

Hardware-in-the-loop Laboratory Performance Verification of Flexible Building Equipment in a Typical Commercial Building (HILFT)

U.S. DOE DE-EE0009153

Updates for the Industry Advisory Board

July 2024

Building Science & Engineering Group Drexel University

Team Members

Drexel University

Faculty: Jin Wen, PhD; James Lo, PhD Research Scientist: Zhelun Chen, PhD Student: Gabriel Grajewski, Yicheng Li

Texas A&M University

Faculty: Zheng O'Neill, PhD Research Engineer : Zhiyao Yang, PhD Student: Caleb Calfa

National Institute of Standards and Technology

Mechanical Systems and Controls Group Leader: Steven Bushby; Mechanical Engineer: Amanda Pertzborn, PhD; Vance Payne, PhD

Zhelun Chen

Steven Bushby

Amanda Pertzborn

Vance Payne

Building Science 8 Engineering Group Drexel University

Yicheng Li Gabriel Grajewski

Zheng O'Neill

Agenda

- Background & Summary
- Method
	- Testbeds
	- Testing Scenarios
	- Postprocess Procedure
	- Data Schema
- Technical Validation
	- Uncertainty Analysis
	- Data Quality Control
	- Evaluation of Demand Flexibility
- Conclusion
- Discussions

Background & Summary: Goal

Potential

• buildings and building equipment can provide flexible electrical loads

Challenge

• lack of high-resolution end-use load and energy savings shape data

Goal

- publicly-available, high-fidelity datasets
- commonly-used commercial building HVAC and thermal storage equipment

Example grid-interactive efficient commercial building [1]

Background & Summary: Scope

IECC climate zone map [2] Building flexibility load curves [1]

Background & Summary: Scope

- Intelligent Building Agents Laboratory (IBAL) facility at NIST [3]
	- Chiller
	- Ice thermal storage tank
	- AHU-VAV
- Heat Pump Environmental Testing Facility (ASHP) at NIST
	- Two-stage air-source heat pump
- Heat Pump Environmental Testing Facility (WSHP) at TAMU
	- Variable speed water-source heat pump

Air-source heat pump outdoor unit being installed

Chiller

Ice tank

Water-source heat pump hydronic system

Air-source heat pump indoor unit being installed

Water-source heat pump

Method: Testbed

Virtual Building: Occupant Behavior Model

Adapt an existing field validated agent-based occupant thermal behavior model [6]

Virtual Building: Airflow Model

• **CFD modeling**

Simulate occupant local environment at different coordinates

- **Challenges** computationally heavy, not suitable for HIL testing
- **Solutions** ANN models trained on

Hardware-Software Integration: Real-time Communication

- 1-min time step
- Communication response time is typically 10-20 seconds for all testing facilities

ZoneCond: Zone air condition; **OutCond**: Outdoor air condition; **CtrlSig**: Control signals

Testing Scenarios: Control Strategies

IBAL

- **Rule-Based Control**
	- Load shedding: global temperature reset
	- Load shifting: global temperature reset or use ice tank, determine the reset schedule through limited real testing
	- ASHRAE 90.1-2004
	- ASHRAE 90.1-2019 and Guideline 36
- **Model Predictive Control**
	- Chiller, ice tank operation scheme
	- System and zone setpoints
	- Optimize energy use, peak demand, or TOU cost
	- Maintain zone temperature within a comfortable range

ASHP/WSHP

- **Rule-Based Control**
	- Load shedding: global temperature reset
	- Load shifting: global temperature reset, determine the reset schedule through simulation

• **Model Predictive Control**

- Zone temperature setpoint
- Optimize energy use, peak demand, or TOU cost
- Maintain zone temperature within a comfortable range

Testing Scenarios: RBC for IBAL Ice Tank

• IBAL ice tank charge/discharge schedule when it is being tested

Testing Scenarios: FR for AHU Fan

- Approach: Local PID
- Static pressure setpoint of IBAL AHU supply fan
- Signals: 40-min RegA test signals provided by PJM [11]

Testing Scenarios: MPC

• MPC Formulation - Schematics

IBAL: Chiller/Ice Tank-AHU-VAV ASHP, WSHP

Method: Postprocess Procedure

ilin Dilinin ili ili barata di altr **Building Science & Engineering Group** Drexel University

Method: Data Schema

Technical Validation: Uncertainty Analysis

Technical Validation: Data Quality Control

Ensuring integration quality (What to check?)

- Communication delay
- Emulation response time
- Capacities
- Emulation accuracy (i.e., hardware-software mismatch)

Technical Validation: Evaluation of Load Flexibility

 t_i :

 P_r

τ ∗

† Li, H., Johra, H., de Andrade Pereira, F., Hong, T., Le Dréau, J., Maturo, A., Wei, M., Liu, Y., Saberi-Derakhtenjani, A., Nagy, 2023. Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives. Applied Energy, 343, p.121217. †† PJM, 2022. PJM Manual 12: Balancing Operations. Revision 45.

• IBAL (AHU-VAV): Peak demand

Average HVAC Demand during Peak Period

Rule-based Global Temp Reset

- Eff: 78° F T_{cool}
- Shed: relax w/ 80° F T_{cool}
- Shift: precool 3hr w/ $75^{\circ}F$ T_{cool} then relax w/ 80° F T_{cool}
- All: T&R SP reset, and OAT-based chilled water temperature reset

Effectiveness

- All cases shown peak demand reduction $(3-19\%)$.
- Peak demand reductions are limited by ventilation need.
- Shift case underperforms compared to Shed case, often due to static pressure reset (precool \rightarrow higher fan static pressure), and lack of thermal mass.

High-Performance Buildings

- HPB has 6-14 % reduced peak demand when compared to non-HPB (Default).
- HPB has 10-19 % reduced peak demand.

• IBAL (AHU-VAV): Peak demand

Average HVAC Demand during Peak Period

Day-ahead charging. Discharge during peak.

Effectiveness

• 62-70% peak reduction, but overcharge

• IBAL (AHU-VAV): Peak demand

Average HVAC Demand during Peak Period

MPC design

- Optimizes setpoints at an **aggregated** level with limited individual zone and AHU dynamics knowledge.
- Practical for real-time application but may not be the most optimal strategy.

MPC performance

- **MPC**: MPC cases show significant peak demand reductions (12-27%) compared to Default cases. Most peak demand reductions come from reduced ventilation similar to occupancy-based demand ventilation.
- **MPC&TES**: The tested MPC underpredicts the cooling load which results in under utilization of the ice tank.

• IBAL (AHU-VAV): Peak demand, flexibility factor, and utility cost

Insights

- Improved flexibility (high flexibility factor) does not lead to overall utility cost reduction for consumers. -- Pricing structure needs to be carefully designed.
- TOU billed on maximum of the average demand (New York case) results in lower overall utility cost for the

• WSHP: Peak demand

Average HVAC Demand during Peak Period

• A Shift case could be much worse than a Shed case

• WSHP: Peak demand mitigation

2000 83 Atlanta-Eff-Default Atlanta-Eff-Default Atlanta-Shed-Default Atlanta-Shed-Default 82 Atlanta-Shift-Default 1500 Atlanta-Shift-Default $\begin{array}{c}\n\text{Temperature [F]}\\ \text{g} \\ \text{g} \\ \text{m}\n\end{array}$ Peak Peak Power [W] 1000 500 79 78 $\overline{0}$ 12 15 12 15 Ω 3 9 18 21 24 Ω 3 6 9 18 21 24 6 Time [hr] Time [hr]

Elevated heat pump power due to precooling

• Overlooked control mechanism delays power reduction after precooling. Compressor speed can not reduce quickly after precooling.

Evaluation of Load Flexibility: Load Modulating

• IBAL AHU fan

PJM regulation performance score

HILFT Updates 26

Building Science & Engineering Group Drexel University

 $\mathbf{1}$

0.65

Evaluation of Load Flexibility: Building-Human Interaction

- **Real** chilled water AHU-VAV serving four medium office zones [3, 4, 8]
- Capturing uncertainties from system and occupant behaviors

Time [hr]

HILFT Updates 27

Building Science & Engineering Group Drexel University

HILFT Updates 28

Perimeter Zone 3

Core Zone

Perimeter Zone 1

Building Science (Engineering Group Drexel University

Evaluation of Load Flexibility: Building-Human Interaction

- **Simulated** air-source heat pump serving a small office zone [5, 9]
- Stochastic load profile
- Baseline vs. Load Shedding: 100 simulations each [9]
- Impact of fan/heater usage and setpoint changes on load profile

Evaluation of Load Flexibility: Summary of Insights

Building Science 8 Engineering Group Drexel University

Zone Temperature Reset: Effective in reducing peak demand but can cause complex system behavior changes, possibly increasing total system demand.

Advanced Control Strategies: Significantly improve efficiency

and reduce peak demand. The quality of MPC affect the performance of DR control.

Thermal Energy Storage: Ice storage reduces peak demand by leveraging off-peak cooling. Cost-effectiveness depends on utility pricing and usage patterns.

Utility Pricing Structure: Significantly affect overall utility cost reduction, even with the same flexibility.

Flexibility Factor: Enhanced flexibility does not always ensure overall utility cost reduction.

Building Thermal Mass: Effectiveness of precooling varies with building thermal mass.

System Responsiveness:

Quick system adjustments to setpoint changes are crucial but not always feasible. Understanding system dynamics is vital for effective DR strategy design.

Load Modulating: The AHU fan can be effectively modulated. However, it may change the power trajectory when a static pressure reset is also implemented. FR may fail when fan power is already at its limit.

Building-Human Interaction: Unpredictable occupant behaviors impact energy demand forecasts, necessitating their inclusion in demand flexibility studies.

Discussion

• How can we use the data?

Reference

[1] Neukomm, M., V. Nubbe, and R. Fares. 2019. Grid-interactive Efficient Buildings Technical Report Series: Overview of Research Challenges and Gaps. United States. https://doi.org/10.2172/1577966.

[2] Baechler, M. C., T. L. Gilbride, P. C. Cole, M. G. Hefty, and K. Ruiz, 2015. Building America Best Practices Series Volume 7.3: Guide to Determining Climate Regions by County. PNNL.

[3] Pertzborn, A. J. 2016. Intelligent Building Agents Laboratory: Hydronic System Design. US Department of Commerce, National Institute of Standards and Technology.

[4] Pang, Z., Y. Chen, J. Zhang, Z. O'Neill, H. Cheng, and B. Dong. 2020. Nationwide HVAC energy-saving potential quantification for office buildings with occupantcentric controls in various climates. Applied Energy, 279, p.115727.

[5] The United States Department of Energy. Commercial Prototype Building Models. https://www.energycodes.gov/development/commercial/prototype_models/.

[6] Langevin, J., J. Wen, and P. L. Gurian. 2016. Quantifying the Human–building Interaction: Considering the Active, Adaptive Occupant in Building Performance Simulation. Energy and Buildings, 117, 372-386.

[7] Zhang, Y., L. J. Lo, and G. Grajewski. CFD-Trained ANN Model for Approximating Near-occupant Condition in Real-time Simulations. Paper presented at the ASHRAE Topical Conference Proceedings. 2022

[8] Chen, Z., et al., 2022. Development of a Hardware-in-the-loop Testbed for Laboratory Performance Verification of Flexible Building Equipment in Typical Commercial Buildings. Presented at ASHRAE 2022 Annual Conference.

[9] Chen, Z., et al., 2023. A Simulation Framework for Analyzing the Impact of Stochastic Occupant Behaviors on Demand Flexibility in Typical Commercial Buildings. Presented at ASHRAE 2023 Annual Conference.

[10] Li, H., Johra, H., de Andrade Pereira, F., Hong, T., Le Dréau, J., Maturo, A., Wei, M., Liu, Y., Saberi-Derakhtenjani, A., Nagy, Z. and Marszal-Pomianowska, A.,

2023. Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives. Applied Energy, 343, p.121217.

[11] PJM, 2022. PJM Manual 12: Balancing Operations. Revision 45.