Tutorial on Communication-Aware Workload Profiling and Memory-NoC Simulation SIGIL and SYNCHROTRACE

ORGANIZERS:

Dr. Mark Hempstead, Drexel University Michael Lui, Drexel University Dr. Siddharth Nilankantan, Nvidia Dr. Baris Taskin, Drexel University

October 4-6, 2015 Atlanta, Georgia, USA

> **Key Topics:** workload profiling accelerator design design space exploration trace-driven simulation

2015 IEEE International Symposium on Workload Characterization

Understanding how CMPs, GPUs, and ASIC IPs communicate and interact to extract the most performance and efficiency out of future architectures.

SIGIL [1]

a workload profiling toolset that enables architects to explore and investigate sources of performance bottlenecks in current and future systems.

- Platform-independent workload behavior 1.
- 2. Classification and capture of architecture agnostic metrics:
 - communication edges
 - computation operations
 - synchronization primitives 0
- 3. Accelerator selection HW/SW partitioning examples
 - 0 How do we select the best balance of resources for future energy-constrained, bursty systems?

SYNCHROTRACE [2]

trace-driven simulation framework for fast design space exploration; dependency- and synchronization- aware, utitlizing trace generation from SIGIL.

- 1. Fast and accurate simulation of multi-threaded communication bound architectures
- 2. Addresses the emerging need and challenges of software synchronization-aware simulation
- 3. Synchronization-aware simulation over large design space
 - Motivates impact of capturing nondeterminism of a workload
- 4. Netwok-on-Chip and memory model design exploration tutorials
 - How do we map threads to cores for the best performance?

[1] Siddharth Nilakantan and Mark Hempstead, Platform-independent Analysis of Function-level Communication in Workloads, IEEE International Symposium on Workload Characterization (IISWC), Portland, OR Sep 2013.

[2] Siddharth Nilakantan, Karthik Sangaiah, Ankit More, Giordano Salvador, Baris Taskin, Mark Hempstead, SynchroTrace: Synchronization-aware Architecture-agnostic Traces for Light-Weight Multicore Simulation. IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), March, 2015.

http://vlsi.ece.drexel.edu http://dpac.ece.drexel.edu

Drexel University VLSI & Architecture Lab Drexel University Power Aware Computing Lab http://github.com/dpac-vlsi Free and Open Source Software tools

