F Tcool

• All: T&R SP reset, and OAT-based 

chilled water temperature reset

Effectiveness

• All cases shown peak demand reduction (3-19%).

• Peak demand reductions are limited by ventilation need.

• Shift case underperforms compared to Shed case, often 

due to static pressure reset (precool → higher fan static 

pressure), and lack of thermal mass.

High-Performance Buildings

• HPB has 6-14 % reduced 

peak demand when compared 

to non-HPB (Default).

• HPB has 10-19 % reduced 

peak demand.



ExtrmSum TypShldr ExtrmWin MPC HPB DenOcc NRGSave TES MPC&TES

Eff 9.47 10.13 6.86 NaN 6.87 6.86 11.98 9.54 NaN NaN 12 kW

Shed 8.48 8.96 NaN NaN 6.57 5.77 9.67 8.17 NaN NaN

Shift 8.45 9.87 NaN NaN 6.74 5.91 10.51 8.76 2.80 6.34

Eff 7.63 9.82 6.21 NaN 6.68 6.21 8.98 7.63 NaN NaN

Shed 6.75 8.42 NaN NaN 6.62 5.59 8.19 6.80 NaN NaN

Shift 6.80 8.43 NaN NaN 6.62 5.32 7.96 6.82 2.93 7.66

Eff 8.84 9.77 6.86 NaN 6.91 6.56 10.69 8.57 NaN NaN

Shed 7.59 8.39 6.10 NaN 6.74 5.66 9.32 7.61 NaN NaN

Shift 7.75 8.76 6.18 NaN 6.85 5.34 9.27 7.68 3.04 6.59

Eff 9.52 9.31 6.27 NaN 7.15 6.72 10.98 8.95 NaN NaN

Shed 8.15 8.35 5.81 NaN 6.77 5.65 9.88 8.19 NaN NaN

Shift 8.94 8.90 5.77 NaN 7.01 5.49 9.83 8.47 3.18 6.72 0 kW

Location GEB Default
Variation

Atlanta

Buffalo

New York

Tucson

Average HVAC Demand during Peak Period

Evaluation of Load Flexibility
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• IBAL (AHU-VAV): Peak demand

Day-ahead charging. Discharge during peak.

Effectiveness

• 62-70% peak reduction, but 

overcharge



ExtrmSum TypShldr ExtrmWin MPC HPB DenOcc NRGSave TES MPC&TES

Eff 9.47 10.13 6.86 NaN 6.87 6.86 11.98 9.54 NaN NaN 12 kW

Shed 8.48 8.96 NaN NaN 6.57 5.77 9.67 8.17 NaN NaN

Shift 8.45 9.87 NaN NaN 6.74 5.91 10.51 8.76 2.80 6.34

Eff 7.63 9.82 6.21 NaN 6.68 6.21 8.98 7.63 NaN NaN

Shed 6.75 8.42 NaN NaN 6.62 5.59 8.19 6.80 NaN NaN

Shift 6.80 8.43 NaN NaN 6.62 5.32 7.96 6.82 2.93 7.66

Eff 8.84 9.77 6.86 NaN 6.91 6.56 10.69 8.57 NaN NaN

Shed 7.59 8.39 6.10 NaN 6.74 5.66 9.32 7.61 NaN NaN

Shift 7.75 8.76 6.18 NaN 6.85 5.34 9.27 7.68 3.04 6.59

Eff 9.52 9.31 6.27 NaN 7.15 6.72 10.98 8.95 NaN NaN

Shed 8.15 8.35 5.81 NaN 6.77 5.65 9.88 8.19 NaN NaN

Shift 8.94 8.90 5.77 NaN 7.01 5.49 9.83 8.47 3.18 6.72 0 kW

Location GEB Default
Variation

Atlanta

Buffalo

New York

Tucson

Average HVAC Demand during Peak Period

Evaluation of Load Flexibility
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• IBAL (AHU-VAV): Peak demand

MPC design

• Optimizes setpoints at an aggregated 

level with limited individual zone and 

AHU dynamics knowledge.

• Practical for real-time application but 

may not be the most optimal strategy.

MPC performance

• MPC: MPC cases show significant peak demand reductions (12-27%) 

compared to Default cases. Most peak demand reductions come from 

reduced ventilation similar to occupancy-based demand ventilation.

• MPC&TES: The tested MPC underpredicts the cooling load which 

results in under utilization of the ice tank.



Evaluation of Load Flexibility
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• IBAL (AHU-VAV): Peak demand, flexibility factor, and utility cost

Insights

• Improved flexibility (high flexibility factor) does not lead to overall utility cost reduction for consumers. -- 

Pricing structure needs to be carefully designed. 

• TOU billed on maximum of the average demand (New York case) results in lower overall utility cost for the 

TES case when comparing against other cases billed on energy use.

TES

Eff 9.47 NaN 12 kW

Shed 8.48 NaN

Shift 8.45 2.80

Eff 7.63 NaN

Shed 6.75 NaN

Shift 6.80 2.93

Eff 8.84 NaN

Shed 7.59 NaN

Shift 7.75 3.04

Eff 9.52 NaN

Shed 8.15 NaN

Shift 8.94 3.18 0 kW

Location GEB Default
Variation

Atlanta

Buffalo

New York

Tucson

Average HVAC Demand during Peak Period

TES

Eff 0.26 NaN +1

Shed 0.32 NaN

Shift 0.35 0.85

Eff 0.14 NaN

Shed 0.27 NaN

Shift 0.24 0.80

Eff -0.13 NaN

Shed -0.07 NaN

Shift 0.01 0.72

Eff 0.20 NaN

Shed 0.24 NaN

Shift 0.27 0.80 -1

New York

Tucson

Buffalo

Location GEB Default

Atlanta

Variation

HVAC Daily Flexibility Factor

TES

Eff  $          14.07  NaN $ 18

Shed  $          13.38  NaN 

Shift  $          13.63  $          15.26 

Eff  $            7.44  NaN 

Shed  $            7.16  NaN 

Shift  $            7.14  $            7.17 

Eff  $            9.74  NaN 

Shed  $            8.50  NaN 

Shift  $            9.40  $            5.52 

Eff  $            6.26  NaN 

Shed  $            5.52  NaN 

Shift  $            6.24  $            5.76 $ 0

New York

Tucson

Buffalo

Location GEB Default

Atlanta

Variation

HVAC Daily Time-Of-Use Cost



ExtrmSum TypShldr ExtrmWin MPC HPB DenOcc NRGSave TES

Eff 1.14 0.99 NaN NaN 0.83 0.53 1.53 1.18 0.88 1.9 kW

Shed 0.47 0.52 NaN NaN 0.59 0.26 0.81 0.56 0.51

Shift 0.71 0.58 NaN NaN 0.69 0.30 0.90 0.50 0.36

Eff 0.17 0.26 NaN 0.30 0.24 0.17 0.26 0.19 0.15

Shed 0.15 0.18 NaN 0.19 0.21 0.15 0.19 0.15 0.15

Shift 0.15 0.19 NaN 0.19 0.21 0.14 0.19 0.15 0.12

Eff 0.30 0.53 0.49 0.12 0.19 0.23 0.54 0.30 0.30

Shed 0.19 0.26 0.26 0.11 0.25 0.18 0.28 0.18 0.19

Shift 0.23 0.29 0.40 0.11 0.24 0.16 0.30 0.23 0.16

Eff 1.50 1.66 0.90 0.14 1.08 1.07 1.84 1.56 1.61

Shed 0.87 0.99 0.40 0.12 0.60 0.58 1.61 0.73 0.85

Shift 0.73 0.76 0.36 0.13 0.63 0.51 1.41 0.69 0.77 0 kW

Average HVAC Demand during Peak Period

Variation

Atlanta

Buffalo

New York

Tucson

Location GEB Default

Evaluation of Load Flexibility
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• WSHP: Peak demand

• A Shift case could be much worse than a Shed case



Evaluation of Load Flexibility
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• WSHP: Peak demand mitigation

• Overlooked control mechanism delays power reduction after precooling. 

Compressor speed can not reduce quickly after precooling.

Elevated heat pump power due to precooling



Evaluation of Load Flexibility: Load Modulating
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• IBAL AHU fan

FR period
PJM regulation performance score

Fan at its minimum speed



Evaluation of Load Flexibility: Building-Human Interaction
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• Real chilled water AHU-VAV serving four 
medium office zones [3, 4, 8]

• Capturing uncertainties from system and 
occupant behaviors

Cooling setpoint down

Cooling setpoint up

Cooling setpoint up

Cooling setpoint down



Evaluation of Load Flexibility: Building-Human Interaction
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• Simulated air-source heat pump 
serving a small office zone [5, 9]

• Stochastic load profile

• Baseline vs. Load Shedding: 100 
simulations each [9]

• Impact of fan/heater usage and 
setpoint changes on load profile

Simulated 

Air-Source 

Heat Pump

Baseline

Shedding



Evaluation of Load Flexibility: Summary of Insights
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Zone Temperature Reset: 
Effective in reducing peak 

demand but can cause complex 
system behavior changes, 

possibly increasing total system 
demand.

Advanced Control Strategies: 
Significantly improve efficiency 
and reduce peak demand. The 

quality of MPC affect the 
performance of DR control.

Thermal Energy Storage: 
Ice storage reduces peak 

demand by leveraging off-peak 
cooling. Cost-effectiveness 

depends on utility pricing and 
usage patterns.

Utility Pricing Structure: 
Significantly affect overall 

utility cost reduction, even with 
the same flexibility. 

Flexibility Factor: 
Enhanced flexibility does not 

always ensure overall utility cost 
reduction.

Building Thermal Mass: 
Effectiveness of precooling 

varies with building thermal 
mass. 

System Responsiveness: 
Quick system adjustments to 

setpoint changes are crucial but 
not always feasible. 

Understanding system dynamics 
is vital for effective DR strategy 

design.

Load Modulating: 
The AHU fan can be effectively 

modulated. However, it may 
change the power trajectory 

when a static pressure reset is 
also implemented. FR may fail 
when fan power is already at its 

limit.  

Building-Human Interaction: 
Unpredictable occupant 
behaviors impact energy 

demand forecasts, necessitating 
their inclusion in demand 

flexibility studies.



Discussion
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• How can we use the data?
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