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Opportunistic Resources for Graduate Students

Free Iefovers Steak dinner

=

Opportunistically collecting snacks

towards a meal.




Opportunistic Resources in the CMP
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What is the performance gain we add by

opportunistically “snacking” on CMP resources?
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Quantifying Design Slack in the NoC
-

NoC designed to minimize latency
during heavy traffic

O NoC implementation can account for
60% to 75% of the miss latency!?

[2] Sanchez et al., ACM TACO, 2010.
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Study of NoC resource utilization on
recent NoCs designs

O 3 selected best paper nominated
NoCs have similar performance:

DAPPERE!, AxNoCMl, BiNoCHS!!

O Reducing resources, substantially
reduced performances

Further details of study is in our paper
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Quantifying Design Slack in the NoC
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Crossbar Utilization:
O Peak utilization (Graph 500): 42% utilization
O Highest median (Graph 500): 13.3% utilization
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Buffer Utilization
O Raytrace : 4% of cycles have localized contention
O 10% utilization during contention

O 3M flits of the 2.4T flits forwarded: buffer utilization reaches
30-55% of the total capacity
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The SnackNoC platform improves efficiency
and performance of the CMP by offloading oo

data-parallel workloads and “snacking™ on

network resources.
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SnackNoC Platform Overview

Goals:

O Opportunistically “Snack” on existing
network resources for additional
performance

O Limited additional overhead to uncore
O Minimal or zero interference to CMP traffic

Opportunistic NoC-based compute
platform

O Limited dataflow engine
O Applications:

Data-parallel workloads used in scientific

computing, graph analytics, and machine
learning
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Added components to a traditional NoC
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Assemble and issue instruction packets
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Located at Memory Controller

Result

O Router Compute Units (RCU) Data
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Instruction buffering ITS

ALU

Located in router pipeline

Memory
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Memory
Controller

Added features to a traditional NoC:
O CPU traffic priority arbitration
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O Available NoC buffers as transient data storage
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CPU Traffic Priority Arbitration

Primary functionality of NoC is to transfer CPU core and memory traffic
O “Fair” allocators are typically set to select traffic in round-robin

O Allocators are modified to prioritize CPU traffic over SnackNoC instruction or data
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Transient Data Storage

Input buffers typically have low contention

O Available buffers and bandwidth can be used as transient storage

Useful to keep intermediate results and read-only values on chip
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Transient Data Storage
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@ C-code APIs for Matrix-multiply

snA = sn_create_mat(cxt, "A", A, |, m);
snB = sn_create_mat(cxt, "B", B, m, n);
snC = sn_create_mat_mul(cxt, snA, snB);
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Running a SnackNoC Kernel

@ C-code APIs for Matrix-multiply @ Return result

to Main memory via

snA = sn_create_mat(cxt, "A", A, |, m); CPM
snB = sn_create_mat(cxt, "B", B, m, n); NoC Routers

snC = sn_create_mat_mul(cxt, snA, snB);
@ CPM sets up kernel

—

9 RCUs

execute

Main Memory

kernel
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@ Daia dependent
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Example of a Reduction Kernel

NoC Routers with RCUs

@ Data dependent / \@ Intermediate results are sent

to data dependent

instructions are sent to . .
Instructions

reduce intermediate
Repurposed our NoC

results

router crossbar, network
links, and internal buffers

@ Results reduced on

the way to corner
RCU and returned to

to compute this kernel.
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Methodology

Experiments:

1. Assess the performance of

SnackNoC

. o-¢ Implemented four SnackNoC
How many additional cores l kernels (SGEMM, Reduction,
worth of performance can e MAC, SPMV)

SnackNoC provide
opportunistically?
Executed 16 multi-threaded

e benchmarks from PARSECS,
2. Quantify the performance .I Splash2X, FastForward?2 to
interference of operating assess performance interference

SnackNoC on the CPU cores
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SnackNoC is modeled in the gem5 simulation T —— p——
iguration
framework __

. RCU Count 16 RCUs
To quantify performance, four SnackNoC
RCU Fregq. 1 GHz

kernels executed on:
Flit Priority Arbitration ON/OFF
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Parameters

Compiled to SnackNoC instructions

Core Count 16 in-order cores

Core Frequency 2GHz
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L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory
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NoC Flit Size 32B

# Virtual Channels 4
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Methodology — Quantifying SnackNoC Performance

SnackNoC is modeled in the gem5 simulation T —— p——
iguration
framework __

. RCU Count 16 RCUs
To quantify performance, four SnackNoC
RCU Fregq. 1 GHz

kernels executed on:
Flit Priority Arbitration ON/OFF

1. Simulated CMP with the SnackNoC platform d
Parameters

Compiled to SnackNoC instructions

Core Count 16 in-order cores
2. Native Dell server with Intel Xeon E5-2660
C++ multi-threaded with OpenMP flozzgrz::::cy 32Kch’;:1_szy
Parameters NoC Topology 2D 4x4 Mesh, 4 Memory
Processor Intel Xeon E5-2660 v3 Controllers
NoC Flit Size 32B
Core Frequency 2.6GHz # Virtual Channels 4
L1 1&D Cache 32KB, 8-way # Buffers 4

L2 Cache 256KB, 8-way
L3 Cache 20MB, 20-way
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Quantifying SnackNoC Performance Gain

SnackNoC kernels are executed
on an increasing number of cores
to determine comparable
performance of SnackNoC

CMP performance roughly linear
increase with increasing cores,
with exception to SPMV
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Quantifying SnackNoC Performance Gain

SnackNoC kernels are executed
on an increasing number of cores
to determine comparable
performance of SnackNoC

B | Core 2 Cores @4 Cores
[ 18 Cores 11 SnackNoC

I5 -

CMP performance roughly linear
increase with increasing cores,
with exception to SPMV

10 [ .

6.1

2.8 '
2 2 il > 26 18 2.1
-1 e e e | | ] e e e

SGEMM Reduction MAC SPMV

Performance Norm. to 1 Core
|
|
|

Performance gain between 2 and

6 x86 OOO cores



SnackNoC Area and Power Overhead

’ Router Control Additional Additional Area Central Packet Additional | Additional Area
implemented, synthesized with

. . . 32-bit Parallel Assembly Logic
S)’nOpSIS DeSIgn Compller. Adder 1.14% 1.15% ani) s 0.08% 2.43%
S 45nm NCSU teChnOIOgy nOde 32-bit Parallel 1.14% 1.15% Kernel State 0.16% 0.10%
. [0} . (o]
O Operating Freq. 1GHz Subtractor Instruction Buffer . .
32-bit Multiply and 10.71% 25.75%
A | MAC 2.05% 1.73%
ccumulate ) Offload Data
Ordered Instruction Memory Buffer
— 2.05% 2.30% ¢ o 22305
Dependency Buffer 0 o
2.51% 1.15% I(:?;Jtopu'r Result 0.95% 5 98%
Accumulator Buffer o
! .12¢
QLA a2 Total 12.85% 33.04%
Sub Block List 0.23% 1.73%

Total 9.81% 9.33%



SnackNoC Area and Power Overhead

SnackNoC components’ RTL
implemented, synthesized with
Synopsis Design Compiler:

O 45nm NCSU technology node
O Operating Freq. 1GHz

Single RCU per NoC router

O Under 10% additional power and
area per router

Router Control Additional Additional Area Central Packet Additional | Additional Area
Unit (RCU) Power (%) (%) Manager Power (%) (%)

32-bit Parallel

Adder 1.14% 1.15%
32-bit Parallel

0, o,

Subtractor Uola%e Uolo%
32-bit Multiply and o o
Accumulate (MAC) 2057 7<%
Ordered Instruction

Buffer 2.05% 2.30%
Dependency Buffer 2.51% 1.15%
Accumulator Buffer 0.68% 0.12%
Sub Block List 0.23% 1.73%
I Total 9.81% 9.33% |

Assembly Logic
and Buffers

Kernel State

Instruction Buffer

Offload Data
Memory Buffer

Output Result
FIFO

Total

0.08%

0.16%

10.71%

0.95%

0.95%

12.85%

2.43%

0.10%

25.75%

2.28%

2.28%

33.04%



SnackNoC Area and Power Overhead

SnackNoC components’ RTL
implemented, synthesized with
Synopsis Design Compiler: ddlor

O 45nm NCSU technology node
O Operating Freq. 1GHz

32-bit Parallel

32-bit Parallel
Subtractor

32-bit Multiply and
Accumulate (MAC)

Single RCU per NOC router Ordered Instruction

Buffer
area per router

Accumulator Buffer

Single CPM per NoC sl Bl s (1
O 12.85% additional power per NoC
O 33.04% additional area per NoC

Largest contributor is instruction buffer

Total

1.14%

1.14%

2.05%

2.05%

2.51%

0.68%

0.23%

9.81%

1.15%

1.15%

1.73%

2.30%

1.15%

0.12%

1.73%

9.33%

Assembly Logic

Router Control Additional Additional Area Central Packet Additional | Additional Area
Unit (RCU) Power (%) (%) Manager Power (%) (%)

and Buffers 0.08% 2.43%
Kernel State 0.16% 0.10%
Instruction Buffer 10.71% 25.75%
Offload Data

Memory Buffer 0.95% 2.28%
Output Result 0 0

FIFO 0.95% 2.28%

I Total 12.85% 33.04% |




SnackNoC’s Small Contribution to the Total Uncore

Full uncore of 16 core CMP is
modeled in 45nm with Cacti 7.0
and Orion 3.0.
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Power Area
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SnackNoC’s Small Contribution to the Total Uncore

Full uncore of 16 core CMP is
modeled in 45nm with Cacti 7.0
and Orion 3.0.

Uncore Power and Area

Power Area

2.

6.0

16 RCU SnackNoC only
contributes 1.6% and 1.1%
power and areq, respectively.

Satisfies goal of limited overhead M 12 Cache

B L1 Cache

[l SnackNoC Additions [[] Baseline NoC



Methodology — Quantifying SnackNoC Interference
-

To quantify performance interference, the

H 1 Core Count 16 in-ord
performance of the CMP is compared with in-order cores
. . Core Frequency 2GHz
and without SnackNoC Traffic o
ache 32KB, 4-way
L2 Cache 256KB, 4-way
NoC Topology 2D 4x4 Mesh, 4 Memory
Controllers
NoC Flit Size 32B
# Virtual Channels 4
# Buffers 4
SnackNoC Parameters
RCU Count 16 RCUs
RCU Fregq. 1 GHz

Flit Priority Arbitration ON/OFF
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Methodology — Quantifying SnackNoC Interference
-

To quantify performance interference, the

performance of the CMP is compared with o7 G 16 in-order cores
o . Core Frequency 2GHz
and without SnackNoC Traffic o e 15K, 4oy
. o L2 Cache 256KB, 4-way
O Simulated 16 core CMP with benchmarks from o€ Toney 35 it Mesh. 4 Moy
Controllers
PARSEC3, Splash2X, and FastForward?2 er—— o
O SnackNoC kernels are simultaneously executed e Gemes -
RCU Count 16 RCUs
RCU Fregq. 1 GHz

Flit Priority Arbitration ON/OFF
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SnackNoC kernel completion time impacted at most 3.9% with fair arbitration
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Minimal impact of “Snacking” on CMP performance
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O Average performance impact drops from 0.25% to 0.17%
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Adding priority flit arbitration for CMP traffic:

O Average performance impact drops from 0.25% to 0.17%
O Improves flit interference by up to 92%

O Peak performance impact with priority arbitration is 0.83%
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Adding priority flit arbitration for CMP traffic:
O Average performance impact drops from 0.25% to 0.17%

Satisfies goal of limited
O Improves flit interference by up to 92% 9%
performance impact

O Peak performance impact with priority arbitration is 0.83%
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NoC resources can add
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increase of the uncore area




Conclusion and Future Considerations

Opportunistically “snacking” on
NoC resources can add
performance to our CMPs

O Added 2 to 6 cores of

performance with only a 1.3%
increase of the uncore area

Further tradeoffs we're
investigating:

1.  Growing application coverage
2. Scaling compute density

3. Supporting future topologies



Questions?
L

Main Contributions:
O Quantified design slack in the communication fabric

O Opportunistically adds 2 to 6 core performance to the CMP by repurposing NoC
resources with low overhead

Karthik Sangaiah, Michael Lui, Ragh Kuttappa, Baris Taskin [Drexel University],
and Mark Hempstead [Tufts University], “SnackNoC: Processing in the
Communication Layer”, Proceedings of the IEEE international Symposium on
High Performance Computer Architecture (HPCA), February 2020.
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http://vlsi.ece.drexel.edu/
https://sites.tufts.edu/tcal/
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