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Interconnect “Free leftovers”
NoC

Router

Opportunistically collecting “snacks” to 
make a “meal”.What is the performance gain we add by 

opportunistically “snacking” on CMP resources?
[1] Intel Skylake SP HCC, Wikichip.
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The SnackNoC platform improves efficiency
and performance of the CMP by offloading 
data-parallel workloads and “snacking” on 
network resources.
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SnackNoC System Overview

 Added components to a traditional NoC
 Central Packet Manager

 Assemble and issue instruction packets
 Manages execution state of kernels
 Located at Memory Controller

 Router Compute Units (RCU)
 Light-weight accumulator-based processing element (PE)

 Instruction buffering
 ALU

 Located in router pipeline

 Added features to a traditional NoC:
 CPU traffic priority arbitration
 Available NoC buffers as transient data storage
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CPU Traffic Priority Arbitration
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 Primary functionality of NoC is to transfer CPU core and memory traffic
 “Fair” allocators are typically set to select traffic in round-robin
 Allocators are modified to prioritize CPU traffic over SnackNoC instruction or data 

traffic
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 Input buffers typically have low contention
 Available buffers and bandwidth can be used as transient storage
 Useful to keep intermediate results and read-only values on chip
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1
RCU executes instruction,
intermediate result sent to 
transient storage

2
RCU waiting on
intermediate 
value, received 
from transient 
storage

3
Result
returned
to
memory
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PE PE PE PE

PE PE PE PE

PE PE PE PE

1

2 CPM sets up kernel

3 RCUs 
execute 
kernel

4 Return result
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CPM

…

…

Main Memory
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1
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Packet

Manager

SnackNoC Flit

SnackNoC instructions and 
data and sent to the RCUs

Data dependent 
Instructions

2 Data dependent 
instructions are sent to 
reduce intermediate 
results

3 Intermediate results are sent 
to data dependent 
instructions

4 Results reduced on 
the way to corner 
RCU and returned to 
the CPM

Repurposed our NoC 
router crossbar, network 
links, and internal buffers 
to compute this kernel.

NoC Routers with RCUs
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Methodology

 Experiments:
1. Assess the performance of 

SnackNoC
How many additional cores 

worth of performance can 
SnackNoC provide 
opportunistically?

2. Quantify the performance 
interference of operating 
SnackNoC on the CPU cores
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Implemented four SnackNoC 
kernels (SGEMM, Reduction, 
MAC, SPMV)

Executed 16 multi-threaded 
benchmarks from PARSEC3, 
Splash2X, FastForward2 to 
assess performance interference
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 SnackNoC is modeled in the gem5 simulation 
framework

 To quantify performance, four SnackNoC 
kernels executed on:
1. Simulated CMP with the SnackNoC platform
 Compiled to SnackNoC instructions

2. Native Dell server with Intel Xeon E5-2660
 C++ multi-threaded with OpenMP

Native CPU 
Parameters

Configuration

Processor Intel Xeon E5-2660 v3

Core Frequency 2.6GHz

L1 I&D Cache 32KB, 8-way

L2 Cache 256KB, 8-way

L3 Cache 20MB, 20-way

Simulated CMP 
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory 
Controllers

NoC Flit Size 32B

# Virtual Channels 4

# Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF
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Quantifying SnackNoC Performance Gain

 SnackNoC kernels are executed 
on an increasing number of cores 
to determine comparable 
performance of SnackNoC

 CMP performance roughly linear 
increase with increasing cores, 
with exception to SPMV

 Performance gain between 2 and 
6 x86 OOO cores
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SnackNoC Area and Power Overhead

 SnackNoC components’ RTL 
implemented, synthesized with 
Synopsis Design Compiler:
 45nm NCSU technology node
 Operating Freq. 1GHz

Central Packet 
Manager

Additional
Power (%)

Additional Area 
(%)

Assembly Logic 
and Buffers 0.08% 2.43%

Kernel State 0.16% 0.10%
Instruction Buffer 10.71% 25.75%

Offload Data 
Memory Buffer 0.95% 2.28%

Output Result 
FIFO 0.95% 2.28%

Total 12.85% 33.04%
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Additional
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Additional Area 
(%)

32-bit Parallel 
Adder 1.14% 1.15%

32-bit Parallel 
Subtractor 1.14% 1.15%

32-bit Multiply and 
Accumulate (MAC) 2.05% 1.73%

Ordered Instruction 
Buffer 2.05% 2.30%

Dependency Buffer
2.51% 1.15%

Accumulator Buffer
0.68% 0.12%

Sub Block List
0.23% 1.73%

Total 9.81% 9.33%
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 SnackNoC components’ RTL 
implemented, synthesized with 
Synopsis Design Compiler:
 45nm NCSU technology node
 Operating Freq. 1GHz

 Single RCU per NoC router
 Under 10% additional power and 

area per router

 Single CPM per NoC
 12.85% additional power per NoC
 33.04% additional area per NoC

 Largest contributor is instruction buffer

Central Packet 
Manager

Additional
Power (%)

Additional Area 
(%)

Assembly Logic 
and Buffers 0.08% 2.43%

Kernel State 0.16% 0.10%
Instruction Buffer 10.71% 25.75%

Offload Data 
Memory Buffer 0.95% 2.28%

Output Result 
FIFO 0.95% 2.28%

Total 12.85% 33.04%
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32-bit Multiply and 
Accumulate (MAC) 2.05% 1.73%

Ordered Instruction 
Buffer 2.05% 2.30%

Dependency Buffer
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Accumulator Buffer
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SnackNoC’s Small Contribution to the Total Uncore

 Full uncore of 16 core CMP is 
modeled in 45nm with Cacti 7.0 
and Orion 3.0.
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SnackNoC’s Small Contribution to the Total Uncore

 Full uncore of 16 core CMP is 
modeled in 45nm with Cacti 7.0 
and Orion 3.0.

 16 RCU SnackNoC only 
contributes 1.6% and 1.1% 
power and area, respectively.
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Uncore Power and Area 

Satisfies goal of limited overhead
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 To quantify performance interference, the 
performance of the CMP is compared with 
and without SnackNoC Traffic

Simulated CMP 
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory 
Controllers

NoC Flit Size 32B

# Virtual Channels 4

# Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF
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 To quantify performance interference, the 
performance of the CMP is compared with 
and without SnackNoC Traffic
 Simulated 16 core CMP with benchmarks from 

PARSEC3, Splash2X, and FastForward2

Simulated CMP 
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory 
Controllers

NoC Flit Size 32B

# Virtual Channels 4

# Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF
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 To quantify performance interference, the 
performance of the CMP is compared with 
and without SnackNoC Traffic
 Simulated 16 core CMP with benchmarks from 

PARSEC3, Splash2X, and FastForward2
 SnackNoC kernels are simultaneously executed

Simulated CMP 
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory 
Controllers

NoC Flit Size 32B

# Virtual Channels 4

# Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF
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 Performance impact varies based on NoC utilization
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 Performance impact varies based on NoC utilization
 Peak 1.1% performance impact on CMP cores
 On average ~0.30% for SGEMM, MAC, SPMV. On average 0.11% for Reduction

 SnackNoC kernel completion time impacted at most 3.9% with fair arbitration
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Minimal impact of “Snacking” on CMP performance
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Minimal impact of “Snacking” on CMP performance
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SnackNoC 
traffic added 
to LULESH

Minimal impact 
to CMP 
Performance



Further Reducing Impact with Priority Arbitration
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 Adding priority flit arbitration for CMP traffic:
 Average performance impact drops from 0.25% to 0.17%
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 Improves flit interference by up to 92%
 Peak performance impact with priority arbitration is 0.83%



Further Reducing Impact with Priority Arbitration
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 Adding priority flit arbitration for CMP traffic:
 Average performance impact drops from 0.25% to 0.17%
 Improves flit interference by up to 92%
 Peak performance impact with priority arbitration is 0.83%

Satisfies goal of limited 
performance impact
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 “Slack” of the Communication Fabric

 The SnackNoC Platform

 Experimental Results

 Conclusion and Future Considerations



Conclusion and Future Considerations

 Opportunistically “snacking” on 
NoC resources can add 
performance to our CMPs
 Added 2 to 6 cores of 

performance with only a 1.3% 
increase of the uncore area
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Conclusion and Future Considerations

 Opportunistically “snacking” on 
NoC resources can add 
performance to our CMPs
 Added 2 to 6 cores of 

performance with only a 1.3% 
increase of the uncore area

 Further tradeoffs we’re 
investigating:
1. Growing application coverage
2. Scaling compute density
3. Supporting future topologies
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Questions?
91

Main Contributions:
 Quantified design slack in the communication fabric
 Opportunistically adds 2 to 6 core performance to the CMP by repurposing NoC 

resources with low overhead

Karthik Sangaiah, Michael Lui, Ragh Kuttappa, Baris Taskin [Drexel University], 
and Mark Hempstead [Tufts University], “SnackNoC: Processing in the 
Communication Layer”, Proceedings of the IEEE international Symposium on 
High Performance Computer Architecture (HPCA), February 2020.

http://vlsi.ece.drexel.edu/ & https://sites.tufts.edu/tcal/

http://vlsi.ece.drexel.edu/
https://sites.tufts.edu/tcal/
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