
SNACKNOC: PROCESSING IN THE
COMMUNICATION LAYER

VLSI and Architecture Lab

Karthik Sangaiah, Michael Lui, Ragh Kuttappa,
Baris Taskin, and Mark Hempstead

Feb 25th 2020

Opportunistic Resources for Graduate Students
2

Free leftovers Steak dinner

toward

Opportunistically collecting snacks
towards a meal.

Communication
Interconnect

Opportunistic Resources in the CMP
3

Intel Skylake 8180 HCC [1]

Interconnect “Free leftovers”
NoC

Router

Opportunistically collecting “snacks” to
make a “meal”.

[1] Intel Skylake SP HCC, Wikichip.

Communication
Interconnect

Opportunistic Resources in the CMP
4

Intel Skylake 8180 HCC [1]

Interconnect “Free leftovers”
NoC

Router

Opportunistically collecting “snacks” to
make a “meal”.What is the performance gain we add by

opportunistically “snacking” on CMP resources?
[1] Intel Skylake SP HCC, Wikichip.

Quantifying Design Slack in the NoC

 NoC designed to minimize latency
during heavy traffic
 NoC implementation can account for

60% to 75% of the miss latency[2]

5

[2] Sanchez et al., ACM TACO, 2010.

Quantifying Design Slack in the NoC

 NoC designed to minimize latency
during heavy traffic
 NoC implementation can account for

60% to 75% of the miss latency[2]

 Study of NoC resource utilization on
recent NoCs designs
 3 selected best paper nominated

NoCs have similar performance:
 DAPPER[3], AxNoC[4], BiNoCHS[5]

 Reducing resources, substantially
reduced performances
 Further details of study is in our paper

6

[2] Sanchez et al., ACM TACO, 2010.
[3] Raparti et al., IEEE/ACM NOCS, 2018.
[4] Ahmed et al., IEEE/ACM NOCS, 2018.
[5] Mirhosseini et al, IEEE/ACM NOCS, 2017.

Quantifying Design Slack in the NoC

 NoC designed to minimize latency
during heavy traffic
 NoC implementation can account for

60% to 75% of the miss latency[2]

 Study of NoC resource utilization on
recent NoCs designs
 3 selected best paper nominated

NoCs have similar performance:
 DAPPER[3], AxNoC[4], BiNoCHS[5]

 Reducing resources, substantially
reduced performances
 Further details of study is in our paper

 Opportunities in Network-on-Chip
Slack

7

NoC
Router

[2] Sanchez et al., ACM TACO, 2010.
[3] Raparti et al., IEEE/ACM NOCS, 2018.
[4] Ahmed et al., IEEE/ACM NOCS, 2018.
[5] Mirhosseini et al, IEEE/ACM NOCS, 2017.

Quantifying Design Slack in the NoC

 NoC designed to minimize latency
during heavy traffic
 NoC implementation can account for

60% to 75% of the miss latency[2]

 Study of NoC resource utilization on
recent NoCs designs
 3 selected best paper nominated

NoCs have similar performance:
 DAPPER[3], AxNoC[4], BiNoCHS[5]

 Reducing resources, substantially
reduced performances
 Further details of study is in our paper

 Opportunities in Network-on-Chip
Slack
 Crossbar

8

NoC
Router

[2] Sanchez et al., ACM TACO, 2010.
[3] Raparti et al., IEEE/ACM NOCS, 2018.
[4] Ahmed et al., IEEE/ACM NOCS, 2018.
[5] Mirhosseini et al, IEEE/ACM NOCS, 2017.

Quantifying Design Slack in the NoC

 NoC designed to minimize latency
during heavy traffic
 NoC implementation can account for

60% to 75% of the miss latency[2]

 Study of NoC resource utilization on
recent NoCs designs
 3 selected best paper nominated

NoCs have similar performance:
 DAPPER[3], AxNoC[4], BiNoCHS[5]

 Reducing resources, substantially
reduced performances
 Further details of study is in our paper

 Opportunities in Network-on-Chip
Slack
 Crossbar
 Network Links

9

NoC
Router

[2] Sanchez et al., ACM TACO, 2010.
[3] Raparti et al., IEEE/ACM NOCS, 2018.
[4] Ahmed et al., IEEE/ACM NOCS, 2018.
[5] Mirhosseini et al, IEEE/ACM NOCS, 2017.

Quantifying Design Slack in the NoC

 NoC designed to minimize latency
during heavy traffic
 NoC implementation can account for

60% to 75% of the miss latency[2]

 Study of NoC resource utilization on
recent NoCs designs
 3 selected best paper nominated

NoCs have similar performance:
 DAPPER[3], AxNoC[4], BiNoCHS[5]

 Reducing resources, substantially
reduced performances
 Further details of study is in our paper

 Opportunities in Network-on-Chip
Slack
 Crossbar
 Network Links
 Internal Buffers

10

NoC
Router

[2] Sanchez et al., ACM TACO, 2010.
[3] Raparti et al., IEEE/ACM NOCS, 2018.
[4] Ahmed et al., IEEE/ACM NOCS, 2018.
[5] Mirhosseini et al, IEEE/ACM NOCS, 2017.

Quantifying Design Slack in the NoC

 Simulated 16 core CMP with 4 benchmarks representing
“low”, “medium”, “medium-high”, “high” traffic

 Crossbar Utilization:
 Peak utilization (Graph 500): 42% utilization
 Highest median (Graph 500): 13.3% utilization

11

Crossbar Utilization

Quantifying Design Slack in the NoC

 Simulated 16 core CMP with 4 benchmarks representing
“low”, “medium”, “medium-high”, “high” traffic

 Crossbar Utilization:
 Peak utilization (Graph 500): 42% utilization
 Highest median (Graph 500): 13.3% utilization

12

Median utilization, Router 5: 8.6%

0

10

20

30

40

50

25 30 35 40

R
ou

te
r C

ro
ss

ba
r U

sa
ge

 (%
)

Time (108 Cycles)

Router 5

Crossbar Utilization

Quantifying Design Slack in the NoC

 Simulated 16 core CMP with 4 benchmarks representing
“low”, “medium”, “medium-high”, “high” traffic

 Crossbar Utilization:
 Peak utilization (Graph 500): 42% utilization
 Highest median (Graph 500): 13.3% utilization

13

Crossbar Utilization

Quantifying Design Slack in the NoC

 Simulated 16 core CMP with 4 benchmarks representing
“low”, “medium”, “medium-high”, “high” traffic

 Crossbar Utilization:
 Peak utilization (Graph 500): 42% utilization
 Highest median (Graph 500): 13.3% utilization

 Link Utilization
 Peak utilization link (Graph500): 18% utilization
 Highest median link utilization (LULESH): 3.3% utilization

14

Median utilization, Router 5: 8.6%

Crossbar Utilization

Link Utilization

Quantifying Design Slack in the NoC
15

Median utilization, Router 5: 8.6%

Crossbar Utilization

Link Utilization

 Simulated 16 core CMP with 4 benchmarks representing
“low”, “medium”, “medium-high”, “high” traffic

 Crossbar Utilization:
 Peak utilization (Graph 500): 42% utilization
 Highest median (Graph 500): 13.3% utilization

 Link Utilization
 Peak utilization link (Graph500): 18% utilization
 Highest median link utilization (LULESH): 3.3% utilization

 Buffer Utilization
 Raytrace : 4% of cycles have localized contention
 10% utilization during contention
 3M flits of the 2.4T flits forwarded: buffer utilization reaches

30-55% of the total capacity

Quantifying Design Slack in the NoC

 Simulated 16 core CMP with 4 benchmarks representing
“low”, “medium”, “medium-high”, “high” traffic

 Crossbar Utilization:
 Peak utilization (Graph 500): 42% utilization
 Highest median (Graph 500): 13.3% utilization

 Link Utilization
 Peak utilization link (Graph500): 18% utilization
 Highest median link utilization (LULESH): 3.3% utilization

 Buffer Utilization
 Raytrace : 4% of cycles have localized contention
 10% utilization during contention
 3M flits of the 2.4T flits forwarded: buffer utilization reaches

30-55% of the total capacity

16

Median utilization, Router 5: 8.6%

0

10

20

30

40

50

25 30 35 40

R
ou

te
r C

ro
ss

ba
r U

sa
ge

 (%
)

Time (108 Cycles)

Router 5

Crossbar Utilization

Link Utilization
The SnackNoC platform improves efficiency
and performance of the CMP by offloading
data-parallel workloads and “snacking” on
network resources.

Overview
17

 “Slack” of the Communication Fabric

 The SnackNoC Platform

 Experimental Results

 Conclusion and Future Considerations

SnackNoC Platform Overview

 Goals:
 Opportunistically “Snack” on existing

network resources for additional
performance

 Limited additional overhead to uncore
 Minimal or zero interference to CMP traffic

 Opportunistic NoC-based compute
platform
 Limited dataflow engine
 Applications:

 Data-parallel workloads used in scientific
computing, graph analytics, and machine
learning

18

SnackNoC Platform Overview

 Goals:
 Opportunistically “Snack” on existing

network resources for additional
performance

 Limited additional overhead to uncore
 Minimal or zero interference to CMP traffic

 Opportunistic NoC-based compute
platform
 Limited dataflow engine
 Applications:

 Data-parallel workloads used in scientific
computing, graph analytics, and machine
learning

19

Celerity RISC-V SoC[6]

[6] S. Davidson et al., IEEE Micro, 2018.

SnackNoC Platform Overview

 Goals:
 Opportunistically “Snack” on existing

network resources for additional
performance

 Limited additional overhead to uncore
 Minimal or zero interference to CMP traffic

 Opportunistic NoC-based compute
platform
 Limited dataflow engine
 Applications:

 Data-parallel workloads used in scientific
computing, graph analytics, and machine
learning

20

Google Cloud TPU[7]

Celerity RISC-V SoC[6]

[6] S. Davidson et al., IEEE Micro, 2018.
[7] Jouppi et. al, IEEE/ACM ISCA, 2017.

SnackNoC Platform Overview

 Goals:
 Opportunistically “Snack” on existing

network resources for additional
performance

 Limited additional overhead to uncore
 Minimal or zero interference to CMP traffic

 Opportunistic NoC-based compute
platform
 Limited dataflow engine
 Applications:

 Data-parallel workloads used in scientific
computing, graph analytics, and machine
learning

21

Google Cloud TPU[7]

Celerity RISC-V SoC[6]

Intel Skylake 8180 HCC[1]

Interconnect

[1] Intel Skylake SP HCC, Wikichip.
[6] S. Davidson et al., IEEE Micro, 2018.
[7] Jouppi et. al, IEEE/ACM ISCA, 2017.

SnackNoC Platform Overview

 Goals:
 Opportunistically “Snack” on existing

network resources for additional
performance

 Limited additional overhead to uncore
 Minimal or zero interference to CMP traffic

 Opportunistic NoC-based compute
platform
 Limited dataflow engine
 Applications:

 Data-parallel workloads used in scientific
computing, graph analytics, and machine
learning

22

Google Cloud TPU[7]

Celerity RISC-V SoC[6]

Intel Skylake 8180 HCC[1]

Interconnect

Steak dinner
[1] Intel Skylake SP HCC, Wikichip.
[6] S. Davidson et al., IEEE Micro, 2018.
[7] Jouppi et. al, IEEE/ACM ISCA, 2017.

SnackNoC Platform Overview

 Goals:
 Opportunistically “Snack” on existing

network resources for additional
performance

 Limited additional overhead to uncore
 Minimal or zero interference to CMP traffic

 Opportunistic NoC-based compute
platform
 Limited dataflow engine
 Applications:

 Data-parallel workloads used in scientific
computing, graph analytics, and machine
learning

23

Google Cloud TPU[7]

Celerity RISC-V SoC[6]

Intel Skylake 8180 HCC[1]

Interconnect

Steak dinner
[1] Intel Skylake SP HCC, Wikichip.
[6] S. Davidson et al., IEEE Micro, 2018.
[7] Jouppi et. al, IEEE/ACM ISCA, 2017.

SnackNoC System Overview

 Added components to a traditional NoC

24

NoC Routers
Memory

Controller

Memory
Controller

Memory
Controller

Memory
Controller

SnackNoC System Overview

 Added components to a traditional NoC
 Central Packet Manager

 Assemble and issue instruction packets
 Manages execution state of kernels
 Located at Memory Controller

25

NoC Routers
Memory

Controller

Memory
Controller

Memory
Controller

Memory
Controller

Central
Packet

Manager

SnackNoC System Overview

 Added components to a traditional NoC
 Central Packet Manager

 Assemble and issue instruction packets
 Manages execution state of kernels
 Located at Memory Controller

 Router Compute Units (RCU)
 Light-weight accumulator-based processing element (PE)

 Instruction buffering
 ALU

 Located in router pipeline

26

NoC Routers
Memory

Controller

Memory
Controller

Memory
Controller

Memory
Controller

Central
Packet

Manager

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

SnackNoC System Overview

 Added components to a traditional NoC
 Central Packet Manager

 Assemble and issue instruction packets
 Manages execution state of kernels
 Located at Memory Controller

 Router Compute Units (RCU)
 Light-weight accumulator-based processing element (PE)

 Instruction buffering
 ALU

 Located in router pipeline

27

NoC Routers
Memory

Controller

Memory
Controller

Memory
Controller

Memory
Controller

Central
Packet

Manager

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Instruction
Flits

SnackNoC System Overview

 Added components to a traditional NoC
 Central Packet Manager

 Assemble and issue instruction packets
 Manages execution state of kernels
 Located at Memory Controller

 Router Compute Units (RCU)
 Light-weight accumulator-based processing element (PE)

 Instruction buffering
 ALU

 Located in router pipeline

28

NoC Routers
Memory

Controller

Memory
Controller

Memory
Controller

Memory
Controller

Central
Packet

Manager

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Instruction
Flits

Result
Data
Flits

SnackNoC System Overview

 Added components to a traditional NoC
 Central Packet Manager

 Assemble and issue instruction packets
 Manages execution state of kernels
 Located at Memory Controller

 Router Compute Units (RCU)
 Light-weight accumulator-based processing element (PE)

 Instruction buffering
 ALU

 Located in router pipeline

 Added features to a traditional NoC:
 CPU traffic priority arbitration
 Available NoC buffers as transient data storage

29

NoC Routers
Memory

Controller

Memory
Controller

Memory
Controller

Memory
Controller

Central
Packet

Manager

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Instruction
Flits

Result
Data
Flits

 Router Compute Units (RCUs)
 32-bit accumulator-based processing element
 Instruction re-ordering and buffering

 Modifications to input buffer queues, allocators, and crossbar

NoC Router Modification and RCU Additions
30

NoC Router

Added to
baseline

Modified

 Router Compute Units (RCUs)
 32-bit accumulator-based processing element
 Instruction re-ordering and buffering

 Modifications to input buffer queues, allocators, and crossbar

NoC Router Modification and RCU Additions
31

NoC Router

Added to
baseline

Modified

 Router Compute Units (RCUs)
 32-bit accumulator-based processing element
 Instruction re-ordering and buffering

 Modifications to input buffer queues, allocators, and crossbar

NoC Router Modification and RCU Additions
32

NoC Router

Added to
baseline

Modified

 Router Compute Units (RCUs)
 32-bit accumulator-based processing element
 Instruction re-ordering and buffering

 Modifications to input buffer queues, allocators, and crossbar

NoC Router Modification and RCU Additions
33

NoC Router

Added to
baseline

Modified

CPU Traffic Priority Arbitration
34

 Primary functionality of NoC is to transfer CPU core and memory traffic
 “Fair” allocators are typically set to select traffic in round-robin
 Allocators are modified to prioritize CPU traffic over SnackNoC instruction or data

traffic

Transient Data Storage
35

 Input buffers typically have low contention
 Available buffers and bandwidth can be used as transient storage
 Useful to keep intermediate results and read-only values on chip

Transient Data Storage
36

 Input buffers typically have low contention
 Available buffers and bandwidth can be used as transient storage
 Useful to keep intermediate results and read-only values on chip

Transient Data Storage
37

 Input buffers typically have low contention
 Available buffers and bandwidth can be used as transient storage
 Useful to keep intermediate results and read-only values on chip

NoC Routers

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Transient Data Storage
38

 Input buffers typically have low contention
 Available buffers and bandwidth can be used as transient storage
 Useful to keep intermediate results and read-only values on chip

NoC Routers

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

1
RCU executes instruction,
intermediate result sent to
transient storage

Transient Data Storage
39

 Input buffers typically have low contention
 Available buffers and bandwidth can be used as transient storage
 Useful to keep intermediate results and read-only values on chip

NoC Routers

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

1
RCU executes instruction,
intermediate result sent to
transient storage

2
RCU waiting on
intermediate
value, received
from transient
storage

Transient Data Storage
40

 Input buffers typically have low contention
 Available buffers and bandwidth can be used as transient storage
 Useful to keep intermediate results and read-only values on chip

NoC Routers

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

1
RCU executes instruction,
intermediate result sent to
transient storage

2
RCU waiting on
intermediate
value, received
from transient
storage

3
Result
returned
to
memory

Running a SnackNoC Kernel
41

C-code APIs for Matrix-multiply

CPU Core

1

…

…

Running a SnackNoC Kernel
42

C-code APIs for Matrix-multiply

CPU Core
Central
Packet

Manager

1

2 CPM sets up kernel

…

…

Main Memory

Running a SnackNoC Kernel
43

C-code APIs for Matrix-multiply

CPU Core
Central
Packet

Manager

NoC Routers

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

1

2 CPM sets up kernel

3 RCUs
execute
kernel

…

…

Main Memory

Running a SnackNoC Kernel
44

C-code APIs for Matrix-multiply

CPU Core
Central
Packet

Manager

NoC Routers

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

1

2 CPM sets up kernel

3 RCUs
execute
kernel

4 Return result
to Main memory via
CPM

…

…

Main Memory

Example of a Reduction Kernel
45

1

Central
Packet

Manager

SnackNoC Flit

SnackNoC instructions and
data and sent to the RCUs

NoC Routers with RCUs

Example of a Reduction Kernel
46

1

Central
Packet

Manager

SnackNoC Flit

SnackNoC instructions and
data and sent to the RCUs

Data dependent
Instructions

2 Data dependent
instructions are sent to
reduce intermediate
results

NoC Routers with RCUs

Example of a Reduction Kernel
47

1

Central
Packet

Manager

SnackNoC Flit

SnackNoC instructions and
data and sent to the RCUs

Data dependent
Instructions

2 Data dependent
instructions are sent to
reduce intermediate
results

3 Intermediate results are sent
to data dependent
instructions

NoC Routers with RCUs

Example of a Reduction Kernel
48

1

Central
Packet

Manager

SnackNoC Flit

SnackNoC instructions and
data and sent to the RCUs

Data dependent
Instructions

2 Data dependent
instructions are sent to
reduce intermediate
results

3 Intermediate results are sent
to data dependent
instructions

4 Results reduced on
the way to corner
RCU and returned to
the CPM

NoC Routers with RCUs

Example of a Reduction Kernel
49

1

Central
Packet

Manager

SnackNoC Flit

SnackNoC instructions and
data and sent to the RCUs

Data dependent
Instructions

2 Data dependent
instructions are sent to
reduce intermediate
results

3 Intermediate results are sent
to data dependent
instructions

4 Results reduced on
the way to corner
RCU and returned to
the CPM

Repurposed our NoC
router crossbar, network
links, and internal buffers
to compute this kernel.

NoC Routers with RCUs

Overview
50

 “Slack” of the Communication Fabric

 The SnackNoC Platform

 Experimental Results

 Conclusion and Future Considerations

Methodology

 Experiments:
1. Assess the performance of

SnackNoC
How many additional cores

worth of performance can
SnackNoC provide
opportunistically?

2. Quantify the performance
interference of operating
SnackNoC on the CPU cores

51

Implemented four SnackNoC
kernels (SGEMM, Reduction,
MAC, SPMV)

Executed 16 multi-threaded
benchmarks from PARSEC3,
Splash2X, FastForward2 to
assess performance interference

Methodology – Quantifying SnackNoC Performance
52

Methodology – Quantifying SnackNoC Performance
53

 SnackNoC is modeled in the gem5 simulation
framework

Methodology – Quantifying SnackNoC Performance
54

 SnackNoC is modeled in the gem5 simulation
framework

 To quantify performance, four SnackNoC
kernels executed on:
1. Simulated CMP with the SnackNoC platform
 Compiled to SnackNoC instructions

Methodology – Quantifying SnackNoC Performance
55

 SnackNoC is modeled in the gem5 simulation
framework

 To quantify performance, four SnackNoC
kernels executed on:
1. Simulated CMP with the SnackNoC platform
 Compiled to SnackNoC instructions

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF

Methodology – Quantifying SnackNoC Performance
56

 SnackNoC is modeled in the gem5 simulation
framework

 To quantify performance, four SnackNoC
kernels executed on:
1. Simulated CMP with the SnackNoC platform
 Compiled to SnackNoC instructions

Simulated CMP
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory
Controllers

NoC Flit Size 32B

Virtual Channels 4

Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF

Methodology – Quantifying SnackNoC Performance
57

 SnackNoC is modeled in the gem5 simulation
framework

 To quantify performance, four SnackNoC
kernels executed on:
1. Simulated CMP with the SnackNoC platform
 Compiled to SnackNoC instructions

2. Native Dell server with Intel Xeon E5-2660
 C++ multi-threaded with OpenMP

Native CPU
Parameters

Configuration

Processor Intel Xeon E5-2660 v3

Core Frequency 2.6GHz

L1 I&D Cache 32KB, 8-way

L2 Cache 256KB, 8-way

L3 Cache 20MB, 20-way

Simulated CMP
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory
Controllers

NoC Flit Size 32B

Virtual Channels 4

Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF

Quantifying SnackNoC Performance Gain

 SnackNoC kernels are executed
on an increasing number of cores
to determine comparable
performance of SnackNoC

58

Quantifying SnackNoC Performance Gain

 SnackNoC kernels are executed
on an increasing number of cores
to determine comparable
performance of SnackNoC

59

Quantifying SnackNoC Performance Gain

 SnackNoC kernels are executed
on an increasing number of cores
to determine comparable
performance of SnackNoC

 CMP performance roughly linear
increase with increasing cores,
with exception to SPMV

60

Quantifying SnackNoC Performance Gain

 SnackNoC kernels are executed
on an increasing number of cores
to determine comparable
performance of SnackNoC

 CMP performance roughly linear
increase with increasing cores,
with exception to SPMV

 Performance gain between 2 and
6 x86 OOO cores

61

SnackNoC Area and Power Overhead

 SnackNoC components’ RTL
implemented, synthesized with
Synopsis Design Compiler:
 45nm NCSU technology node
 Operating Freq. 1GHz

Central Packet
Manager

Additional
Power (%)

Additional Area
(%)

Assembly Logic
and Buffers 0.08% 2.43%

Kernel State 0.16% 0.10%
Instruction Buffer 10.71% 25.75%

Offload Data
Memory Buffer 0.95% 2.28%

Output Result
FIFO 0.95% 2.28%

Total 12.85% 33.04%

62

Router Control
Unit (RCU)

Additional
Power (%)

Additional Area
(%)

32-bit Parallel
Adder 1.14% 1.15%

32-bit Parallel
Subtractor 1.14% 1.15%

32-bit Multiply and
Accumulate (MAC) 2.05% 1.73%

Ordered Instruction
Buffer 2.05% 2.30%

Dependency Buffer
2.51% 1.15%

Accumulator Buffer
0.68% 0.12%

Sub Block List
0.23% 1.73%

Total 9.81% 9.33%

SnackNoC Area and Power Overhead

 SnackNoC components’ RTL
implemented, synthesized with
Synopsis Design Compiler:
 45nm NCSU technology node
 Operating Freq. 1GHz

 Single RCU per NoC router
 Under 10% additional power and

area per router

Central Packet
Manager

Additional
Power (%)

Additional Area
(%)

Assembly Logic
and Buffers 0.08% 2.43%

Kernel State 0.16% 0.10%
Instruction Buffer 10.71% 25.75%

Offload Data
Memory Buffer 0.95% 2.28%

Output Result
FIFO 0.95% 2.28%

Total 12.85% 33.04%

63

Router Control
Unit (RCU)

Additional
Power (%)

Additional Area
(%)

32-bit Parallel
Adder 1.14% 1.15%

32-bit Parallel
Subtractor 1.14% 1.15%

32-bit Multiply and
Accumulate (MAC) 2.05% 1.73%

Ordered Instruction
Buffer 2.05% 2.30%

Dependency Buffer
2.51% 1.15%

Accumulator Buffer
0.68% 0.12%

Sub Block List
0.23% 1.73%

Total 9.81% 9.33%

SnackNoC Area and Power Overhead

 SnackNoC components’ RTL
implemented, synthesized with
Synopsis Design Compiler:
 45nm NCSU technology node
 Operating Freq. 1GHz

 Single RCU per NoC router
 Under 10% additional power and

area per router

 Single CPM per NoC
 12.85% additional power per NoC
 33.04% additional area per NoC

 Largest contributor is instruction buffer

Central Packet
Manager

Additional
Power (%)

Additional Area
(%)

Assembly Logic
and Buffers 0.08% 2.43%

Kernel State 0.16% 0.10%
Instruction Buffer 10.71% 25.75%

Offload Data
Memory Buffer 0.95% 2.28%

Output Result
FIFO 0.95% 2.28%

Total 12.85% 33.04%

64

Router Control
Unit (RCU)

Additional
Power (%)

Additional Area
(%)

32-bit Parallel
Adder 1.14% 1.15%

32-bit Parallel
Subtractor 1.14% 1.15%

32-bit Multiply and
Accumulate (MAC) 2.05% 1.73%

Ordered Instruction
Buffer 2.05% 2.30%

Dependency Buffer
2.51% 1.15%

Accumulator Buffer
0.68% 0.12%

Sub Block List
0.23% 1.73%

Total 9.81% 9.33%

SnackNoC’s Small Contribution to the Total Uncore

 Full uncore of 16 core CMP is
modeled in 45nm with Cacti 7.0
and Orion 3.0.

65

Uncore Power and Area

SnackNoC’s Small Contribution to the Total Uncore

 Full uncore of 16 core CMP is
modeled in 45nm with Cacti 7.0
and Orion 3.0.

66

Uncore Power and Area

SnackNoC’s Small Contribution to the Total Uncore

 Full uncore of 16 core CMP is
modeled in 45nm with Cacti 7.0
and Orion 3.0.

 16 RCU SnackNoC only
contributes 1.6% and 1.1%
power and area, respectively.

67

Uncore Power and Area

SnackNoC’s Small Contribution to the Total Uncore

 Full uncore of 16 core CMP is
modeled in 45nm with Cacti 7.0
and Orion 3.0.

 16 RCU SnackNoC only
contributes 1.6% and 1.1%
power and area, respectively.

68

Uncore Power and Area

Satisfies goal of limited overhead

Methodology – Quantifying SnackNoC Interference
69

 To quantify performance interference, the
performance of the CMP is compared with
and without SnackNoC Traffic

Simulated CMP
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory
Controllers

NoC Flit Size 32B

Virtual Channels 4

Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF

Methodology – Quantifying SnackNoC Interference
70

 To quantify performance interference, the
performance of the CMP is compared with
and without SnackNoC Traffic
 Simulated 16 core CMP with benchmarks from

PARSEC3, Splash2X, and FastForward2

Simulated CMP
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory
Controllers

NoC Flit Size 32B

Virtual Channels 4

Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF

Methodology – Quantifying SnackNoC Interference
71

 To quantify performance interference, the
performance of the CMP is compared with
and without SnackNoC Traffic
 Simulated 16 core CMP with benchmarks from

PARSEC3, Splash2X, and FastForward2
 SnackNoC kernels are simultaneously executed

Simulated CMP
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory
Controllers

NoC Flit Size 32B

Virtual Channels 4

Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF

Minimal impact of “Snacking” on CMP performance
72

Minimal impact of “Snacking” on CMP performance
73

 Performance impact varies based on NoC utilization

Minimal impact of “Snacking” on CMP performance
74

 Performance impact varies based on NoC utilization
 Peak 1.1% performance impact on CMP cores

Minimal impact of “Snacking” on CMP performance
75

 Performance impact varies based on NoC utilization
 Peak 1.1% performance impact on CMP cores
 On average ~0.30% for SGEMM, MAC, SPMV. On average 0.11% for Reduction

Minimal impact of “Snacking” on CMP performance
76

 Performance impact varies based on NoC utilization
 Peak 1.1% performance impact on CMP cores
 On average ~0.30% for SGEMM, MAC, SPMV. On average 0.11% for Reduction

 SnackNoC kernel completion time impacted at most 3.9% with fair arbitration

Minimal impact of “Snacking” on CMP performance
77

Minimal impact of “Snacking” on CMP performance
78

Minimal impact of “Snacking” on CMP performance
79

SnackNoC
traffic added
to LULESH

Minimal impact of “Snacking” on CMP performance
80

SnackNoC
traffic added
to LULESH

Minimal impact of “Snacking” on CMP performance
81

SnackNoC
traffic added
to LULESH

Minimal impact
to CMP
Performance

Further Reducing Impact with Priority Arbitration
82

Further Reducing Impact with Priority Arbitration
83

Further Reducing Impact with Priority Arbitration
84

 Adding priority flit arbitration for CMP traffic:
 Average performance impact drops from 0.25% to 0.17%

Further Reducing Impact with Priority Arbitration
85

 Adding priority flit arbitration for CMP traffic:
 Average performance impact drops from 0.25% to 0.17%
 Improves flit interference by up to 92%

Further Reducing Impact with Priority Arbitration
86

 Adding priority flit arbitration for CMP traffic:
 Average performance impact drops from 0.25% to 0.17%
 Improves flit interference by up to 92%
 Peak performance impact with priority arbitration is 0.83%

Further Reducing Impact with Priority Arbitration
87

 Adding priority flit arbitration for CMP traffic:
 Average performance impact drops from 0.25% to 0.17%
 Improves flit interference by up to 92%
 Peak performance impact with priority arbitration is 0.83%

Satisfies goal of limited
performance impact

Overview
88

 “Slack” of the Communication Fabric

 The SnackNoC Platform

 Experimental Results

 Conclusion and Future Considerations

Conclusion and Future Considerations

 Opportunistically “snacking” on
NoC resources can add
performance to our CMPs
 Added 2 to 6 cores of

performance with only a 1.3%
increase of the uncore area

89

Conclusion and Future Considerations

 Opportunistically “snacking” on
NoC resources can add
performance to our CMPs
 Added 2 to 6 cores of

performance with only a 1.3%
increase of the uncore area

 Further tradeoffs we’re
investigating:
1. Growing application coverage
2. Scaling compute density
3. Supporting future topologies

90

Questions?
91

Main Contributions:
 Quantified design slack in the communication fabric
 Opportunistically adds 2 to 6 core performance to the CMP by repurposing NoC

resources with low overhead

Karthik Sangaiah, Michael Lui, Ragh Kuttappa, Baris Taskin [Drexel University],
and Mark Hempstead [Tufts University], “SnackNoC: Processing in the
Communication Layer”, Proceedings of the IEEE international Symposium on
High Performance Computer Architecture (HPCA), February 2020.

http://vlsi.ece.drexel.edu/ & https://sites.tufts.edu/tcal/

http://vlsi.ece.drexel.edu/
https://sites.tufts.edu/tcal/

	SnackNoC: Processing IN the Communication Layer
	Opportunistic Resources for Graduate Students
	Opportunistic Resources in the CMP
	Opportunistic Resources in the CMP
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Quantifying Design Slack in the NoC
	Overview
	SnackNoC Platform Overview
	SnackNoC Platform Overview
	SnackNoC Platform Overview
	SnackNoC Platform Overview
	SnackNoC Platform Overview
	SnackNoC Platform Overview
	SnackNoC System Overview
	SnackNoC System Overview
	SnackNoC System Overview
	SnackNoC System Overview
	SnackNoC System Overview
	SnackNoC System Overview
	NoC Router Modification and RCU Additions
	NoC Router Modification and RCU Additions
	NoC Router Modification and RCU Additions
	NoC Router Modification and RCU Additions
	CPU Traffic Priority Arbitration
	Transient Data Storage
	Transient Data Storage
	Transient Data Storage
	Transient Data Storage
	Transient Data Storage
	Transient Data Storage
	Running a SnackNoC Kernel
	Running a SnackNoC Kernel
	Running a SnackNoC Kernel
	Running a SnackNoC Kernel
	Example of a Reduction Kernel
	Example of a Reduction Kernel
	Example of a Reduction Kernel
	Example of a Reduction Kernel
	Example of a Reduction Kernel
	Overview
	Methodology
	Methodology – Quantifying SnackNoC Performance
	Methodology – Quantifying SnackNoC Performance
	Methodology – Quantifying SnackNoC Performance
	Methodology – Quantifying SnackNoC Performance
	Methodology – Quantifying SnackNoC Performance
	Methodology – Quantifying SnackNoC Performance
	Quantifying SnackNoC Performance Gain
	Quantifying SnackNoC Performance Gain
	Quantifying SnackNoC Performance Gain
	Quantifying SnackNoC Performance Gain
	SnackNoC Area and Power Overhead
	SnackNoC Area and Power Overhead
	SnackNoC Area and Power Overhead
	SnackNoC’s Small Contribution to the Total Uncore
	SnackNoC’s Small Contribution to the Total Uncore
	SnackNoC’s Small Contribution to the Total Uncore
	SnackNoC’s Small Contribution to the Total Uncore
	Methodology – Quantifying SnackNoC Interference
	Methodology – Quantifying SnackNoC Interference
	Methodology – Quantifying SnackNoC Interference
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Minimal impact of “Snacking” on CMP performance
	Further Reducing Impact with Priority Arbitration
	Further Reducing Impact with Priority Arbitration
	Further Reducing Impact with Priority Arbitration
	Further Reducing Impact with Priority Arbitration
	Further Reducing Impact with Priority Arbitration
	Further Reducing Impact with Priority Arbitration
	Overview
	Conclusion and Future Considerations
	Conclusion and Future Considerations
	Questions?
	Additional Slides
	References
	Establishing the Baseline NoC
	Performance of Evaluated NoCs
	Raytrace - NoC Buffer Utilization
	Opportunistic Computing in NoCs?
	Dataflow Processors & Similarity
	Dataflow Processors & Similarity
	Dataflow Processors & Similarity
	Related Works of Processing in the Communication Layer
	SnackNoC System Overview
	Modified Router pipeline
	Central Packet Manager
	Minimal Performance Impact on CMP
	SnackNoC Area and Power Overhead
	SnackNoC Area and Power Overhead
	SnackNoC Area and Power Overhead
	Scalability

