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Interconnect “Free leftovers”
NoC

Router

Opportunistically collecting “snacks” to 
make a “meal”.What is the performance gain we add by 

opportunistically “snacking” on CMP resources?
[1] Intel Skylake SP HCC, Wikichip.
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The SnackNoC platform improves efficiency
and performance of the CMP by offloading 
data-parallel workloads and “snacking” on 
network resources.
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 Located at Memory Controller

 Router Compute Units (RCU)
 Light-weight accumulator-based processing element (PE)

 Instruction buffering
 ALU

 Located in router pipeline

 Added features to a traditional NoC:
 CPU traffic priority arbitration
 Available NoC buffers as transient data storage
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CPU Traffic Priority Arbitration
34

 Primary functionality of NoC is to transfer CPU core and memory traffic
 “Fair” allocators are typically set to select traffic in round-robin
 Allocators are modified to prioritize CPU traffic over SnackNoC instruction or data 

traffic
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 Input buffers typically have low contention
 Available buffers and bandwidth can be used as transient storage
 Useful to keep intermediate results and read-only values on chip
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intermediate result sent to 
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2
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intermediate 
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from transient 
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to
memory
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1

Central
Packet

Manager

SnackNoC Flit

SnackNoC instructions and 
data and sent to the RCUs

Data dependent 
Instructions

2 Data dependent 
instructions are sent to 
reduce intermediate 
results

3 Intermediate results are sent 
to data dependent 
instructions

4 Results reduced on 
the way to corner 
RCU and returned to 
the CPM

Repurposed our NoC 
router crossbar, network 
links, and internal buffers 
to compute this kernel.

NoC Routers with RCUs
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Methodology

 Experiments:
1. Assess the performance of 

SnackNoC
How many additional cores 

worth of performance can 
SnackNoC provide 
opportunistically?

2. Quantify the performance 
interference of operating 
SnackNoC on the CPU cores

51

Implemented four SnackNoC 
kernels (SGEMM, Reduction, 
MAC, SPMV)

Executed 16 multi-threaded 
benchmarks from PARSEC3, 
Splash2X, FastForward2 to 
assess performance interference
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 SnackNoC is modeled in the gem5 simulation 
framework

 To quantify performance, four SnackNoC 
kernels executed on:
1. Simulated CMP with the SnackNoC platform
 Compiled to SnackNoC instructions

2. Native Dell server with Intel Xeon E5-2660
 C++ multi-threaded with OpenMP

Native CPU 
Parameters

Configuration

Processor Intel Xeon E5-2660 v3

Core Frequency 2.6GHz

L1 I&D Cache 32KB, 8-way

L2 Cache 256KB, 8-way

L3 Cache 20MB, 20-way

Simulated CMP 
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory 
Controllers

NoC Flit Size 32B

# Virtual Channels 4

# Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF
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Quantifying SnackNoC Performance Gain

 SnackNoC kernels are executed 
on an increasing number of cores 
to determine comparable 
performance of SnackNoC

 CMP performance roughly linear 
increase with increasing cores, 
with exception to SPMV

 Performance gain between 2 and 
6 x86 OOO cores

61



SnackNoC Area and Power Overhead

 SnackNoC components’ RTL 
implemented, synthesized with 
Synopsis Design Compiler:
 45nm NCSU technology node
 Operating Freq. 1GHz

Central Packet 
Manager

Additional
Power (%)

Additional Area 
(%)

Assembly Logic 
and Buffers 0.08% 2.43%

Kernel State 0.16% 0.10%
Instruction Buffer 10.71% 25.75%

Offload Data 
Memory Buffer 0.95% 2.28%

Output Result 
FIFO 0.95% 2.28%

Total 12.85% 33.04%
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Router Control 
Unit (RCU)

Additional
Power (%)

Additional Area 
(%)

32-bit Parallel 
Adder 1.14% 1.15%

32-bit Parallel 
Subtractor 1.14% 1.15%

32-bit Multiply and 
Accumulate (MAC) 2.05% 1.73%

Ordered Instruction 
Buffer 2.05% 2.30%

Dependency Buffer
2.51% 1.15%

Accumulator Buffer
0.68% 0.12%

Sub Block List
0.23% 1.73%

Total 9.81% 9.33%



SnackNoC Area and Power Overhead

 SnackNoC components’ RTL 
implemented, synthesized with 
Synopsis Design Compiler:
 45nm NCSU technology node
 Operating Freq. 1GHz

 Single RCU per NoC router
 Under 10% additional power and 

area per router

Central Packet 
Manager

Additional
Power (%)

Additional Area 
(%)

Assembly Logic 
and Buffers 0.08% 2.43%

Kernel State 0.16% 0.10%
Instruction Buffer 10.71% 25.75%

Offload Data 
Memory Buffer 0.95% 2.28%

Output Result 
FIFO 0.95% 2.28%

Total 12.85% 33.04%
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Additional Area 
(%)

32-bit Parallel 
Adder 1.14% 1.15%

32-bit Parallel 
Subtractor 1.14% 1.15%

32-bit Multiply and 
Accumulate (MAC) 2.05% 1.73%

Ordered Instruction 
Buffer 2.05% 2.30%

Dependency Buffer
2.51% 1.15%

Accumulator Buffer
0.68% 0.12%

Sub Block List
0.23% 1.73%

Total 9.81% 9.33%



SnackNoC Area and Power Overhead

 SnackNoC components’ RTL 
implemented, synthesized with 
Synopsis Design Compiler:
 45nm NCSU technology node
 Operating Freq. 1GHz

 Single RCU per NoC router
 Under 10% additional power and 

area per router

 Single CPM per NoC
 12.85% additional power per NoC
 33.04% additional area per NoC

 Largest contributor is instruction buffer

Central Packet 
Manager

Additional
Power (%)

Additional Area 
(%)

Assembly Logic 
and Buffers 0.08% 2.43%

Kernel State 0.16% 0.10%
Instruction Buffer 10.71% 25.75%

Offload Data 
Memory Buffer 0.95% 2.28%

Output Result 
FIFO 0.95% 2.28%

Total 12.85% 33.04%
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Router Control 
Unit (RCU)

Additional
Power (%)

Additional Area 
(%)

32-bit Parallel 
Adder 1.14% 1.15%

32-bit Parallel 
Subtractor 1.14% 1.15%

32-bit Multiply and 
Accumulate (MAC) 2.05% 1.73%

Ordered Instruction 
Buffer 2.05% 2.30%

Dependency Buffer
2.51% 1.15%

Accumulator Buffer
0.68% 0.12%

Sub Block List
0.23% 1.73%

Total 9.81% 9.33%



SnackNoC’s Small Contribution to the Total Uncore

 Full uncore of 16 core CMP is 
modeled in 45nm with Cacti 7.0 
and Orion 3.0.
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SnackNoC’s Small Contribution to the Total Uncore

 Full uncore of 16 core CMP is 
modeled in 45nm with Cacti 7.0 
and Orion 3.0.

 16 RCU SnackNoC only 
contributes 1.6% and 1.1% 
power and area, respectively.
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Uncore Power and Area 

Satisfies goal of limited overhead



Methodology – Quantifying SnackNoC Interference
69

 To quantify performance interference, the 
performance of the CMP is compared with 
and without SnackNoC Traffic

Simulated CMP 
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory 
Controllers

NoC Flit Size 32B

# Virtual Channels 4

# Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF
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 To quantify performance interference, the 
performance of the CMP is compared with 
and without SnackNoC Traffic
 Simulated 16 core CMP with benchmarks from 

PARSEC3, Splash2X, and FastForward2
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NoC Flit Size 32B

# Virtual Channels 4

# Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF
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 To quantify performance interference, the 
performance of the CMP is compared with 
and without SnackNoC Traffic
 Simulated 16 core CMP with benchmarks from 

PARSEC3, Splash2X, and FastForward2
 SnackNoC kernels are simultaneously executed

Simulated CMP 
Parameters

Configuration

Core Count 16 in-order cores

Core Frequency 2GHz

L1 I&D Cache 32KB, 4-way

L2 Cache 256KB, 4-way

NoC Topology 2D 4x4 Mesh, 4 Memory 
Controllers

NoC Flit Size 32B

# Virtual Channels 4

# Buffers 4

SnackNoC Parameters Configuration

RCU Count 16 RCUs

RCU Freq. 1 GHz

Flit Priority Arbitration ON/OFF
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 Performance impact varies based on NoC utilization
 Peak 1.1% performance impact on CMP cores
 On average ~0.30% for SGEMM, MAC, SPMV. On average 0.11% for Reduction

 SnackNoC kernel completion time impacted at most 3.9% with fair arbitration
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SnackNoC 
traffic added 
to LULESH

Minimal impact 
to CMP 
Performance
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Further Reducing Impact with Priority Arbitration
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 Adding priority flit arbitration for CMP traffic:
 Average performance impact drops from 0.25% to 0.17%
 Improves flit interference by up to 92%
 Peak performance impact with priority arbitration is 0.83%

Satisfies goal of limited 
performance impact



Overview
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 “Slack” of the Communication Fabric

 The SnackNoC Platform

 Experimental Results

 Conclusion and Future Considerations



Conclusion and Future Considerations

 Opportunistically “snacking” on 
NoC resources can add 
performance to our CMPs
 Added 2 to 6 cores of 

performance with only a 1.3% 
increase of the uncore area
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Conclusion and Future Considerations

 Opportunistically “snacking” on 
NoC resources can add 
performance to our CMPs
 Added 2 to 6 cores of 

performance with only a 1.3% 
increase of the uncore area

 Further tradeoffs we’re 
investigating:
1. Growing application coverage
2. Scaling compute density
3. Supporting future topologies

90



Questions?
91

Main Contributions:
 Quantified design slack in the communication fabric
 Opportunistically adds 2 to 6 core performance to the CMP by repurposing NoC 

resources with low overhead

Karthik Sangaiah, Michael Lui, Ragh Kuttappa, Baris Taskin [Drexel University], 
and Mark Hempstead [Tufts University], “SnackNoC: Processing in the 
Communication Layer”, Proceedings of the IEEE international Symposium on 
High Performance Computer Architecture (HPCA), February 2020.

http://vlsi.ece.drexel.edu/ & https://sites.tufts.edu/tcal/

http://vlsi.ece.drexel.edu/
https://sites.tufts.edu/tcal/
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