Exploring Mathematics through Advanced Technology Applications from Popular Culture

Jason Silverman, Gail Rosen, Steve Essinger, Ryan Coote, Chidiogo Ike-Egbeunou
Drexel University

Pete Konstantopolous
Philadelphia High School for the Creative and Performing Arts

NCTM 2009
Background

• Creative and technical fields are often viewed as an either/or dichotomy. Students
 - “either” like STEM or arts
 - see the two as unrelated

• That is not the case, especially in the digital age
Background

• This project has as its goal to challenge the traditional distinctions between STEM and the arts by

 - seeing connections between “technical” fields and the creative and performing arts
 - learning the scientific ideas behind the technology used in the arts
 - engaging with STEM concepts in the context of an arts or everyday application
Goals

• Design a set of computer based labs that
 - allow students to “see” the connections between their interests, their lives, and STEM ideas
 - provide an opportunity for students to consider STEM as a possible college/career option
Current State of the Project

- Multiple labs developed
- Implementing labs in the Philadelphia High School for the Creative and Performing Arts
- Early in analysis of results
Outline of the Talk

• Introduce you to three labs, aspects of each can be used with your students

• Labs discussed today include:
 - Exploring Geometry with the Roomba
 - Bioinformatics
 - Image Processing
Geometry with iRobot
Geometry with iRobot

• Day 1: Experiencing d=rt
 - “Distance accrues as the iRobot travels at a constant speed for a specific amount of time”

• Mathematical Ideas
 - distance-rate-time
 - unit conversion
 - measurement
 - trigonometry
Geometry with iRobot

• **Day 1: Distance = Rate * Time**
 - get comfortable with iRobot and interface
 - “experience” d=rt

• **Activities involve exploring iRobot syntax**
 - `roombacomm.goForward(500);`
 Distance in millimeters
 - `roombacomm.goForwardAt(500);`
 Speed in millimeters per second
 - `roombacomm.Pause(500);`
 Time in seconds
Geometry with iRobot

• Activities
 - Given two quantities (ex. speed/time), predict third and test using iRobot
 - Explore for different quantities and try your own

• Extension: Weight Test
Geometry with iRobot

• Day 2: Triangles
 - Given a triangle (taped on floor), program robot to traverse the triangle
 • Only given ruler (no protractor)
 • Multiple Step Program (go distance, turn, go another distance...)
 • Calculate or approximate angles (if approximate, allowed to program, then facilitator encouraged to use trig)
Geometry with iRobot

- **Day 2: A-MAZE-ing**
 - Estimate a path that will allow the robot will travel through the maze
 - Dead Reckoning: estimating one’s position based on previous and current values.
Image Processing

- Mathematical Ideas
 - understanding and applying mean/median
 - thresholding
 - matrices (and operations)
Introduction to Image Processing

• Math and physics behind a practical engineering application
• Technology behind digital imagery
• Lab components:
 - Short lecture with take-home notes
 - Activity worksheet with examples and questions
 - Custom software developed for lab to illustrate concepts and encourage student experimentation (MATLAB GUIs)
Technology background

• Pixels to represent an image

• Why?
 - You need to understand how the image is constructed if you want to manipulate it mathematically

• IP Mathematical Algorithms
 - Edge Detection
 - Denoising an image
Edge Detection

• **Algorithms**
 - Calculate difference between pixels; compare to threshold
 - Calculate difference between averages of pixels; compare

• **Activity sheet for calculations**
 - Work algorithm out by hand on an array to solidify concept

• **Experiment w/ GUI**

• **Questions for students**
 - Compare performance between the two algorithms
 - What can you say about most of the transitions between pixels in your image?

<table>
<thead>
<tr>
<th></th>
<th>45</th>
<th>55</th>
<th>105</th>
<th>98</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102</td>
<td>21</td>
<td>18</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>100</td>
<td>110</td>
<td>155</td>
<td>162</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>105</td>
<td>140</td>
<td>110</td>
<td>125</td>
</tr>
</tbody>
</table>

Edge detection pixel array; threshold 20
Edge Detection
Denoising an Image

• Explain the concept of image noise
 - Gaussian (Snowy) Noise
 - Salt & Pepper (Grainy) Noise

• Algorithm
 - Choose block size; calculate mean/median
 - Replace center block with mean/median

• Activity Sheet

• Experiment w/ GUI

• Question
 - As you experimented with the window size what trade-offs in image quality did you notice?
Denoising an Image
Denoising an Image

• Extend concept from images to video
 - Video is a series of still images
 - Experiment with denoising on video clip of soccer game

• Questions
 - What are the tradeoffs?
 - How fast must the algorithm perform on each image so that you can still watch the soccer game in real-time?
Where we are

- Based on the activity sheets students, observations during lab implementations, and survey results, students were learning STEM content
- Analysis of connections to Arts and Pop-culture still evolving
- They had fun.
What’s Available

• Lab activity to be posted online
 - http://dk12.ece.drexel.edu/

• MATLAB GUI code to be converted to a web-based language (i.e. Java)

• Other resources available
Thank You.

http://dk12.ece.drexel.edu/