SNACKNOC: PROCESSING IN THE
COMMUNICATION LAYER

Karthik Sangaiah, Michael Lui, Ragh Kuttappa,
Baris Taskin, and Mark Hempstead

S€ Tufts

D]_'exel UNIVERSITY

UNIVERSITY

Feb 25t 2020 VLS| and Architecture Lab

Opportunistic Resources for Graduate Students

Free Iefovers Steak dinner

=

Opportunistically collecting snacks

towards a meal.

Opportunistic Resources in the CMP

x20.UPI [x20 UPL. 31905 'x16 PCle

I&iercon n%tﬁ

Intel Skylake 8180 HCC!!!

[1] Intel Skylake SP HCC, Wikichip.

Ex
©

o
_w
=

)

o

i -<

i

Communication
Interconnect

ﬁ‘Free leftovers”

Iv vl
| &) o
ul ir ul v ul ol
a) o s 2] s &)
= =7

.
I
[t

Input Unit

Input From
Upstream
Router

Virtual Flit
Channel 0 Buffer
.

.
.
Wirtual
Channel N

l RD ® v
Col mpu &

Input Unit

NoC
Router

Crossbar

Output Unit

. . Output to
] Jon |
‘anne fer Router

0
.
.
Virtual
Channel N

X

7 .

N\

Input From
Upstream
Router
—]

Virtual Flit
Channe\ 0 Buffer
.
.

.
Wirtual
Channel N

\ Output Unit
. N Output to
vomnl I:I:I:I:‘ s v
Channel 0 Buffer Router
.
-

Switch Allocator

.
Virtual
Channel N

-

Buffer Credits 1o«

Upstream Router

VC Allocator

Buffer Credits from

Downstream Router

Opportunistically collecting “snacks” to
make a “mea

Opportunistic Resources in the CMP

.
ﬁ‘Free leftovers”

[] []
Communication
Input Unit Output Unit
Interconnect | . JE NEERE NoC e T Lo | e,
Upstream | Charvel 0 Buffer Chamnel 0 Buffer o tor
louter - L[]
: : —
T ’ Router
viewat (| ({ Y 1 \Mirual

-
- Virlual
Switch Allocator Ch;n:; N ’—'—'—'—‘
Buffer C
Down

VC Allocator

Intel Skylake 8180 HCC!!!

What is the performance gain we add by

opportunistically “snacking” on CMP resources?

[1] Intel Skylake SP HCC, Wikichip.

Quantifying Design Slack in the NoC
-

NoC designed to minimize latency
during heavy traffic

O NoC implementation can account for
60% to 75% of the miss latency!?

[2] Sanchez et al., ACM TACO, 2010.

Quantifying Design Slack in the NoC
-

NoC designed to minimize latency
during heavy traffic

O NoC implementation can account for
60% to 75% of the miss latency!?

Study of NoC resource utilization on
recent NoCs designs

O 3 selected best paper nominated
NoCs have similar performance:

DAPPERE!, AxNoCMl, BiNoCHS!!

O Reducing resources, substantially
reduced performances

Further details of study is in our paper

[2] Sanchez et al., ACM TACO, 2010.

[3] Raparti et al., IEEE/ACM NOCS, 2018.
[4] Ahmed et al., IEEE/ACM NOCS, 2018.
[5] Mirhosseini et al, IEEE/ACM NOCS, 2017.

Quantifying Design Slack in the NoC
-

NoC designed to minimize latency Opportunities in Network-on-Chip
during heavy traffic Slack

O NoC implementation can account for
60% to 75% of the miss latency!?

Study of NoC resource utilization on
recent NoCs designs e (11 2] NoC [T & |z
O 3 selected best paper nominated o Djj] Router D]:D -
NoCs have similar performance: . N .
DAPPERE], AxNoCl, BiNoCHS!S! (o] ; X :
O Reducing resources, substantially el EEN st [R | o
reduced performances e T s | [T 1T -
Further details of study is in our paper et~ — oo

[2] Sanchez et al., ACM TACO, 2010.

[3] Raparti et al., IEEE/ACM NOCS, 2018.
[4] Ahmed et al., IEEE/ACM NOCS, 2018.
[5] Mirhosseini et al, IEEE/ACM NOCS, 2017.

Quantifying Design Slack in the NoC
-

NoC designed to minimize latency Opportunities in Network-on-Chip
during heavy traffic Slack
O NoC implementation can account for O Crossbar

60% to 75% of the miss latency!?

Study of NoC resource utilization on
recent NoCs designs e (11 2] NoC [T & |z
: " 5 Router 5 g
O 3 selected best paper nominated o T T T s T T
NoCs have similar performance: . T .
3 4 . 5 l Cor::::lin b hd
DAPPERE], AxNoCl¥l, BiNoCHSI! . i X .
Input Unit ™~ Output Unit
O Reducing resources, substantially el N st [][Je | e
reduced performances s T 1T s stocar | oo T 111
Buller Credilsto < VC Allocator Buffer Credils fram
Further details of study is in our paper et e

[2] Sanchez et al., ACM TACO, 2010.

[3] Raparti et al., IEEE/ACM NOCS, 2018.
[4] Ahmed et al., IEEE/ACM NOCS, 2018.
[5] Mirhosseini et al, IEEE/ACM NOCS, 2017.

Quantifying Design Slack in the NoC

NoC designed to minimize latency Opportunities in Network-on-Chip

during heavy traffic Slack
O NoC implementation can account for O Crossbar
0 0 ; [2] .
60% to 75% of the miss latency O Network Links
Study of NoC resource utilization on
recent NoCs designs e (AT 2] NoC [T o |z
O 3 selected best paper nominated e T Router e [T 1T
NoCs have similar performance: o g .
CDI‘:II::“H * hd
DAPPER™], AxNoCH, BiNoCHS!® R B .
. . Input Unit / \ Output Unit o
O Reducing resources, substantially el B N st ||| Jan | i
reduced performances o T ey |

Further details of study is in our paper

[2] Sanchez et al., ACM TACO, 2010.

[3] Raparti et al., IEEE/ACM NOCS, 2018.
[4] Ahmed et al., IEEE/ACM NOCS, 2018.

[5] Mirhosseini et al, IEEE/ACM NOCS, 2017.

Quantifying Design Slack in the NoC
-

NoC designed to minimize latency Opportunities in Network-on-Chip
during heavy traffic Slack
O NoC implementation can account for O Crossbar

60% to 75% of the miss latency!? O Network Links

O Internal Buffers

Study of NoC resource utilization on
recent NoCs designs s Djjj » | NoC Dojmjj oS
O 3 selected best paper nominated o s Djj] Router D]:D -
NoCs have similar performance: . N .
DAPPERE], AxNoCl, BiNoCHS!S! (o] ; X :
O Reducing resources, substantially el EEN st [R | o
reduced performances e T s | [T 1T -
Further details of study is in our paper et~ — oo

[2] Sanchez et al., ACM TACO, 2010.

[3] Raparti et al., IEEE/ACM NOCS, 2018.
[4] Ahmed et al., IEEE/ACM NOCS, 2018.
[5] Mirhosseini et al, IEEE/ACM NOCS, 2017.

Quantifying Design Slack in the NoC

Router Crosshar Usage %

Crossbar Utilization

2. Cholesky 3. LULESH
T T T T

4. Graphs00
T T T

=
T

- 40 T 40

20

0

10 0 5 10

0 10 20 30 40

Time {10% Cycles) Time { 10% Cyeles) Time {J(}E Cyeles) Time (0% Cycles)
------- RO ——- Rl — R2 ---- R3 -—- R4 --——- R& --—- BB -— RT
--- RE —— RH - R10---- RI1l ---- R12 — RI13 --- Rl4 — Rl5

Simulated 16 core CMP with 4 benchmarks representing

“low”, “medium”, “medium-high”, “high” traffic

Crossbar Utilization:
O Peak utilization (Graph 500): 42% utilization
O Highest median (Graph 500): 13.3% utilization

Quantifying Design Slack in the NoC

T
l’t

Router Crosshar Usage %

Crossbar Utilization

1. FMM 2. Cholesky 3. LULESH 4. Graphioo
T T T T T T T) -
40 4 aof H 4ot - a0
20+ - 20} - 20 0 [«
4
v . '
0 41 o —M h ok 0
1 1 1 1 1
0 2 4 3 0 5 10 0 5){f 0 10 20 30 4[']'
Time {10% Cycles) Time { 10% Cyeles) Time (1,(}‘{!:‘)'[-]05] Time (0% Cryeles)y
ya
------- RO ——- Rl — R2 ---- R3 -—— R4 »£-- RS ---—- R6 —— RT !
--- RE —— RH - RI10---- RIl -—-—- H,J;'(—-— R13 --- Rl4 — Rl5 1
P 1
7’ 1
'
, 1
7’)
4 !
4
Medtan utilization, Router 5: 8.6% !
I
Router 5 ,
1

(€]
o
—

40 2 !
I
30 T oppumeviduen— [
0. * ® ¢ I
20 * * o . I
* * * s 1

o O
>
°
&
*
>
®q
°
*
o
*
*e
*
(XJ
-

Time (108 Cycles) 1

Router Crossbar Usage (%)

Simulated 16 core CMP with 4 benchmarks representing
“low”, “medium”, “medium-high”, “high” traffic

Crossbar Utilization:
O Peak utilization (Graph 500): 42% utilization
O Highest median (Graph 500): 13.3% utilization

Quantifying Design Slack in the NoC

Router Crosshar Usage %

Crossbar Utilization

2. Cholesky 3. LULESH
T T T T

4. Graphs00
T T T

=
T

- 40 T 40

20

0

10 0 5 10

0 10 20 30 40

Time {10% Cycles) Time { 10% Cyeles) Time {J(}E Cyeles) Time (0% Cycles)
------- RO ——- Rl — R2 ---- R3 -—- R4 --——- R& --—- BB -— RT
--- RE —— RH - R10---- RI1l ---- R12 — RI13 --- Rl4 — Rl5

Simulated 16 core CMP with 4 benchmarks representing

“low”, “medium”, “medium-high”, “high” traffic

Crossbar Utilization:
O Peak utilization (Graph 500): 42% utilization
O Highest median (Graph 500): 13.3% utilization

Quantifying Design Slack in the NoC

Router Crosshar Usage %

Link Usage %

Crossbar Utilization

1. PN 2. Cholesky 3. LULESH 4. Graphs00
T T T T T T T T T
40 [4 40 H 40 A 40
20 - e a0 [
0 , ; B]
0 2 4 6 0 5 10] 5 10 0 10 20 30 40

Time {10% Cycles) Time { 10% Cyeles) Time {J(}E Cyeles) Time (0% Cycles)

------- RO ——- Rl — R2 ---- R3 -—— R4 --—- R5 ---—- R6 -—— RT
--- R8 —— RO - RI0 ---- Rll ---- R12 ~— RI3 --- Rl4 — RI5

Link Utilization

1. FMM 2. Cholesky 3. LULESH 4. Graphs00
T T T T T T T T T
20 — 20 - 20~ - 20
10 - — 10 e 10
: 1 :
0 | -0 0 ,) 0
0 2 4 3 0 5 10 0 5 10 0 0 20 30 40

Time (10% Cycles) Time (10° Cycles) Time {J(}E Cycles) Time { 108 Cyeles)

------- RO —— Rl — R2 ---- R3 ——— R4 -——- R§ --—-- B6 —— RT
--- R8 LI J— R10 ---- Rll ---- R12 ~—— RI13 --- Rl4 — RI15

Simulated 16 core CMP with 4 benchmarks representing
“low”, “medium”, “medium-high”, “high” traffic

Crossbar Utilization:
O Peak utilization (Graph 500): 42% utilization
O Highest median (Graph 500): 13.3% utilization

Link Utilization
O Peak utilization link (Graph500): 18% utilization
O Highest median link utilization (LULESH): 3.3% utilization

Quantifying Design Slack in the NoC

Router Crosshar Usage %

Link Usage %

40

20

0

Crossbar Utilization

Time {10% Cyeles)

1. FMM 2. Cholesky 3. LULESH 4. Graphson
T T T T T T T T T
- - 40 -1 40 T 40
- - 20 20
’ i N 0 0
0 2 4 6 0 5 10 0 5 10 0 10 20 30 40

Time { 10% Cyeles) Time {J(}E Cyeles) Time (0% Cycles)

------- RO ——- Rl — R2 ----
--- R8 — RO

----- RID - ---

R --- R4 -——— RS --—-- R6 -—— RT
R1l ---- R12 —— RI13 --- Rl4 — RIl3

Link Utilization

Time (10% Cycles)

1. FMM 2. Cholesky 3. LULESH 4. Graphs00
T T T T T T T T T
= — 20 - 20~ - 20
= — 10 e 10
—LM - 0 —M 0 ; ! 0
0 2 4 3 0 5 10 0 5 10 0 0 20 30 40

Time (10° Cycles) Time {J(}E Cycles) Time { 108 Cyeles)

--- R8 RO

------- RO ——- Rl — R2 ----

R -——- B4 -——— RS --—-- RE —— RT

- R10 ---- RI1l ---- R12 — RI13 --- Rl4 — RI15

Simulated 16 core CMP with 4 benchmarks representing
v, ”, “medium-high”, “high” traffic

“low”, “medium”,
Crossbar Utilization:

O Peak utilization (Graph 500): 42% utilization

O Highest median (Graph 500): 13.3% utilization

Link Utilization
O Peak utilization link (Graph500): 18% utilization
O Highest median link utilization (LULESH): 3.3% utilization

Buffer Utilization
O Raytrace : 4% of cycles have localized contention
O 10% utilization during contention

O 3M flits of the 2.4T flits forwarded: buffer utilization reaches
30-55% of the total capacity

Quantifying Design Slack in the NoC

Simulated 16 core CMP with 4 benchmarks representing

Crossbar Utilization “low”, “medium”, “medium-high”, “high” traffic
Ur L FMM 2. Cholesky 3. LULESH 4. Graph500
= I) w Crossbar Utilization:
—; 0| 1 2f 1 - 0| O Peak utilization (Graph 500): 42% utilization
é . _LLM . _db.h | | ot M O Highest median (Graph 500): 13.3% utilization
PE" 0 2 4 6 0 5 10 0 5 10 0 10 20 30 40
Time {10° Cycles) Time {10° Cycles) Time (10° Cycles) Time (10° Cycles) Link Utilization
B S P A O Peak utilization link (Graph500): 18% utilization

O Highest median link utilization (LULESH): 3.3% utilization

The SnackNoC platform improves efficiency
and performance of the CMP by offloading oo

data-parallel workloads and “snacking™ on

network resources.

Overview
e

“Slack” of the Communication Fabric
The SnackNoC Platform
Experimental Results

Conclusion and Future Considerations

SnackNoC Platform Overview

Goals:

O Opportunistically “Snack” on existing
network resources for additional
performance

O Limited additional overhead to uncore
O Minimal or zero interference to CMP traffic

Opportunistic NoC-based compute
platform

O Limited dataflow engine
O Applications:

Data-parallel workloads used in scientific

computing, graph analytics, and machine
learning

SnackNoC Platform Overview

Goals:

O Opportunistically “Snack” on existing
network resources for additional
performance

O Limited additional overhead to uncore
O Minimal or zero interference to CMP traffic

Opportunistic NoC-based compute

plq’rform IO TN T
O Limited dataflow engine X f -) fi
O Applications: !] § M ?
e iy o =

Data-parallel workloads used in scientific pintr v MU E iy
computing, graph analytics, and machine b i o — _jfttj
learning I)

Celerity RISC-V SoCl¢!

[6] S. Davidson et al., IEEE Micro, 2018.

SnackNoC Platform Overview
e

Goals:

O Opportunistically “Snack” on existing
network resources for additional
performance

O Limited additional overhead to uncore

O Minimal or zero interference to CMP traffic

Google Cloud TPU!

Opportunistic NoC-based compute
platform

O Limited dataflow engine X b‘f =
[Vanilla-
O Applications: N § e
g I
Data-parallel workloads used in scientific =mhm (L i
computing, graph analytics, and machine ’H}’ L i
learning T

Celerity RISC-V SoCl¢!

[6] S. Davidson et al., IEEE Micro, 2018.
[7] Jouppi et. al, IEEE/ACM ISCA, 2017.

SnackNoC Platform Overview
e

Goals: ccy oo IDFETC

O Opportunistically “Snack” on existing = cruf cp
network resources for additional == '
performance

O Limited additional overhead to uncore
O Minimal or zero interference to CMP traffic

Google Cloud TPU!

bfi T “‘T-,::.-

Opportunistic NoC-based compute

platform Intel Skylake 8180 HCC!'! MO T o
O Limited dataflow engine X — ﬁ'
.] | g| | vanila-s %..

O Applications: N cor
PP . :§§ i
Data-parallel workloads used in scientific : L i
computing, graph analytics, and machine — fi

learning T

Celerity RISC-V SoCl¢!

[1] Intel Skylake SP HCC, Wikichip.
[6] S. Davidson et al., IEEE Micro, 201 8.
[7] Jouppi et. al, IEEE/ACM ISCA, 2017.

SnackNoC Platform Overview

e
Goals: = ,, g.

O Opportunistically “Snack” on existing
network resources for additional
performance

O Limited additional overhead to uncore
O Minimal or zero interference to CMP traffic

platform Intel Skylake 8180 HCCI!]

Opportunistic NoC-based compute

T DCCEL

[I

L} 111

O Limited dataflow engine X =
[n

O Applications: N § W %‘

: I

Data-parallel workloads used in scientific r j (i

computing, graph analytics, and machine — fi
learning T

dinne i] [6]
Steak dinner Celerity RISC-V SoC

[1] Intel Skylake SP HCC, Wikichip.
[6] S. Davidson et al., IEEE Micro, 201 8.
[7] Jouppi et. al, IEEE/ACM ISCA, 2017.

SnackNoC Platform Overview

Goals:

O Opportunistically “Snack” on existing
network resources for additional
performance

O Limited additional overhead to uncore

O Minimal or zero interference to CMP traffic

Google Cloud TPU!

Opportunistic NoC-based compute
platform Intel Skylake 8180 HCCL!!

}TI {lll TLLOCCTOT IILLIIT]

O Limited dataflow engine -ﬁ ?
O Applications: i e
] inj|

Data-parallel workloads used in scientific : e
computing, graph analytics, and machine y L,
learning ||“||||| W

£ Y

. .) ”
Steak dinner Celerity RISC-V SoC

[1] Intel Skylake SP HCC, Wikichip.
[6] S. Davidson et al., IEEE Micro, 201 8.
[7] Jouppi et. al, IEEE/ACM ISCA, 2017.

SnackNoC System Overview
S —

Added components to a traditional NoC

NoC Routers

SnackNoC System Overview
S —

Added components to a traditional NoC

A ® > @
O Central Packet Manager NoC R
Assemble and issue instruction packets — ° outers LA
Manages execution state of kernels
Located at Memory Controller
o ® C @

SnackNoC System Overview

Added components to a traditional NoC

Memor Memor
O Central Packet Manager 7 4
. . Controller NoC Routers Controller
Assemble and issue instruction packets

Manages execution state of kernels

Located at Memory Controller

O Router Compute Units (RCU)

Light-weight accumulator-based processing element (PE)

Instruction buffering
ALU

Located in router pipeline

Memory Memory
Controller Controller

SnackNoC System Overview

Added components to a traditional NoC

Memor Memor
O Central Packet Manager 7 4
. . Controller NoC Routers Controller
Assemble and issue instruction packets

Manages execution state of kernels

Located at Memory Controller

O Router Compute Units (RCU)

Light-weight accumulator-based processing element (PE)

Instruction buffering
ALU

Located in router pipeline

Memory
Controller

Memory
Controller

Instruction
Flits

SnackNoC System Overview

Added components to a traditional NoC

Memor Memor
O Central Packet Manager 7 4
. . Controller NoC Routers Controller
Assemble and issue instruction packets

Manages execution state of kernels

Located at Memory Controller

Result

O Router Compute Units (RCU) Data
Light-weight accumulator-based processing element (PE) Elit
Instruction buffering ITS

ALU

Located in router pipeline

Memory
Controller

Memory
Controller

Instruction
Flits

SnackNoC System Overview

Added components to a traditional NoC

Memor Memor
O Central Packet Manager 7 4
. . Controller NoC Routers Controller
Assemble and issue instruction packets

Manages execution state of kernels

Located at Memory Controller

Result

O Router Compute Units (RCU) Data
Light-weight accumulator-based processing element (PE) Elit
Instruction buffering ITS

ALU

Located in router pipeline

Memory
Controller

Memory
Controller

Added features to a traditional NoC:
O CPU traffic priority arbitration

Instruction
Flits

O Available NoC buffers as transient data storage

NoC Router Modification and RCU Additions
-

Router Compute Units (RCU:s)
O 32-bit accumulator-based processing element
O Instruction re-ordering and buffering

Modifications to input buffer queues, allocators, and crossbar r

NoC Router I]

Added to
baseline

Input Unit Qutput Unit
Input From Wirtual Flit Virtual Flit D{?utput to
wnstream
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router . .
> . L EE—
L]
Virtual Virtual
Channel N Channel M
A \ Crossbar /
]]
Route ® @
Computation X
® ®
v Input Unit / \ Output Unit
N . Output t
Input From Wirtual Flit Virtual Flit Dawunpsl;re:m
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router . -
RS . - F————>
Virtual . Virtual
Channel N Switch Allocator Channel N
Buffer Credits to < VC Allocator € Buffer Credits from
Downstream Router

Upstream Router

NoC Router Modification and RCU Additions

Router Compute Units (RCU:s)
O 32-bit accumulator-based processing element
O Instruction re-ordering and buffering

Modifications to input buffer queues, allocators, and crossbar Fo====- r

NoC Router I]

Added to
baseline

Input Unit Qutput Unit
Input From Wirtual Flit Virtual Flit D{?:tr;ps:rt’et:m
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router . .
> . L ———>»
L]
Virtual Virtual
Channel N Channel M
A \ Crossbar /
r -]
Rout Router
o ati | compute ®
Computation I p
Unit
@ | _"t ®
\
J Input Unit \ Output Unit
Input From Virtual Virtual Fiit Dgwu:'p;;::m
Upstream Channel 0 Channel 0 Buffer Router
Router -
H 4’
Virtual . Virtual
Channel N Switch Allocator Channel N
Buffer Credits to < VC Allocator € Buffer Credits from
Downstream Router

Upstream Router

NoC Router Modification and RCU Additions
-

Router Compute Units (RCU:s)

O 32-bit accumulator-based processing element Added 1o

O Instruction re-ordering and buffering baseline

Modifications to input buffer queues, allocators, and crossbar F===mmy
1 Modified :

NoC Router -

Input Unit Qutput Unit
- Output t
» ,,——“'“!——':; ____ to Input From Wirtual Flit Virtual Flit Do\:'r;psl:re:m
T \‘\:\“~S)Adt_c~h and VC Upstream Channel 0 Buffer Channel 0 Buffer Router
e Dependency Buffer N AIIoEftors.- Router . .
\ Allocatore. . . . : . >
Ve N Tl . -
/ \ ll ________ Virtual Virtual
/ Ordered N T
/ * Instruction Buffer ‘; "CI'EETT N Channel N
————p] Dependency | / i AT Crossbar
- H ecoder L
/7 / - R ——— @
/ Sub-block List -~ \
! t ———————— - — r Router °
[' | . : i
Instruction Flit “‘ Instruction Decoder] 'vy Computatlon I ComPUte
|
from \ v / L L
Input Unit Buffer e
\ / - - - .
\ / ey Tnput Unit \ Output Unit
———— N . Output t
_____ ~ptfFrom Virtual Virtual Fiit Dawunp;;m:m

________ Uzstrteam Channel 0 Channel 0 Buffer Router

to __———"" outer . -

=T . - F————>
N -~ Zi~x~CTossbar . -
T o Switch i ;
————— & Virtual . Virtual
Channel N Switch Allocator Channel N

VC Allocator < Buffer Credits from
Downstream Router

Buffer Credits to <
Upstream Router

NoC Router Modification and RCU Additions

Router Compute Units (RCU:s)

O 32-bit accumulator-based processing element
O Instruction re-ordering and buffering

Added to
baseline
Modifications to input buffer queues, allocators, and crossbar i
1 Modified :
NoC Router I

Input Unit Qutput Unit
- Output t
- to Input From Virtual Flit Virtual Fiit Downetream
T \‘\:“~S)Adt_c~h and VC Upstream Channel 0 Buffer Channel 0 Buffer Router
/’/ Dependency Buffer N A"OEHN-_ Router . .
e NN A TT=—ll — r I S g F———————»
s N T T . .
. l' Virtual Virtual
Ordered N T
* Instruction Buffer \I!‘ ~Il"f§ﬂ‘i' N I Channel N
——p| Dependency |] A — e agan | —
,/—"' Decoder /N
/ ‘Sub-block List e | []
| ey w N G — - \
: t ! Route @
Instruction Flit Instruction Decoder] ", Computatiun
from \ v / L
Input Unit Buffer
e Output Unit
————)) Output to
_____ apTf From Virt — - I Virtual Flit Dowratraam
_______ Upstream Chaniel 0 Buffer Channel 0 Buffer Router
g to__——""" Router . .
~x == — . —_— - - ———>»
g ::‘__\. -Crossbar I . I -
-~ - Switch g O . . (- - I Virtual
" Virtua . irtua
Channel N Switch Allocator Channel N

VC Allocator J

Buffer Credits to <
Upstream Router

Buffer Credits from
Downstream Router

_—__J

CPU Traffic Priority Arbitration

Primary functionality of NoC is to transfer CPU core and memory traffic
O “Fair” allocators are typically set to select traffic in round-robin

O Allocators are modified to prioritize CPU traffic over SnackNoC instruction or data

traffic

Input Unit Qutput Unit
Output t
Input From Wirtual Flit Virtual Flit Do\:'r;psl:re:m
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router . .
> . L ———>»
L]
Virtual Virtual
Channel N Channel M
A \ \ Crossbar /
] (o= —" e
Route | Router | °
Computation) I Compute A
o _Unt | b
Input Unit 1 Output Unit
v P P
N . Output t
Input From Wirtual Flit Virtual Flit Dawunpsl;re:m
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router . -
> . - F———>»
Virtual . Virtual
Channel N Switch Allocator Channel N
Buffer Credits to < VC Allocator € Buffer Credits from
Upstream Router Downstream Router

Transient Data Storage

Input buffers typically have low contention

O Available buffers and bandwidth can be used as transient storage

Useful to keep intermediate results and read-only values on chip

Input Unit Qutput Unit
Input From Wirtual Flit Wirtual Flit D{?ulput to
wnstream
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router
—> >
Virtual Virtual
Channel N Channel M
A \ \ Crossbar /
] (o= —" e
Route | Router | °
Computation) I Compute X
o _Unt | ®
v Input Unit / y \ Output Unit
N . Output t
Input From Wirtual Flit Virtual Flit Dawunpsl;re:m
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router
— F————>
Virtual . Virtual
Channel N Switch Allocator Channel N

Buffer Credits to < VC Allocator € Buffer Credits from
Upstream Router Downstream Router

Transient Data Storage

Input buffers typically have low contention

O Available buffers and bandwidth can be used as transient storage

Useful to keep intermediate results and read-only values on chip

Input Unit Qutput Unit
Input From Wirtual Flit Wirtual Flit D{?ulput to
wnstream
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router
—> >
Virtual Virtual
Channel N Channel M
1
AL \\ \ Crossbar /
] (o= —" e
Route | Router | °
Computation) I Compute X
o _Unt | ®
v Input Unit ,/' 4 \ Output Unit
N . Output t
Input From Wirtual Flit Virtual Flit Dawunpsl;re:m
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router
— F————>
Virtual . Virtual
Channel N Switch Allocator Channel N
]

Buffer Credits to < VC Allocator € Buffer Credits from
Upstream Router Downstream Router

Transient Data Storage

Input buffers typically have low contention

O Available buffers and bandwidth can be used as transient storage

Useful to keep intermediate results and read-only values on chip

NoC Routers

Input Unit Qutput Unit
Input From Wirtual Flit Wirtual Flit D{?ulput to
wnstream
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router
—> >
Virtual Virtual
Channel N Channel M
1
AL \\ \ Crossbar /
] (o= —" e
Route | Router | °
Computation) I Compute X
o _Unt | ®
v Input Unit__ A \ Output Unit
N . Output t
Input From Wirtual Flit Virtual Flit Dawunpsl;re:m
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router
— F————>
Virtual . Virtual
Channel N Switch Allocator Channel N
]

Buffer Credits to < VC Allocator € Buffer Credits from
Upstream Router Downstream Router

Transient Data Storage

Input buffers typically have low contention

O Available buffers and bandwidth can be used as transient storage

Useful to keep intermediate results and read-only values on chip

NoC Routers

Input Unit Qutput Unit
Input From Wirtual Flit Virtual Flit D{?:tr;ps:rt’et:m
Upstream Channel 0 Buffer Channel 0 Buffer Router
Router
N ——»
Virtual Virtual
Channel N Channel M
At ‘\ \ Crossbar /
] (o= —" e
Route | Router | °
Computation) I Compute A
o _Unit | ®
v Input Unit / L \ Output Unit
Input From Virtual Flit Virtual Fiit Dgwu;p;;rl‘::m
Upstream Channel 0 Buffer Channel 0 Buffer Router
. R Router . -
-
RCU executes instruction, — : : —
Virual Switch Allocator Vitual
1 1 Ch N
intermediate result sent to Ghammel N| e

Buffer Credits to < VC Allocator € Buffer Credits from

transient storage Upstream Roter Downsiream Routar

Transient Data Storage

Input buffers typically have low contention

O Available buffers and bandwidth can be used as transient storage

Useful to keep intermediate results and read-only values on chip

NoC Routers

Input Unit Qutput Unit
Q Input From Wirtual Flit Wirtual Flit D{?:tr;ps:rt’et:m
: RC U wda i-l-ing on Uzstrteam Channel 0 Buffer Channel 0 Buffer Router
outer : : —
intermediate Vi T i
i I . d Channel N ‘ Channel N
vda Ue, receilve AL N Crossbar
. o % ——.\; / '
1 from transient — [Router |
: Computation }“_bl Compute g
stora ge ° |L _U_nit_ -| : : ®
V. Input Unit ,/' 7 \ Output Unit
Input From Virtual Flit Virtual Fiit Dgwu;p;;rl‘::m
UEStrteam Channel 0 Buffer Channel 0 Buffer Router
RCU executes instruction, — >
. . C,:;i:::: N Switch Allocator C,:;i:,::ll N
intermediate result sent to .

Buffer Credits to < VC Allocator € Buffer Credits from

transient storage Upstream Roter Downsiream Routar

Transient Data Storage

Input buffers typically have low contention

O Available buffers and bandwidth can be used as transient storage

Useful to keep intermediate results and read-only values on chip

I NoC Routers
©)

Q Input Unit Qutput Unit
nput From irtual i irtual i Qutput to
Result RCU wa iﬁng on IUEsttrEeam Chamel o Bufler Chamel 0 Bufer Downstream
outer : : —
returned intermediate " ' s
1-0 Hi 5 I . d Channal N ‘ Channel N
vda Ue, receilve AL N Crossbar
. ° 4 ——.\; / °
memory 1 from transient — [Router |
: Com::t:tion }“_bl Compute g
stora ge ° |L _U_nit_ -| : : ®
‘ V. Input Unit ,/' 7 \ Output Unit
Input From Virtual Flit Virtual Fiit Dgwu;p;;rl‘::m
u;::f::" Channel 0 Buffer Channel 0 Buffer Router
RCU executes instruction, — >
H . C,:;i:::: N Switch Allocator C,:;i:,::ll N
intermediate result sent to .

Buffer Credits to < VC Allocator € Buffer Credits from

transient storage Upstream Roter Downsiream Routar

Running a SnackNoC Kernel

@ C-code APIs for Matrix-multiply

snA = sn_create_mat(cxt, "A", A, |, m);
snB = sn_create_mat(cxt, "B", B, m, n);
snC = sn_create_mat_mul(cxt, snA, snB);

Running a SnackNoC Kernel

@ C-code APIs for Matrix-multiply

snA = sn_create_mat(cxt, "A", A, |, m);
snB = sn_create_mat(cxt, "B", B, m, n);
snC = sn_create_mat_mul(cxt, snA, snB);

@ CPM sets up kernel

Main Memory

Running a SnackNoC Kernel

@ C-code APIs for Matrix-multiply

snA = sn_create_mat(cxt, "A", A, |, m);
snB = sn_create_mat(cxt, "B", B, m, n); NoC Routers

snC = sn_create_mat_mul(cxt, snA, snB);
@ CPM sets up kernel

9 RCUs

execute

Main Memory

kernel

Running a SnackNoC Kernel

@ C-code APIs for Matrix-multiply @ Return result

to Main memory via

snA = sn_create_mat(cxt, "A", A, |, m); CPM
snB = sn_create_mat(cxt, "B", B, m, n); NoC Routers

snC = sn_create_mat_mul(cxt, snA, snB);
@ CPM sets up kernel

—

9 RCUs

execute

Main Memory

kernel

Example of a Reduction Kernel

Central
Packet
Manager

NoC Routers with RCUs

-

Higitiminimis

Higiniminigis
Higiniminimi
Higiliminigi

~

@ SnackNoC instructions and
data and sent to the RCUs

[]1SnackNoC Flit

Example of a Reduction Kernel

@ Daia dependent
instructions are sent to
reduce intermediate
results

Central
Packet
Manager

NoC Routers with RCUs

e

Higiniminimis
Higiniminimi
Higiliminimi

~

ﬂ SnackNoC instructions and
data and sent to the RCUs

[]1SnackNoC Flit

Data dependent
Instructions

Example of a Reduction Kernel

@ Daia dependent
instructions are sent to
reduce intermediate
results

Central
Packet
Manager

NoC Routers with RCUs

e

N} 1N Jiigg (A
iy 1) gitip (8

000

~

ﬂ SnackNoC instructions and
data and sent to the RCUs

@ Intermediate results are sent
to data dependent
instructions

[]1SnackNoC Flit

Data dependent
Instructions

Example of a Reduction Kernel

@ Daia dependent
instructions are sent to
reduce intermediate
results

@ Results reduced on
the way to corner
RCU and returned to
the CPM

Central
Packet
Manager

NoC Routers with RCUs

-~

Higiniminigit
Higiliminimi

Higiniminimis

~

ﬂ SnackNoC instructions and
data and sent to the RCUs

@ Intermediate results are sent
to data dependent
instructions

[]1SnackNoC Flit

Data dependent
Instructions

Example of a Reduction Kernel

NoC Routers with RCUs

@ Data dependent / \@ Intermediate results are sent

to data dependent

instructions are sent to . .
Instructions

reduce intermediate
Repurposed our NoC

results

router crossbar, network
links, and internal buffers

@ Results reduced on

the way to corner
RCU and returned to

to compute this kernel.

Higiniminimis
Higiniminimi
Higiliminimi

the CPM []1SnackNoC Flit
Central |Data dependent
Packet / Instructions
Manager @ SnackNoC instructions and

data and sent to the RCUs

Overview
e

“Slack” of the Communication Fabric
The SnackNoC Platform
Experimental Results

Conclusion and Future Considerations

Methodology

Experiments:

1. Assess the performance of

SnackNoC

. o-¢ Implemented four SnackNoC
How many additional cores l kernels (SGEMM, Reduction,
worth of performance can e MAC, SPMV)

SnackNoC provide
opportunistically?
Executed 16 multi-threaded

e benchmarks from PARSECS,
2. Quantify the performance .I Splash2X, FastForward?2 to
interference of operating assess performance interference

SnackNoC on the CPU cores

Methodology — Quantifying SnackNoC Performance
o

Methodology — Quantifying SnackNoC Performance
o

SnackNoC is modeled in the gem5 simulation
framework

Methodology — Quantifying SnackNoC Performance
o

SnackNoC is modeled in the gem5 simulation
framework

To quantify performance, four SnackNoC
kernels executed on:
1. Simulated CMP with the SnackNoC platform

Compiled to SnackNoC instructions

Methodology — Quantifying SnackNoC Performance
o

SnackNoC is modeled in the gemb simulation P — p——
iguration
framework

. RCU Count 16 RCUs

To quantify performance, four SnackNoC
kernels executed on: RCU Freg. 1 GHz
Flit Priority Arbitration ON/OFF

1. Simulated CMP with the SnackNoC platform d

Compiled to SnackNoC instructions

Methodology — Quantifying SnackNoC Performance
o

SnackNoC is modeled in the gem5 simulation T —— p——
iguration
framework __

. RCU Count 16 RCUs
To quantify performance, four SnackNoC
RCU Fregq. 1 GHz

kernels executed on:
Flit Priority Arbitration ON/OFF

1. Simulated CMP with the SnackNoC platform d
Parameters

Compiled to SnackNoC instructions

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory
Controllers

NoC Flit Size 32B

Virtual Channels 4

Buffers 4

Methodology — Quantifying SnackNoC Performance

SnackNoC is modeled in the gem5 simulation T —— p——
iguration
framework __

. RCU Count 16 RCUs
To quantify performance, four SnackNoC
RCU Fregq. 1 GHz

kernels executed on:
Flit Priority Arbitration ON/OFF

1. Simulated CMP with the SnackNoC platform d
Parameters

Compiled to SnackNoC instructions

Core Count 16 in-order cores
2. Native Dell server with Intel Xeon E5-2660
C++ multi-threaded with OpenMP flozzgrz::::cy 32Kch’;:1_szy
Parameters NoC Topology 2D 4x4 Mesh, 4 Memory
Processor Intel Xeon E5-2660 v3 Controllers
NoC Flit Size 32B
Core Frequency 2.6GHz # Virtual Channels 4
L1 1&D Cache 32KB, 8-way # Buffers 4

L2 Cache 256KB, 8-way
L3 Cache 20MB, 20-way

Quantifying SnackNoC Performance Gain

SnackNoC kernels are executed
on an increasing number of cores
to determine comparable
performance of SnackNoC

Performance Norm. to 1 Core

15

10

I | Core 2 Cores
[18 Cores 11 SnackNoC

14 Cores

2.8
2 [
1

SGEMM

=

Reduction

|
MAC

Quantifying SnackNoC Performance Gain

SnackNoC kernels are executed
on an increasing number of cores
to determine comparable
performance of SnackNoC

Performance Norm. to 1 Core

15

10

I | Core 2 Cores
[18 Cores 11 SnackNoC

14 Cores

2.
2 -
1

i

SGEMM

Reduction

MAC

Quantifying SnackNoC Performance Gain

SnackNoC kernels are executed
on an increasing number of cores
to determine comparable
performance of SnackNoC

CMP performance roughly linear
increase with increasing cores,
with exception to SPMV

Performance Norm. to 1 Core

15

10 |

I | Core 2 Cores
[18 Cores 11 SnackNoC

14 Cores

2.
2 -
1

i

SGEMM

Reduction

MAC

Quantifying SnackNoC Performance Gain

SnackNoC kernels are executed
on an increasing number of cores
to determine comparable
performance of SnackNoC

B | Core 2 Cores @4 Cores
[18 Cores 11 SnackNoC

I5 -

CMP performance roughly linear
increase with increasing cores,
with exception to SPMV

10 [.

6.1

2.8 '
2 2 il > 26 18 2.1
-1 e e e | |] e e e

SGEMM Reduction MAC SPMV

Performance Norm. to 1 Core
|
|
|

Performance gain between 2 and

6 x86 OOO cores

SnackNoC Area and Power Overhead

’ Router Control Additional Additional Area Central Packet Additional | Additional Area
implemented, synthesized with

. . . 32-bit Parallel Assembly Logic
S)’nOpSIS DeSIgn Compller. Adder 1.14% 1.15% ani) s 0.08% 2.43%
S 45nm NCSU teChnOIOgy nOde 32-bit Parallel 1.14% 1.15% Kernel State 0.16% 0.10%
. [0} . (o]
O Operating Freq. 1GHz Subtractor Instruction Buffer . .
32-bit Multiply and 10.71% 25.75%
A | MAC 2.05% 1.73%
ccumulate) Offload Data
Ordered Instruction Memory Buffer
— 2.05% 2.30% ¢ o 22305
Dependency Buffer 0 o
2.51% 1.15% I(:?;Jtopu'r Result 0.95% 5 98%
Accumulator Buffer o
! .12¢
QLA a2 Total 12.85% 33.04%
Sub Block List 0.23% 1.73%

Total 9.81% 9.33%

SnackNoC Area and Power Overhead

SnackNoC components’ RTL
implemented, synthesized with
Synopsis Design Compiler:

O 45nm NCSU technology node
O Operating Freq. 1GHz

Single RCU per NoC router

O Under 10% additional power and
area per router

Router Control Additional Additional Area Central Packet Additional | Additional Area
Unit (RCU) Power (%) (%) Manager Power (%) (%)

32-bit Parallel

Adder 1.14% 1.15%
32-bit Parallel

0, o,

Subtractor Uola%e Uolo%
32-bit Multiply and o o
Accumulate (MAC) 2057 7<%
Ordered Instruction

Buffer 2.05% 2.30%
Dependency Buffer 2.51% 1.15%
Accumulator Buffer 0.68% 0.12%
Sub Block List 0.23% 1.73%
I Total 9.81% 9.33% |

Assembly Logic
and Buffers

Kernel State

Instruction Buffer

Offload Data
Memory Buffer

Output Result
FIFO

Total

0.08%

0.16%

10.71%

0.95%

0.95%

12.85%

2.43%

0.10%

25.75%

2.28%

2.28%

33.04%

SnackNoC Area and Power Overhead

SnackNoC components’ RTL
implemented, synthesized with
Synopsis Design Compiler: ddlor

O 45nm NCSU technology node
O Operating Freq. 1GHz

32-bit Parallel

32-bit Parallel
Subtractor

32-bit Multiply and
Accumulate (MAC)

Single RCU per NOC router Ordered Instruction

Buffer
area per router

Accumulator Buffer

Single CPM per NoC sl Bl s (1
O 12.85% additional power per NoC
O 33.04% additional area per NoC

Largest contributor is instruction buffer

Total

1.14%

1.14%

2.05%

2.05%

2.51%

0.68%

0.23%

9.81%

1.15%

1.15%

1.73%

2.30%

1.15%

0.12%

1.73%

9.33%

Assembly Logic

Router Control Additional Additional Area Central Packet Additional | Additional Area
Unit (RCU) Power (%) (%) Manager Power (%) (%)

and Buffers 0.08% 2.43%
Kernel State 0.16% 0.10%
Instruction Buffer 10.71% 25.75%
Offload Data

Memory Buffer 0.95% 2.28%
Output Result 0 0

FIFO 0.95% 2.28%

I Total 12.85% 33.04% |

SnackNoC’s Small Contribution to the Total Uncore

Full uncore of 16 core CMP is
modeled in 45nm with Cacti 7.0
and Orion 3.0.

Uncore Power and Area

Power Area

n

16

B L2 Cache

B L1 Cache

[l SnackNoC Additions [[] Baseline NoC

SnackNoC’s Small Contribution to the Total Uncore

Full uncore of 16 core CMP is
modeled in 45nm with Cacti 7.0
and Orion 3.0.

Uncore Power and Area

Power Area

2.

6.0

B L2 Cache

B L1 Cache

[l SnackNoC Additions [[] Baseline NoC

SnackNoC’s Small Contribution to the Total Uncore

Full uncore of 16 core CMP is
modeled in 45nm with Cacti 7.0
and Orion 3.0.

Uncore Power and Area

Power Area

2.

6.0

16 RCU SnackNoC only
contributes 1.6% and 1.1%
power and areq, respectively.

B L2 Cache

B L1 Cache

[l SnackNoC Additions [[] Baseline NoC

SnackNoC’s Small Contribution to the Total Uncore

Full uncore of 16 core CMP is
modeled in 45nm with Cacti 7.0
and Orion 3.0.

Uncore Power and Area

Power Area

2.

6.0

16 RCU SnackNoC only
contributes 1.6% and 1.1%
power and areq, respectively.

Satisfies goal of limited overhead M 12 Cache

B L1 Cache

[l SnackNoC Additions [[] Baseline NoC

Methodology — Quantifying SnackNoC Interference
-

To quantify performance interference, the

H 1 Core Count 16 in-ord
performance of the CMP is compared with in-order cores
. . Core Frequency 2GHz
and without SnackNoC Traffic o
ache 32KB, 4-way
L2 Cache 256KB, 4-way
NoC Topology 2D 4x4 Mesh, 4 Memory
Controllers
NoC Flit Size 32B
Virtual Channels 4
Buffers 4
SnackNoC Parameters
RCU Count 16 RCUs
RCU Fregq. 1 GHz

Flit Priority Arbitration ON/OFF

Methodology — Quantifying SnackNoC Interference
-

To quantify performance interference, the

performance of the CMP is compared with S 16 in-order cores
o . Core Frequency 2GHz
and without SnackNoC Traffic o e 15K, 4oy
. o L2 Cache 256KB, 4-way
O Simulated 16 core CMP with benchmarks from o€ Toney 35 it Mesh. 4 Moy
Controllers
PARSECS3, Splash2X, and FastForward?2 er—— o
Virtual Channels 4
Buffers 4
RCU Count 16 RCUs
RCU Fregq. 1 GHz

Flit Priority Arbitration ON/OFF

Methodology — Quantifying SnackNoC Interference
-

To quantify performance interference, the

performance of the CMP is compared with o7 G 16 in-order cores
o . Core Frequency 2GHz
and without SnackNoC Traffic o e 15K, 4oy
. o L2 Cache 256KB, 4-way
O Simulated 16 core CMP with benchmarks from o€ Toney 35 it Mesh. 4 Moy
Controllers
PARSEC3, Splash2X, and FastForward?2 er—— o
O SnackNoC kernels are simultaneously executed e Gemes -
RCU Count 16 RCUs
RCU Fregq. 1 GHz

Flit Priority Arbitration ON/OFF

Minimal impact of “Snacking” on CMP performance

I SGEMM I Reduction 0 MAC T SPMV

S

= af ' :
=

= 0.5 - L

o

:

B iﬂ\ Olﬂﬁlmk ﬁmqmﬁlﬂlql | L T Im\]H ”ﬂe

v C AT o> ¢% A% Q,\) o 0 e {N\' A0 o= Q\aﬁ‘ " i~ $2° ,\O\t (:}qﬁ‘aﬁ'i v%Qa‘i ‘1&% ﬂG‘i ﬂh Me,x?"

\4\1 Ehtet’ \I\‘ ‘E&

Minimal impact of “Snacking” on CMP performance

I SGEMM I Reduction 0 MAC T SPMV

I
n

Udlgolowe L. ndu

S) 1) Ay | kX g 1\“& o | 2 N AN e
gzm‘i‘cc one® C;S"“k ¢¥ bbg’\ﬁb 0\‘56\:' ‘CN\’ ‘P%‘L ‘i’\f’“&g eﬁ\’i& o vgqﬁ@;v%Qﬁ;% ﬂé{ SO ¥ PL‘JQ}@%

ot \1\4‘&
e

Impact on Runtime (%)

Performance impact varies based on NoC utilization

Minimal impact of “Snacking” on CMP performance

I SGEMM I Reduction 0 MAC T SPMV

I
n

Udlgolowe L. ndu

S) 1) Ay | kX g 1\“\ o 2 N AN e
T R ¥ g'\ﬁb 0\65\:' ‘CN‘\’ ‘PQ} 2t W‘:a“ KA qﬁ@;‘iﬁwﬂ‘ﬁ% ﬂéf o Pﬁleﬁ%
vt N

e

Impact on Runtime (%)

\
VAo U

Performance impact varies based on NoC utilization

O Peak 1.1% performance impact on CMP cores

Minimal impact of “Snacking” on CMP performance

I SGEMM I Reduction 0 MAC T SPMV

I
n

Impact on Runtime (%)

Udlwelow MBL . wdiw

2 Y AN o 'S 1\“\ K | > B mﬁl y
.% 3\}.. C ﬂi\e’ C/d\\ ?\? bbﬂf\}a‘p 6 Y:N‘:e\:‘a,&‘p%‘) ?‘E\'&?\ .?N\’ .'_m \0\{ (:,05. 1,‘%‘25:&1 ﬂé;‘if‘“ > P"’\Je

\4\1 E&@t’ \I\‘ ‘E&

Performance impact varies based on NoC utilization

O Peak 1.1% performance impact on CMP cores
O On average ~0.30% for SGEMM, MAC, SPMV. On average 0.11% for Reduction

Minimal impact of “Snacking” on CMP performance

I SGEMM I Reduction 0 MAC T SPMV

I
n

Impact on Runtime (%)

Udlaolow WRL . odu

S S 3oy oy a0 e
hxﬁcc ﬂﬂef\' \\K{) ?\? bbﬂ_\}é“pk D\e‘é\? _{\‘N‘G\ 1} ‘.5\ ‘?\f\'& '\I\’ l?‘“ \O\{ ﬁ‘a’;- 1,,%‘5?‘&{ ﬂé—;{eﬁ f‘j“ Meﬂ_a‘%

A%)
\4\1 E&Q‘E’ \I\‘ ‘E&

Performance impact varies based on NoC utilization

O Peak 1.1% performance impact on CMP cores
O On average ~0.30% for SGEMM, MAC, SPMV. On average 0.11% for Reduction

SnackNoC kernel completion time impacted at most 3.9% with fair arbitration

Minimal impact of “Snacking” on CMP performance

I SGEMM I Reduction 0 MAC T SPMV

S

g 1+ I B

'.%)] _

=

o

=

?{Jiﬂ lﬂdﬂ Uﬂﬂﬂmlmmmlm.lﬂw

- 0e® D K{) T0 oy N o X e
-% 2\}. C ﬂﬂe 001\\ ? 1—) _\3.\) ipO\ D\G -{‘N&— 1} ‘.5\ ?‘&&?‘ o '\I\’ a“ \O\{ (:}qﬁda,‘;. 1.‘% Qeai ‘}V%_% ﬂG{ a@'\\ P.;}I e{-_@

\4\1 Ehtet’ \I\‘ ‘E&

Minimal impact of “Snacking” on CMP performance

B SGEMM I Reduction I MAC T 1SPMV

<
n

Impact on Runtime (%)

mﬂhmm wuu Bl o. wdu

T T
R RS Ve SR Y A (S »
RN ¥ PV 0OP et Al LS & ad $© *L‘Lz'“ ﬂc’ 2%’
y e A R T RES ‘:}GP@ V%Qa D o Pﬂe’x
Router Crossbar Utilization of LULESH te‘l’ \N@
(Baseline) W
__100
S g0
S o
£ 4 a AA_ fa @ A A
5 20 AT et foan a4 o Ry A
2 o CuPRT N
2 0 2 4 6 8 10 12
O

Time (108 Cycles)

@®Router 0 @Router 1 @Router 2 @Router 3 @Router 4 @Router 5
®Router & @Router 7 @Router 8 @Router ¢ @Router 10 ®Router 11

Router 12 ® Router 13 @ Router 14 © Router 15

Minimal impact of “Snacking” on CMP performance

I SGEMM I Reduction 0 MAC T SPMV

I
n

mﬂhmm bw e WL oo mdu

Impact on Runtime (%)

R Ry LAy o | 00
~a® ¥ PV 2O et ol SV AF gl @ o2 A D 2%’
e e ol o w‘*‘e’ = (SO ea?™
Router Crossbar Utilization of LULESH e \N‘E&"”E’
(Baseline) N2

__100 SnackNoC
X
5 o traffic added
ol o to LULESH
520 SaMy \"‘m A AN oA
-‘E Ob_ \‘2‘ 4 6 . g 'I.O) 12 :
O

Time (108 Cycles)

@®Router 0 @Router 1 @Router 2 @Router 3 @Router 4 @Router 5
®Router & @Router 7 @Router 8 @Router ¢ @Router 10 ®Router 11

Router 12 ® Router 13 @ Router 14 © Router 15

Minimal impact of “Snacking” on CMP performance

Impact on Runtime (%)

B SGEMM I Reduction I MAC T 1SPMV

<
n

UlmiﬂLlﬂuﬂ

W Wl

Lo.udu

ot o RO R O

Crosshar Utilization (%)

100
20
60
40
20

Router Crossbar Utilization of LULESH
(Baseline)

~ []
. "\ 3 Y

F—— - k S ' e . -

0 2 4 6 g 10 12

Time (108 Cycles)

@®Router 0 @Router 1 @Router 2 @Router 3 @Router 4 @Router 5
®Router & @Router 7 @Router 8 @Router ¢ @Router 10 ®Router 11

Router 12 ® Router 13 @ Router 14 © Router 15

(] 2] n [(o]
Aom Fran A A o B A

SnackNoC
traffic added
to LULESH

Crossbar Utilization (%)

I
\G‘f}:ﬂ {"N‘S}m e} rl:‘ff"’w'I A & ‘E‘a“c . weﬂ‘ s’ ﬂu‘ﬁt‘\‘a“\ ﬂcd"\l "‘:)00 ‘2\%6

100
80
60
40

Router Crossbhar Utilization of LULESH
(with SPMV SnackNoC Kernel)

: |
i iy aodesied
:J : R T i “i 5 i s A I
0 2 4 6 8 10 12

Time (108 Cycles)

@®Router 0 @Router 1 @Router 2 @Router 3 @Router 4 @Router 5
®Router & @Router 7 @Router 8 @Router ¢ @Router 10 @ Router 11

Router 12 ® Router 13 @ Router 14 © Router 15

Minimal impact of “Snacking” on CMP performance

Impact on Runtime (%)

B SGEMM I Reduction I MAC T 1SPMV

<
n

UlmiﬂLlﬂuﬂ

W Wl

memﬂw

e aef‘“\ RSP R O ST

2\

Crosshar Utilization (%)

20
60
40
20

Router Crossbar Utilization of LULESH

Time (108 Cycles)

@®Router 0 @Router 1 @Router 2 @Router 3 @Router 4 @Router 5
®Router & @Router 7 @Router 8 @Router ¢ @Router 10 ®Router 11

Router 12 ® Router 13 @ Router 14 © Router 15

(Baseline)
a O f [] ___n A 1 N |
LAk Aoodon Lo e 4 Moy A
A Ol AV . s e L

Vet {N“}R A reff?’*gj

SnackNoC
traffic added
to LULESH

Minimal impact
to CMP
Performance

@

& ‘E"'-”“C' . we‘ﬂ‘ A m\wﬁw ﬂc"\" hJQ’Q’

o~ .

Crossbar Utilization (%)

100
80
60
40

Router Crossbhar Utilization of LULESH
(with SPMV SnackNoC Kernel)

: |
/\-ﬂl . I L] i i i 1
a S e i “ . *i € I . ’i
0 2 4 6 8 10 12

Time (108 Cycles)

@®Router 0 @Router 1 @Router 2 @Router 3 @Router 4 @Router 5
®Router & @Router 7 @Router 8 @Router ¢ @Router 10 @ Router 11

Router 12 ® Router 13 @ Router 14 © Router 15

Further Reducing Impact with Priority Arbitration

I SGEMM I Reduction 0 MAC T SPMV

I
n

mﬂmeWmmm Lo.udu

\ TO0 e Ay oS | B e

%&ﬁ " oe? C&\K{) <% x’) *Ei?k D\eg\;- N \, 1}09 ?‘aﬁ. s cal ‘\O\{ ‘:}qﬁ@t *%Qaw" %% onC R O \Se}zw%
W e‘;ﬁjﬁ \]‘E&"”E’i G :

X N

e

Impact on Runtime (%)

Further Reducing Impact with Priority Arbitration

B SGEMM I Reduction I MAC [1SPMV
I SGEMM w. Prio. Arb. [1Reduction w. Prio. Arb.[_1MAC w. Prio. Arb.[_1SPMV w. Prio. Arb.

S

1B

=]

-g I —

o

g) UIW h-H_‘ MH _

o

= 0 \O";Wﬁmmﬁj 'e'aax[,h'

=) A N X 3 < e > AU AN) »
T ““e’ SR b@ AR C oo W&%ﬁ*’ e&«zo\‘:f‘fc:,q‘ffw%@i;% “&‘e&“" s

1k N

Further Reducing Impact with Priority Arbitration

B SGEMM I Reduction I MAC [1SPMV
I SGEMM w. Prio. Arb. [1Reduction w. Prio. Arb.[_1MAC w. Prio. Arb.[_1SPMV w. Prio. Arb.

S

1B

=]

= 1]

o=

| L!Im Hh MH _

o

] 0 VO et W Ry Immﬁj Y \ B oo e

- 0e® AW ¥ A ‘: Y AW L @ 2@ e xe® i o (OO | ol
2o oo BVES G S S «42‘; ﬁc:,ogz O N

W\

Adding priority flit arbitration for CMP traffic:
O Average performance impact drops from 0.25% to 0.17%

Further Reducing Impact with Priority Arbitration

B SGEMM I Reduction I MAC [1SPMV
I SGEMM w. Prio. Arb. [1Reduction w. Prio. Arb.[_1MAC w. Prio. Arb.[_1SPMV w. Prio. Arb.

I
Ln

Impact on Runtime (%)

UmmmeWmmmh W

N < LAy o | B e
aﬂ}c ﬂﬂe?‘“ w\’&ﬁ QQ LY ‘Dk D\c S fﬁ\l . & 0‘5‘ W é‘ @ eC"I\" e““\o\‘i ‘:}qﬁ‘i” %Qﬁii% ﬂé " @Q“ {"0 A E}?"%

cot O e
« EM?? \1\‘5

Adding priority flit arbitration for CMP traffic:
O Average performance impact drops from 0.25% to 0.17%
O Improves flit interference by up to 92%

Further Reducing Impact with Priority Arbitration

B SGEMM I Reduction I MAC [1SPMV
I SGEMM w. Prio. Arb. [1Reduction w. Prio. Arb.[_1MAC w. Prio. Arb.[_1SPMV w. Prio. Arb.

=
Ln

Impact on Runtime (%)

| - i) | T I I
RTINS MR\ G VR U\ | SR [T\ LS o R CC S Y c L« - U NG (P)
%‘@‘*ﬁ o _ o> \" 5 pf\;@ O\\d\e @N ?\5&6}0 QAR ?_‘BSTLI\J ﬂo\{cﬁ%q\}‘aﬂ 1—*%{95 _‘{‘%'Q) ?‘G {ELQ‘“ P.;\] ev
o€ N ’

Adding priority flit arbitration for CMP traffic:

O Average performance impact drops from 0.25% to 0.17%
O Improves flit interference by up to 92%

O Peak performance impact with priority arbitration is 0.83%

Further Reducing Impact with Priority Arbitration

B SGEMM I Reduction I MAC [1SPMV
I SGEMM w. Prio. Arb. [1Reduction w. Prio. Arb.[_1MAC w. Prio. Arb.[_1SPMV w. Prio. Arb.

s

O

= -

g] _

&z

o 05 N

=

iﬂmmﬂﬂﬂm . MHlmmmJﬂm-lﬂﬂﬂW

S0 VD ¢ RN e o O e

= Yol . h ; e e A c \ e
P C T o ¥ X:& p’\ﬁbo\\o\e ‘Sﬁ\’?&& O e «Jo\iggqﬁ@ V%‘Qau eﬂ@{‘e@‘ﬂ et

Tk N

Adding priority flit arbitration for CMP traffic:
O Average performance impact drops from 0.25% to 0.17%

Satisfies goal of limited
O Improves flit interference by up to 92% 9%
performance impact

O Peak performance impact with priority arbitration is 0.83%

Overview
e

“Slack” of the Communication Fabric
The SnackNoC Platform
Experimental Results

Conclusion and Future Considerations

Conclusion and Future Considerations

Opportunistically “snacking” on
NoC resources can add
performance to our CMPs

O Added 2 to 6 cores of

performance with only a 1.3%
increase of the uncore area

Conclusion and Future Considerations

Opportunistically “snacking” on
NoC resources can add
performance to our CMPs

O Added 2 to 6 cores of

performance with only a 1.3%
increase of the uncore area

Further tradeoffs we're
investigating:

1. Growing application coverage
2. Scaling compute density

3. Supporting future topologies

Questions?
L

Main Contributions:
O Quantified design slack in the communication fabric

O Opportunistically adds 2 to 6 core performance to the CMP by repurposing NoC
resources with low overhead

Karthik Sangaiah, Michael Lui, Ragh Kuttappa, Baris Taskin [Drexel University],
and Mark Hempstead [Tufts University], “SnackNoC: Processing in the
Communication Layer”, Proceedings of the IEEE international Symposium on
High Performance Computer Architecture (HPCA), February 2020.

&

http://vlsi.ece.drexel.edu/
https://sites.tufts.edu/tcal/

	SnackNoC: Processing IN the Communication Layer
	Opportunistic Resources for Graduate Students
	Opportunistic Resources in the CMP
	Opportunistic Resources in the CMP
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Overview
	SnackNoC Platform Overview
	SnackNoC Platform Overview
	SnackNoC Platform Overview
	SnackNoC Platform Overview
	SnackNoC Platform Overview
	SnackNoC Platform Overview
	SnackNoC System Overview
	SnackNoC System Overview
	SnackNoC System Overview
	SnackNoC System Overview
	SnackNoC System Overview
	SnackNoC System Overview
	NoC Router Modification and RCU Additions
	NoC Router Modification and RCU Additions
	NoC Router Modification and RCU Additions
	NoC Router Modification and RCU Additions
	CPU Traffic Priority Arbitration
	Transient Data Storage
	Transient Data Storage
	Transient Data Storage
	Transient Data Storage
	Transient Data Storage
	Transient Data Storage
	Running a SnackNoC Kernel
	Running a SnackNoC Kernel
	Running a SnackNoC Kernel
	Running a SnackNoC Kernel
	Example of a Reduction Kernel
	Example of a Reduction Kernel
	Example of a Reduction Kernel
	Example of a Reduction Kernel
	Example of a Reduction Kernel
	Overview
	Methodology
	Methodology – Quantifying SnackNoC Performance
	Methodology – Quantifying SnackNoC Performance
	Methodology – Quantifying SnackNoC Performance
	Methodology – Quantifying SnackNoC Performance
	Methodology – Quantifying SnackNoC Performance
	Methodology – Quantifying SnackNoC Performance
	Quantifying SnackNoC Performance Gain
	Quantifying SnackNoC Performance Gain
	Quantifying SnackNoC Performance Gain
	Quantifying SnackNoC Performance Gain
	SnackNoC Area and Power Overhead
	SnackNoC Area and Power Overhead
	SnackNoC Area and Power Overhead
	SnackNoC’s Small Contribution to the Total Uncore
	SnackNoC’s Small Contribution to the Total Uncore
	SnackNoC’s Small Contribution to the Total Uncore
	SnackNoC’s Small Contribution to the Total Uncore
	Methodology – Quantifying SnackNoC Interference
	Methodology – Quantifying SnackNoC Interference
	Methodology – Quantifying SnackNoC Interference
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Further Reducing Impact with Priority Arbitration
	Further Reducing Impact with Priority Arbitration
	Further Reducing Impact with Priority Arbitration
	Further Reducing Impact with Priority Arbitration
	Further Reducing Impact with Priority Arbitration
	Further Reducing Impact with Priority Arbitration
	Overview
	Conclusion and Future Considerations
	Conclusion and Future Considerations
	Questions?
	Additional Slides
	References
	Establishing the Baseline NoC
	Performance of Evaluated NoCs
	Raytrace - NoC Buffer Utilization
	Opportunistic Computing in NoCs?
	Dataflow Processors & Similarity
	Dataflow Processors & Similarity
	Dataflow Processors & Similarity
	Related Works of Processing in the Communication Layer
	SnackNoC System Overview
	Modified Router pipeline
	Central Packet Manager
	Minimal Performance Impact on CMP
	SnackNoC Area and Power Overhead
	SnackNoC Area and Power Overhead
	SnackNoC Area and Power Overhead
	Scalability

