
1

SynchroTrace: Synchronization-aware Architecture-agnostic
Traces for Light-Weight Multicore Simulation of CMP and
HPCWorkloads

KARTHIK SANGAIAH, Drexel University
MICHAEL LUI, Drexel University
RADHIKA JAGTAP, Arm Ltd.

STEPHAN DIESTELHORST, Arm Ltd.

SIDDHARTH NILAKANTAN, NVIDIA Corporation

ANKIT MORE, Intel Corporation
BARIS TASKIN, Drexel University
MARK HEMPSTEAD, Tu�s University

Trace-driven simulation of chip multi-processor (CMP) systems o�ers many advantages over execution-

driven simulation, such as reducing simulation time and complexity, allowing portability, and scalability.

However, trace-based simulation approaches have di�culty capturing and accurately replaying multi-threaded

traces due to the inherent non-determinism in the execution of multi-threaded programs. In this work, we

present SynchroTrace, a scalable, �exible, and accurate trace-based multi-threaded simulation methodology.

By recording synchronization events relevant to modern threading libraries (e.g. Pthreads and OpenMP) and

dependencies in the traces, independent of the host architecture, the methodology is able to accurately model

the non-determinism of multi-threaded programs for di�erent hardware platforms and threading paradigms.

�rough capturing high-level instruction categories, the SynchroTrace average CPI trace replay timing model

o�ers fast and accurate simulation of many-core in-order CMPs. We perform two case studies to validate the

SynchroTrace simulation �ow against the gem5 full-system simulator: 1) a constraint-based design space

exploration with traditional CMP benchmarks and 2) a thread-scalability study with HPC-representative

applications. �e results from these case studies show that 1) our trace-based approach with trace �ltering

has a peak speedup of up to 18.7× over simulation in gem5 full-system with an average of 9.6× speedup,

2) SynchroTrace maintains the thread-scaling accuracy of gem5 and can e�ciently scale up to 64 threads, and

3) SynchroTrace can trace in one platform and model any platform in early stages of design.

CCS Concepts: •General and reference →Performance; •Computingmethodologies →Modeling and
simulation; •Networks →Network performance evaluation;
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1 INTRODUCTION
As the number of cores in future HPC-focused chip multiprocessors (CMPs) scales up, the design

complexity of these future CMPs cause long simulation times. �is is a challenge for the system

design process, particularly of HPC systems where dependable simulation methodologies are

essential. Current execution-driven simulators encounter such a simulation wall for analyzing and

simulating current HPC-representative applications and systems. �e simulation wall is exempli�ed

in Figure 1, where the simulation time continues to grow as we increase the number of application

threads when simulating a compute-intensive HPC kernel with a full-system execution driven

simulator (gem5 [3]). It is clear that for HPC applications, it is intractable to simulate many-core

CMPs with full-system execution driven simulation.

Compared to execution-driven simulation, trace-driven simulation of CMP-based systems has

signi�cant bene�ts over execution-driven simulation, such as reducing simulation complexity and

simulation time, allowing portability, and scalability.

However, existing methodologies that capture traces for multi-threaded applications are currently

inadequate for CMP design space exploration. PinPlay is one such methodology that captures

multi-threaded traces in the form of pinballs. Pinplay is used for deterministic and reproducible
replay, and it supports multi-threaded applications [30]. However, the timing associated with the

execution of multi-threaded applications has inherent non-determinism, due to the presence of

synchronization and other run-time factors. �e traces and replay of Pinplay do not model this

non-determinism accurately during simulation. As a result, a design space exploration of a CMP

with PinPlay may lead to sub-optimal design choices. Additionally, there are currently no publicly

available simulators that support pinballs of multi-threaded applications. Another trace-based
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Fig. 1. Full-System Simulation of Shock Hydrodynamics HPC Application (LULESH)
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solution, proposed by Rico et al. [32], is a hybrid execution-driven and trace-driven methodology for

simulation. However, their methodology requires source to source transformation to interface their

synchronization calls with their simulation framework. Our proposed methodology models the non-

determinism of thread interleaving, while enabling fast simulations of unmodi�ed multi-threaded

applications of any in-order CMP platform.

We propose SynchroTrace, a two-step methodology for trace-based simulation of multi-threaded

applications: 1) the generation of synchronization- and dependency-aware architecture-agnostic

traces and 2) a light-weight replay mechanism that respects those dependencies, simulates sy-

nchronization actions, and handles simple scheduling for threads for playback on any in-order

CMP platform. �e tracing methodology utilizes dynamic binary instrumentation to generate the

dynamic trace. Within the traces, events of di�erent types are identi�ed to separate computation,

synchronization, and communication in shared memory multi-threaded programs. �e replay

mechanism parses these events and inserts them appropriately into the computation or memory

stream during playback. In this paper, we refer to a simulation �ow that integrates SynchroTrace

with a cache and interconnect simulator as the “SynchroTrace Replayer”, or “Replay” for short.

With a large hardware design space exploration of the memory hierarchy and interconnect sub

spaces, we show how SynchroTrace provides fast (up to 18.7× faster than gem5 [3]) simulations that

estimate CMP performance and power. �e equivalent design space exploration is performed with

gem5 as to show that SynchroTrace obtains the same best design con�gurations under constraints

as gem5. Additionally, we present a case study analyzing the performance of HPC applications as we

increase the number of threads using SynchroTrace and gem5. We show that SynchroTrace predicts

thread-scalability of HPC applications within 5.8% of gem5. However, we �nd that SynchroTrace

simulations typically do not increase in simulation time as the number of threads is increased from

one to eight, while gem5 simulations requires up to a 95% increase in simulation time. We also

show that SynchroTrace is tractable for simulations of 64 application threads. Lastly, we compare

thread-scalability results of using traces from both x86- and Armv8-based platforms and show that

traces from one processor architecture can be used to accurately model others. �e results from

these case studies show that our methodology has high accuracy with a peak speedup of up to

18.7× compared to simulation with gem5 full-system, can tractably scale to a system with 64 cores,

and is architecture-agnostic.

�e rest of the paper is organized as follows: we present SynchroTrace: synchronization- and

dependency-aware, architecture-agnostic multi-threaded traces, including our new support for

OpenMP-based HPC applications, in Section 2 and a dependent replay mechanism (i.e. to complete

the simulation �ow) in Section 3. We validate SynchroTrace by comparing our trace-based simula-

tion results for a CMP design space exploration against the gem5 full-system simulator results in

Section 4. We show in Section 5 how SynchroTrace can be used to examine HPC-focused, OpenMP-

based application scalability (up to 64 threads) for Armv8 and x86-64 platforms. In Section 6,

we present trace-based optimizations for speedup of CMP architecture simulations. Finally, we

compare SynchroTrace with related work in Section 7.

2 SYNCHRONIZATION- AND DEPENDENCY-AWARE TRACES
In the context of architecture simulation, traces refer to the chronological event sequence of a

program’s execution. A trace-driven simulation �ow takes two passes: trace generation and trace

replay. Traces can be recorded at di�erent levels of the system depending on the relevant subsystem

being designed. For example, an instruction trace records all instructions dynamically executed in

chronological order. �is instruction trace can then be used for detailed CPU models. Similarly,

memory traces record only the LD/ST instructions and addresses dynamically executed [3, 26, 30].

Memory traces can be used with simpler CPU models for more detailed simulation of just the
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Fig. 2. Non-Determinism in�read Execution. Two thread interleavings are shown with a run-time (RT)
factor occurring during Section A of Thread 1. Di�ering thread interleavings can impact overall run-time [32].

“uncore” [23]. Additional tools, such as Ramulator [21] or gem5 [3], can produce memory traces

with embedded timing information to model speci�c systems. However, this level of tracing

requires large amounts of storage, and it is not adaptable to model system-level performance

metrics, such as execution time or IPC, for multiple systems without additional tracing for each

system. Additionally, traditional instruction and memory traces alone cannot accurately model

multi-threaded applications in simulation due to the non-determinism of threads during execution.

In this section, we describe the importance of modeling non-determinism in thread execution, our

solution through synchronization- and dependency-aware synchrotraces, and the methodology of

capturing the synchrotraces.

2.1 Non-Determinism in Multi-Threaded Programs
Traces are convenient and portable for simulation, but due to non-deterministic execution, simu-

lation using traces of multi-threaded applications has proven di�cult and been a�empted only

a few times [28, 30, 32]. �e non-determinism manifests as uneven per-thread progress between

synchronization points and indeterminate wait time at synchronization points. Design time fac-

tors (e.g. CMP design con�guration and static thread mapping) and run-time factors (e.g. OS load

on the cores or dynamic thread mapping) can impact individual thread progress di�erently. A

particular state of relative progress between di�erent threads is termed thread interleaving [30, 32].

�e non-determinism arising from the possibility of di�erent thread interleavings can subsequently

a�ect performance metrics, such as cycle time, core utilization, memory bandwidth, peak tra�c,

and energy footprint of a multi-threaded application.

An example of thread non-determinism via di�erent thread interleavings is illustrated in Figure 2.

�is �gure depicts a portion of execution for an application containing two synchronizing threads,

between two barriers, i.e. a barrier region [5]. Each thread must complete Sections A, B, and C in

sequence, and both threads must go through the Critical Section B in a mutually exclusive manner

(enforced by mutex synchronization). A mutex synchronization point allows the �rst arriving

thread to progress while the other has to wait, and a barrier only allows progress when all required

threads have arrived. Two scenarios of thread progress are shown with slightly di�erent execution

times for Section A across the scenarios. �e inclusion of a dynamic run-time variable (OS) in the
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timing of Section A has a signi�cant e�ect on the wall-clock time. In the top scenario, �read 1
waits at the critical section for �read 0 to �nish �rst. In the bo�om scenario, �read 0 waits at the
critical section for �read 1 to �nish �rst. Since �read 0 is allowed to progress through the critical

section �rst in the top scenario, both threads reach the barrier a�er Section C quicker.

�e di�erence in execution time of Section A represents uneven progress between synchroniza-

tion points in multi-threaded programs. �is is one manifestation of non-determinism. Another

manifestation of non-determinism is the variable wait times at synchronization points caused by,

for example, OS scheduling, lock acquisition policies, and even cache state. It is thus important to

model the impact of non-determinism during simulation.

We assert that a trace-driven simulation �ow for multi-threaded applications should not record

and enforce a speci�c thread interleaving. Instead, SynchroTrace allows for thread interleaving to

be determined by hardware architecture and run-time factors during replay.

2.2 SynchroTrace Characteristics
�e overall goal for forming a trace of a multi-threaded program is choosing a level of abstraction

that balances modeling accuracy with simulation time and disk storage. Full instruction traces

can enable accurate simulation but require large simulation time and disk storage. Alternatively,

memory traces can enable fast simulation but do not have enough detailed information to model

system-level performance metrics, such as execution time. SynchroTrace forms a fast simulation

abstraction of the execution units coremodel (i.e. local computation of a thread), while maintaining a

detailed account of memory operations, thread synchronization actions, and thread communication.

Control-�ow is not captured directly for this work, as the platforms investigated all use simple

in-order cores that are una�ected by speculation. �e additional timing cost of control-�ow

instructions is captured implicitly in the calculation for average instruction latency, detailed in

Section 3.1.

An additional goal is to scalably generate the traces. While traces can be captured using full-

system simulation [14, 29], this technique is not scalable to multi-threaded application trace

capture. Synchrotraces are captured quicker than full-system simulation-based trace capture as

synchrotraces are derived from native runs of the program, allowing for scalability with a marginal

overhead when increasing the number of threads due to context switching handled in the dynamic

binary instrumentation tool. Additionally, the event representation allows for more size e�cient

traces by only holding detailed information for the most important events.

In SynchroTrace, all operations by a multi-threaded program are classi�ed into three categories

of run-time events: Computation, �read Synchronization, and Communication.

Computation Events represent local processing performed by a thread, completely independent

of other threads. �ese events are necessary to model the timing (e.g. execution time) of each

individual core in the replay of the traces. For each trace to remain i) ISA- and microarchitecture-

agnostic, ii) fast, and iii) easily compressible, the traces only contain abstract computation events

and not detailed instructions. Computation events contain counts of Integer Operations (IOPS),
Floating Point Operations (FLOPS), Memory Writes, and Memory Reads to locations wri�en by the

same thread. IOPS and FLOPS are used to abstractly model the timing of compute operations of

detailed instructions while maintaining the high �delity memory operations for detailed memory

playback; the set of unique read and wri�en (virtual memory) addresses (i.e. the memory address

of only the �rst read or write) are stored within the event as well. As shown in Section 4, we �nd

this level of abstraction estimates the performance of CMPs accurately.

�read Synchronization Events contain the type of synchronization API call and the address

of the data structure used, so that a particular synchronization object can be recognized. Currently,

OpenMP and Pthreads are supported as the synchronization API calls for SynchroTrace. �read
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synchronization events are interpreted during simulation, and the action appropriate for the

synchronization type (i.e. create, join, barrier, mutex lock, conditions etc.) is applied for participating

threads. Synchronization events mediate accesses to shared resources and are necessary to model

the non-determinism of thread interleaving.

Communication Events represent communication edges between threads. A communication

event is necessary for modeling communication occurring between threads that may not be fully

transparent to the capture framework, such as user-level synchronization or memory tra�c within

the kernel (as explained next in Section 2.3). A communication event in the consuming thread

is associated with a corresponding computation event in the producing thread. Communication

events can potentially hold references to data from multiple producer threads. A communication

edge can generate cache coherence tra�c when the producing event and consuming event have

temporal proximity. However, since there is a possibility of di�erent thread interleavings between

capturing and replaying the trace, it is not possible to predict, ahead of simulation, whether the

producing and consuming events of di�erent threads will indeed be close in simulation time. �us,

we capture the communication event into the trace of the consuming thread, and when replaying

the trace, we enforce the dependency between the consuming and producing thread.

Listing 1. Computation Event
Event Number , I n t e g e r Op Count , F l o a t i n g Po in t Op Count , Memory Read Count ,

Memory Write Count $ Unique Addre s se s Wr i t t en ∗ Unique Addre s se s Read

Listing 2. Thread Synchronization Event
Event Number , p t h t y : Sync Ca l l Type ˆ Address o f S yn ch r on i z a t i on S t r u c t u r e

Listing 3. Communication Event
Event Number # Producer Thread , P roducer Event , Address Range

An excerpt of a single thread’s trace using �elds from Listings 1–3 follows:

Listing 4. Single Thread’s Trace Example
1 7 7 4 5 2 2 , 1 , 0 , 0 , 1 $ 132941440 132941447

1 7 7 4 5 2 3 , 1 , 0 , 0 , 1 $ 132941448 132941455

1774524 # 1 4534 7048536 7048543

1 7 7 4 5 2 5 , 1 , 0 , 1 , 0 ∗ 132941388 132941391

1 7 7 4 5 2 6 , 1 , 0 , 0 , 0

1774527 , p t h t y : 5 ˆ 67113320

1 7 7 4 5 2 8 , 1 1 4 , 0 , 0 , 1 $ 132941456 132941463

1 7 7 4 5 2 9 , 3 , 0 , 1 , 0 ∗ 132941560 132941567

1774530 # 1 5870 7048472 7048479

�e example in Listing 4, of events 1774522 to 1774530, shows the uncompressed version of the

trace where we allow at most one memory read or write per event; the events representation also

allows for multiple consecutive operations of the computation or communication categories to be

merged together (detailed further in Section 6). However, by restricting a single memory operation

per computation event, the traces contain the exact issue order for each memory operation and

thus, o�ers the highest accuracy. �e �rst two lines show computation events 1774522 and 1774523.
It can be observed that each event records one memory write and one integer operation with the

addresses for the memory writes are shown a�er the $ symbol. Event 1774524 is a communication

event with this thread reading from event 4534 of �read 1 through the addresses 7048536 to
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7048543. Event 1774524 is a computation event that recorded one memory read and one integer

operation, with the addresses read shown a�er the * symbol. �e next event does not contain any

memory operations as a synchronization operation intervened before it could record any memory

operations, necessitating a synchronization event 1774527. �e synchronization event is of type 5,

which represents a barrier, with the barrier address being 67113320.

2.3 SynchroTrace Capture Framework
�e capture tool of SynchroTrace is based on the Sigil workload analysis framework [27], which

is currently built on top of the Valgrind Dynamic Binary Instrumentation framework, but other

instrumentation front-ends are possible. While Sigil [27] is originally designed to capture com-

munication between functions, for this work, it has been adapted to capture local computation of

threads and communication between threads. Another important addition of this work is captu-

ring the synchronization behaviors of threads by wrapping prevailing Pthread and OpenMP API

calls. �e capture tool monitors the execution of a program and builds sequences of computation,

synchronization, and communication events for each thread. We discuss the methods to capture

synchronization and communication events in the following sections.

2.3.1 Capturing synchronization events. Accurate modeling of non-determinism requires re-

specting any thread interleaving that could occur during simulation, irrespective of the interleaving

encountered during capture of the trace. Two features of our capture framework allow us to model

the non-determinism correctly. �e �rst feature captures a separate trace for each thread which

contains memory and compute operations captured in program order for that thread. �e second

feature captures and logs the synchronization events in each trace.

Figure 3 illustrates an example of how we intercept synchronization API calls to generate

synchronization events. �e trace capture mechanism uses the function wrapping interface of

Valgrind to intercept synchronization API calls [35]. Valgrind can detect when a desired function

is invoked at run-time and allows a tool to redirect the original function into a user-de�ned

function. �e modi�ed Sigil tool leverages function wrapping by redirecting threading API calls

into a wrapper that includes the following operations: 1) Disable the capturing of loads and stores

associated with the synchronization function, 2) run the original synchronization operation as

to continue the correct progression of the application, 3) log the occurrence along with critical

variables into a synchronization event, and 4) enable the capturing of the loads and stores for the

Fig. 3. Intercepting Synchronization API Calls
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Fig. 4. Capturing Computation and Communication Events

next instruction. By disregarding instructions within synchronization functions, we abstract the

underlying synchronization implementation and do not enforce any speci�c thread-ordering; thus,

the replay platform handles the native behavior of the synchronization calls.

As a feature, this synchronization capture process is focused on tracing traditional CMP and HPC

platforms. With regards to traditional CMP-focused benchmarks, we currently capture Pthread API

calls: Pthread create, mutex lock/unlock, barrier, condition signal, and condition wait. Additionally, to
support HPC system design focusing on large-scale parallel CMP platforms, we capture necessary

compiler-level function calls for tracing OpenMP applications. �e typical usage of OpenMP is in

the form of common ‘#pragma’ lines of code; we capture the compiler-generated OpenMP functions

for the common OpenMP function calls. Similar to the pthread API calls we capture, these OpenMP

function calls are organized into high-level categories: thread creation/destruction, critical sections,
and global synchronization. Overall, these advances aid in fast design space exploration of HPC

applications, as well as fast analysis of the thread scalability of benchmarks.

As a limitation, SynchroTrace can only capture threading activity for supported threading API

calls. Examples of non-standard threading API calls include cases where condition variables are

explicitly wri�en in user code, or critical sections using low-level locks are encountered in the

kernel [28]. �is is the core purpose of communication events; we capture communication events

to handle these cases and enforce them as dependencies between the threads.

2.3.2 Capturing communication events. �e capture tool monitors communication through

memory addresses by using Shadow Memory [25]. Memory shadowing is an e�cient way of

holding an object of data for every address touched by the program. We use each object to hold

the last writer of its corresponding address. Figure 4 presents an example of this process. When

a write to address A occurs in �read 1, a computation event is wri�en to the trace of �read 1.

�is address is also emi�ed simultaneously to a Shadow Memory, which stores �read 1 as the

last writer for address A. Subsequently, a read to address A occurs in �read 2; this implies a

communication edge. �e address is sent to a monitor which checks against the Shadow Memory

to determine the thread who last wrote to address A [25]. �e last writer information is sent back to

the monitor, which detects the inter-thread communication edge. In this example of an inter-thread

communication edge, the monitor emits a communication event to the trace for �read 2.
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2.3.3 Capturing Operating System tra�ic. �e SynchroTrace capture framework intercepts infor-

mation related to Operating System (OS) actions, albeit in a limited fashion using communication

events. Since our capture framework is built on Valgrind, SynchroTrace shares the inability of

Valgrind to capture any computation, communication, or synchronization events within the kernel.

However, Valgrind can intercept system calls and report an aggregate of the memory addresses

read and wri�en within a system call. �us, SynchroTrace embeds the aggregate information

into computation and communication events in the trace for each thread, though the sequence of

memory tra�c within the kernel is not visible to Valgrind. We thus conservatively treat reads that

consume from memory writes within the kernel as dependencies enforced by replay

2.3.4 Capturing non-determinism. SynchroTrace captures each thread as a serial set of abstracted
compute, memory, and synchronization events. �e actual serial set of abstracted compute, memory,

and synchronization events per thread can vary between native executions of an application. �is

level of non-determinism is impossible to fully capture in a dynamic trace. For example, thread

behavior can diverge at synchronization points depending on the order it reaches a critical section

and the state of the thread at the critical section; the state of the thread can depend on the thread

ID and starting parameters, and also on the order it reached previous critical sections, which can

additionally in�uence the order it reaches the current critical section. Indeed, depending on the

given algorithm, such behavior can even cause non-deterministic outputs, not just non-deterministic

execution. Another cause for non-deterministic traces is unsynchronized communication between

threads, which can a�ect the behavior of the program. Any communication between threads is

assumed to be captured correctly in-order. �is work considers two traditional uses of threads: 1)

to split work amongst worker threads which globally synchronize to update shared data, and 2)

independent tasks that may rely on atomic operations to update and access shared data.

Such workloads can be abstractly represented as a graph, where each edge is an independent,

serial set of compute and memory operations of a thread, and each node is a synchronization point

between threads. As long as the edges and nodes are the same for any execution, regardless of

which threads an edge belong to, then the variability of the replay simulation is determined based

on the architecture and thread scheduler. For the considered applications and use of the threading

models, this is indeed the case and requires just a single trace capture.

Additionally, the binary instrumentation tool, Valgrind, serializes multi-threaded workloads in a

predictable manner by context switching threads either at regular intervals or when they block. In

this way, the e�ect Valgrind has on the captured per-thread statistics is minimal if the application

rationally synchronizes using the supported thread libraries.

3 EVENT-TRACE REPLAY FRAMEWORK
For architecture simulations, a replay mechanism is required to process the trace and generate

architectural events, as is standard in event-driven simulation [14, 15, 29, 32, 34]. �e replay

mechanism dynamically generates the appropriate actions for all events during simulation while

providing light-weight thread scheduling and management. As shown in Figure 5, the captured

event-trace sends computation, communication, and synchronization events for each thread into

the Replay framework. Within Replay, the individual events are processed via the Trace Translator

into individual Replay event data structures and passed into the Event �eue Manager (EQM). �e

EQM also interfaces with the Memory Request Manager (MRM) to send memory requests. �e

MRM interfaces with an external cache simulator and generates response back to the EQM. �e

�read Scheduler handles the thread creation, deletion, scheduling, and synchronization.

�e SynchroTrace Replayer uses simple timing models to abstract in-order cores. To maintain a

high-level core abstraction for speed purposes, SynchroTrace uses an average CPI timing model
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Fig. 5. Multi-Threaded Event-Trace Replay Framework

for compute instructions, while integrating with detailed timing models for a high level of accu-

racy in modeling the uncore. �eoretically, the core Replay infrastructure can be connected to

more detailed timing models such as out-of-order cores by integrating techniques from Elastic

Traces [17], although this is not performed in experimentation of this paper. Additionally, the

current MRM models an in�nite store queue, as to not block on write requests, but the MRM

does block on read requests. Our current Replay framework processes memory requests for the

classic memory system of gem5 as well as the Ruby/Garnet memory and interconnect simulators.

However, the multi-threaded traces and replay mechanism are portable to any cache simulator. �e

SynchroTrace Replay framework, along with the Sigil tracing framework, is available as a gem5

patch on Github (h�ps://github.com/VANDAL).

3.1 Event�eue Manager and Memory Request Manager
As detailed in Algorithm 1, the EQM handles the progression of the events for each of the threads

within the Event�eue. Following a typical event-based simulation model, during each cycle the

EQM checks if there are events ready to be processed from threads for the current cycle. If there

are no ready events for the current cycle across all of the threads, the CurrentTime progresses to
the scheduled wakeup time of the next available event. Events scheduled to wake up in the current

time are handled by the process represented in Algorithm 2. �e handling of the event is based on

its type, i.e. computation, communication, or synchronization, as follows.

For computation events, the EQM schedules the thread to wakeup a�er the cycle time required

to complete the computation event based on the number of IOPS and FLOPS. �is time is calculated

per-benchmark, assuming a simple in-order architecture and an average CPI timing model, as

total instructions

IOPs + FLOPs
×

1 cycle

1 instruction
(1)

�ese metrics are gathered from the captured trace using Valgrind. Memory access latencies are

calculated by the underlying memory model from gem5 and are not speci�c to SynchroTrace.

Communication and Synchronization events do not have explicit latencies but a�ect the ordering

of each thread and potential stalls. �is dormant phase of the thread models the cycle time of

an ALU ‘computing’ the instructions corresponding to the event prior to handling of memory

accesses. When this thread wakes up at its scheduled clock time, the EQM will send a read or

write memory request to the MRM and block read requests of the thread until the MRM triggers a

memory response to the EQM. As to exploit potential MLP, write requests will not block on the

MRM as an in�nite store queue is modeled. However, write requests may be blocked as a result of
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stalls in the memory hierarchy (e.g. the miss status holding register). As shown in Figure 5, the

MRM interfaces with the Cache and NoC simulators to obtain the correct timing for the memory

request. As described by Lines 11–13 in Algorithm 1, a�er receiving a memory response from the

MRM, the EQM will then queue the next event for the thread.

For synchronization events, the EQM sends create and join events to the �read Scheduler.

Upon processing mutex lock and barrier events, the EQM handles these events as a waiting queue

for each participating thread; if a thread is unable to acquire a mutex lock or is waiting at a

barrier, the thread will be rescheduled by the EQM to a�empt again during the next cycle. If the

synchronization event is successful, the thread will proceed to the next event. Synchronization

events in the Replay framework generate corresponding memory requests for the synchronization

variables, but these are omi�ed in Algorithm 1 to simplify the pseudocode.

For communication events, the EQM maintains the dependencies between consumer threads and

the corresponding computation events of producer threads. While processing the communication

event of a consumer thread, the EQM will check on the progress of the corresponding computation

event of the producer thread. If the corresponding computation event has not been completed, the

EQM will block the consumer thread from issuing a memory read request. Once the corresponding

computation event has been completed, the EQM will issue the memory read of the communication

event to the MRM.

Algorithm 1 Event �eue Manager

1: for all ThreadIDs in EventQueue[ThreadID] do
2: for all Events in EventQueue[ThreadID] do
3: if Event .T imeReady = CurrentT ime

then
4: ProcessEvent () . Algorithm 2

5: end if
6: end for
7: end for

8: if AllEventsinEventQueue ≥ CurrentT ime
then

9: Proдr essCurrentT imetoNextEventT ime
10: end if
11: if MemoryResponseT r iддeredForThread then
12: QueueNextEvent
13: end if

Algorithm 2 ProcessEvent

1: if COMPEV ENT then
2: I ssueMemReq@(ComputationT ime +

CurrentT ime)
3: if ReadRequest then
4: Wait f orResponse
5: end if
6: else if COMMEV ENT then
7: if DependentEventCompleted then
8: I ssueMemReq@(CurrentT ime)
9: Wait f orResponse
10: else
11: ScheduleThreadNextCycle
12: end if
13: else if SYNCHEV ENT then
14: if Event = Create or Join then
15: SendEventtoThreadScheduler

16: else if MutexLockRequest then
17: if MutexLockObtained then
18: QueueNextEvent
19: else
20: ScheduleThreadNextCycle
21: end if
22: else if MutexUnlockEvent then
23: QueueNextEvent
24: else if Barr ier Event then
25: if LastThreadf orBarr ier then
26: QueueNextEvent
27: else
28: ScheduleThreadNextCycle
29: end if
30: end if
31: end if

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article 1. Publication date: April 2018.



1:12 K. Sangaiah et al.

3.2 Thread Scheduler
�e SynchroTrace Replayer accepts the simulation parameters and con�gures the simulation back-

end accordingly. �is con�guration process is independent of trace generation, so the number

of threads being simulated does not necessarily correspond the number of cores. �is necessi-

tates emulating an OS thread scheduler in the absence of the OS. �e �read Scheduler handles

the creation, deletion, scheduling, and synchronization of threads across any number of cores,

including multiple threads per core. Currently, the �read Scheduler opportunistically swaps out

stalled threads for threads ready to progress. �reads can be stalled on synchronization events,

dependencies, or memory requests. However, these scheduling actions are currently modeled with

zero-cost. A simple round-robin approach is taken when multiple threads are ready to progress,

though integration with more complicated thread schedulers are possible.

4 CMP DESIGN SPACE EXPLORATIONWITH TRACE-BASED SIMULATION
In this section, we demonstrate how the light-weight SynchroTrace simulation �ow can be used

to select optimal CMP uncore design choices for a �xed in-order core, given uncore area and

power constraints targeting CMPs. Focusing on components of interest for an uncore designer, we

evaluate design choices on the following: the L1 cache, L2 cache, NoC routers, and NoC links. We

also validate that our light-weight simulation �ow produces equivalent design space exploration

results as the cycle-accurate gem5 full-system simulator.

4.1 Evaluation Strategy
Our evaluation strategy consists of two sets of experiments. �e �rst experiment uses SynchroTrace

to analyze the design space across cache and network parameters for a given set of uncore area

and power constraints with a �xed in-order core model. Speci�cally, we vary the L1 and L2 cache

sizes, associativity, block size, NoC virtual channels, NoC bu�er depth, and NoC link bandwidth;

we simulate a pseudorandom subset of this design space, comprised of 64 design con�gurations.

�e goal of this experiment is to accurately select the best performing design con�guration, in

terms of execution cycles, under uncore power and area constraints. To normalize performance

across benchmarks, we selected a reference CMP design: 128B block size, 16KB L1 cache size,

8 L1 cache associativity, 256KB L2 cache size, 4 L2 cache associativity, 3 �it NoC bu�er depth,

3 virtual channels, 2B NoC channel bandwidth. �e second experiment performs an equivalent

design space exploration using the cycle-accurate gem5 full-system simulator [3]. �e goal of this

experiment is to compare SynchroTrace against the cycle-accurate full-system gem5 simulator

results for accuracy and speedup.

�e base of the design con�gurations consists of a single 8-core chip, 2-level cache, and directory-

based MESI protocol. �e cache and network design parameters are detailed in Tables 2 and

3, respectively. �e cores and NoC both operate at 1 GHz. �e caches and NoC are designed

for the 32nm technology with area and power given by Cacti 6.5 [24] for the caches and Orion

3.0 [18] for the NoC. �e traces were captured on the Linux Kernel 3.10 in CentOS 7 with the

standard POSIX �read API. Table 1 summarizes the benchmark applications simulated from the

PARSEC-3 [2] and Splash-2X [37] benchmark suites with input data parameters and sizes of the

trace �les. Table 1 also numerates the amount of integer operations, �oating point operations,

memory loads and stores, and synchronization operations of each benchmark application. �e

design space exploration case study contains a subset of the benchmarks. SynchroTrace cannot

properly model the remaining unused benchmarks (BodyTrack, Ocean CP, and Raytrace) due to

limitations discussed in Section 4.3.3. All of the benchmarks are evaluated for a performance

comparison in Section 4.3.3.
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Table 1. PARSEC-3 and Splash-2X Benchmark Data Set and Trace Event Totals

Benchmark Input Data Parameter Trace Size

OPs (Billions)

Sync

IOPs FLOPs LD/STs

Barnes NBody = 32768 179MB 0.9401 0.0004 0.5885 68778

BlackScholes SimLarge 2.6GB 6.7623 0.4420 1.9834 20

BodyTrack SimSmall 219MB 1.9866 0.1101 0.2841 6618

Canneal SimSmall 962MB 6.4254 0.0183 3.3389 292

Cholesky SimLarge 195MB 0.9413 0.0003 0.4216 44114

FFT 2
20
complex data points 292MB 1.2654 0.0052 0.4272 130

FMM SimSmall 197MB 1.3080 0.0027 0.4442 90116

LU CB 1500x1500 matrix 425MB 3.8615 0.0023 1.8034 352

LU NCB 1500x1500 matrix 487MB 3.3021 0.0023 1.5759 314

Ocean CP 130x130 244MB 0.0594 0.0003 0.0481 10946

Radiosity SimSmall 189MB 2.4911 0.1981 0.4585 433229

Radix SimSmall 353MB 0.3145 0.0545 0.1115 346

Raytrace SimSmall 384MB 1.0544 0.0042 0.3330 422878

Volrend SimSmall 184MB 2.3674 0.2742 0.4599 121465

Water-NSquared SimMedium 1.7GB 24.4305 3.7E-06 8.2443 135450

Water-Spatial Native 1.6GB 17.1686 0.0003 6.0378 210

We use the SynchroTrace Replayer illustrated in Figure 5. �e traces are only generated once per

benchmark and used for simulation of all 64 design points. �e SynchroTrace simulation �ow uses

the same cache and NoC simulators, Ruby and Garnet, that are used by gem5. For our analysis, we

use the TimingSimpleCPU core model in gem5 which is a 1–CPI in-order pipelined model.

Table 2. Cache Design Parameters

Block Size (B) 64, 128, 256

L1 Size (kB) 16, 32, 64, 128

L1 Associativity 2, 4, 8, 16

L2 Size (kB) 128, 256, 512, 1024, 2048

L2 Associativity 2, 4, 8, 16

Table 3. NoC Design Parameters

Bu�er Depth (Flits) 1, 2, 3, 4, 5, 6, 7, 8

# of Virtual Chan-

nels

1, 2, 3, 4, 5

Channel Band-

width (B)

2, 4, 8, 16, 32

4.2 Area and Power Constraints
System designers o�en search the design space for design con�gurations within constrained

resources. �us, we chose two constraints for the pruning of the uncore design space are based on

1) 75% and 2) 33% of area and total power of the most resource-intensive design con�guration. �e

75% constraint corresponds to a limit of 6.9W and 107mm
2
, while the 33% constraint corresponds to

a limit of 3.1W and 48mm
2
. Design points satisfying each of the design constraints are considered

for further evaluation in this design space exploration.

It should be noted that the total area values calculated using Cacti 6.5 and Orion 3.0 are equi-

valent in both the SynchroTrace simulation �ow and gem5, as area is determined by the design

con�gurations and not the application.

Detailed in Section 4.3, under equivalent constraints, the same design points are selected by

SynchroTrace and gem5. �e total power of the design points are consistent with both simulators;

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article 1. Publication date: April 2018.



1:14 K. Sangaiah et al.

0
2
4
6
8

10

0.5 1 1.5 2

Po
w

er
 (W

) 

Performance (Normalized Cycles) 

SynchroTrace 

Satisfies No Constraints Satisfies 75% Constraint
Satisfies 33% Constraint

Optimal Perf. Constraint 1: 
Design Config. #22 

Optimal Perf. Constraint 2: 
Design Config. #45 

(a) SynchroTrace Power vs. Performance

0
2
4
6
8

10

0.5 1 1.5 2

Po
w

er
 (W

) 

Performance (Normalized Cycles) 

gem5 

Satisfies No Constraints Satisfies 75% Constraint
Satisfies 33% Constraint

Optimal Perf. Constraint 1: 
Design Config. #22 

Optimal Perf. Constraint 2: 
Design Config. #45 

(b) gem5 Power vs. Performance

Fig. 6. Total Uncore Power (NoC and Caches) vs. Performance

this is expected as the total power is largely dominated by the leakage power, which is application

independent. �e average di�erence in total power between the two simulators is 1.4%.

4.3 Design Choices Under Constraints
Given the constraints in Section 4.2, our goal is to �nd the uncore hardware con�guration that

yields the highest performance. Additionally, we investigate the accuracy of the design point

selection by comparing the result against the selection of the cycle-accurate gem5 full-system

simulator. Finally, we assess the accuracy of execution time of SynchroTrace against gem5 for the

simulated set of benchmarks.

4.3.1 Constraint 1: 75% of Max Area and Power. �e design space under Constraint 1 is comprised

of 58 design con�gurations which are simulated in SynchroTrace and gem5. For illustrative purposes,

Figures 6a and 6b show the normalized performance of each of the 64 design con�gurations for

all of the simulated benchmarks in comparison to power. Applying the 75% constraints, the top

remaining design is found to be design con�guration #22 for SynchroTrace and gem5. Additionally,

the di�erence of normalized execution time of design con�guration #22 for the two simulation

frameworks is 4.8%. �us, under equivalent area and power constraints, SynchroTrace is able to

capture the correct best design con�guration as full-system simulation.

4.3.2 Constraint 2: 33% of Max Area and Power. With strict area and power constraints of 33%, the

design space is pruned to 34 design points. As shown in Figures 6a and 6b for the given constraints,

design con�guration #45 is selected as the best design for SynchroTrace and gem5. Additionally, the

di�erence of normalized execution time of design con�guration #45 in each simulator is only 4.5%.

�us, even with strict area and power constraints, SynchroTrace is able to capture the equivalent

top design of gem5, while providing an accurate performance result.

4.3.3 Performance Metric Comparisons of SynchroTrace to gem5. �e comparison of execution

time of SynchroTrace and gem5 across each of the 16 benchmarks are shown in Figure 7. We

compare the errors of predicting execution time for each simulation in a set of boxplots. Outliers,

represented by circles in Figure 7 are de�ned as data points with values that are larger than 150%

of the interquartile range, i.e. above the upper quartile and below the lower quartile. However,

outliers are considered when computing the median error of each boxplot. Shown in Figure 7,

the median di�erence for 12 of the 16 benchmarks in the estimate of execution time falls under

5%, with a median error of 24% for Bodytrack, 7.1% for FMM, 19% for Ocean CP, and 8.7% for
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Fig. 7. Comparing Execution Time of SynchroTrace to gem5
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Fig. 8. Comparing L1 DCache Hit Rate of SynchroTrace to gem5
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Fig. 9. Comparing Average Network Latency of SynchroTrace to gem5

Raytrace. It is clear that Bodytrack, Ocean CP, and Raytrace have signi�cantly higher error than

the remaining benchmarks and do represent limitations to the SynchroTrace replay model. While

Bodytrack uses prevailing pthread calls, this benchmark implements a custom thread pool for

scheduling threads to process work. As we do not currently capture or model the user-de�ned

synchronization function calls of the custom user-de�ned thread pools, the performance in error is

largely a�ributed to the improper scheduling of threads in the SynchroTrace replay model. �e

error of Ocean CP is re�ective of the user-level thread dependencies detected in the tracing and

replay of the benchmark. While SynchroTrace can enforce the dependencies associated with the

user-level thread communication, this results in higher prediction error compared to full-system
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simulation. Lastly, simulations of Raytrace reveal a limitation of how the thread scheduler assigns

mutex locks to threads; as Raytrace is comprised of a single synchronization barrier with a majority

of the thread communication occuring through mutex locks, we discovered that two threads of the

eight monopolized the mutex lock through a majority of the simulations. �us, for a signi�cant

amount of design con�gurations, the performance predicted in SynchroTrace is much worse than

the respective performance in gem5.

In addition to the performance comparison, the L1 DCache hit rate and average NoC latency

predictions are compared in SynchroTrace and gem5 and are shown in Figures 8 and 9. As shown

in Figure 8, all benchmarks have a median error of below 1% prediction error of the L1 DCache

hit rate, with exception of radix (5.2%). All of the benchmarks exhibit third quartile prediction

error for average network interconnect latency to be below 10% prediction, with exception to

Bodytrack. Given the high accuracy for the memory and interconnect performance, it is clear that

SynchroTrace matches the trends of gem5 with regards to the detailed memory and interconnect

model.

It should be noted, that while the accuracy of the execution time of SynchroTrace is very

high for the be�er performing designs, the SynchroTrace simulation �ow skews slightly toward

underestimating the execution time in comparison to gem5, and the skew is increased for resource-

constrained designs. �e largest di�erences in performance for each benchmark correspond to the

most resource-constrained designs (e.g. the three largest di�erences in Blackscholes data points

correspond to the smallest L2 cache, 128kB). However, from Figures 6a and 6b, we deduce that 1) the

power estimation (as well as the area, not shown) between SynchroTrace and gem5 is the same,

and 2) under equivalent constraints, SynchroTrace obtains the same design con�gurations as gem5.

5 ANALYZING THREAD SCALING OF HPC APPLICATIONS WITH SYNCHROTRACE
�is case study demonstrates that SynchroTrace can e�ciently determine the impact of thread

count on applications with accuracy comparable to full-system simulation. We determine the

thread scalability for several HPC applications with SynchroTrace and gem5. We also compare

the cost in simulation time when the number of application threads are increased. Additionally,

SynchroTrace experiments are traced on both x86 and Armv8 platforms as to compare the e�cacy

of using traces from one platform to model another platform.

5.1 Experimental Methodology
�e focus of this experiment is to establish if SynchroTrace can accurately and e�ciently determine

how well applications scale to many threads. Toward this goal, CMP simulations of SynchroTrace

and gem5 are compared from one to eight threads, with �xed data sizes. Additionally, to determine

if SynchroTrace can tractably model benchmarks with a larger thread count, applications are

simulated in SynchroTrace up to 64 threads. We simulate four HPC-representative benchmarks of

FastForward2 [9], a Department of Energy exascale initiative; the HPC-representative benchmarks

are designed to be highly parallel and strong-scaling. �e benchmarks are available in the Arm

Table 4. FastForward2 Benchmark Data Sizes

Benchmark Description Input Data Parameter

CoMD [7] Molecular Dynamics Number of Unit Cells in X, Y, Z = 10,

Compute EAM Potentials

Graph500 [10] Graph-based Kernels RMAT Scale 15,

LULESH [19] Shock Hydrodynamics Size = 30, Iterations = 20

XSBench [22] Monte Carlo Kernel Size = Small

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article 1. Publication date: April 2018.



SynchroTrace 1:17

HPC Github (h�ps://github.com/arm-hpc). �e descriptions of the benchmarks and input data

parameters of are listed in Table 4.

�e base design of the simulated CMP consists of a clustered, two-level bus-based topology with

a MOESI snooping protocol. �e CMP contains private 32kB L1 caches with an associativity of

four, shared 1MB L2 caches with an associativity of 16, and 64-byte blocks. Each four-core cluster

contains one L2 cache. �e cores and memory system operate at 1.7GHz and 1.6GHz, respectively.

gem5 simulations are performed using the x86-based TimingSimpleCPU core model.

An added goal of this experiment is to show that traces generated on one platform can model the

performance of any platform using SynchroTrace. �us, Armv8 and x86 traces are collected and

simulated in SynchroTrace. For Arm-based simulations, the traces are collected on an AArch64-

based Arm server platform with benchmarks compiled using gcc-6.2.1. For x86-based simulations,

the traces are collected on a x86-64 server platform with benchmarks compiled using gcc-4.9.2. All

benchmarks used in gem5 full-system simulations are compiled using gcc-4.9.2.

5.2 Thread Scaling Performance Results
Using the con�gurations listed in Section 5.1, we evaluate the normalized performance in terms of

run-time while sweeping the number of threads in both gem5 and SynchroTrace. For reference, we

also show the ideal scaling curve for a program having no serial portions in which performance

scales linearly with increasing thread count (Amdahl’s law). As shown in Figure 10, SynchroTrace

simulations with both Armv8- and x86-based traces are consistent with the scaling performance

trends of gem5 in all of the four strong-scaling benchmarks. �e largest discrepancy is produced by

simulating the LULESH application with eight threads with x86-based traces as shown in Figure 10c.

With eight threads, the normalized performance is estimated to be 6.7× with SynchroTrace, while

gem5 produces a normalized performance of 6.33×. Graph500 exhibits perfect scaling in Synchro-

Trace and gem5, as shown in Figure 10b. �e two frameworks running Graph500 have an average

discrepancy of 0.7%. Given the high thread scalability accuracy of SynchroTrace for up to eight

threads, we �nd that SynchroTrace is an accurate and e�cient methodology to determine thread

scalability of applications with a large number of threads.

5.3 Comparing Results of Armv8 and x86 SynchroTrace Simulations
It is evident from Figure 10 that the thread scaling performance of SynchroTrace simulations with

x86- and Armv8-generated traces is almost identical. While the actual execution time between

simulations of x86 and Armv8 traces di�er by 8.9% to 19.2%, when normalized, the di�erences of

thread-scalability between x86- and Armv8-generated SynchroTrace simulations were under 1%

in Graph500, LULESH, and XSBench and under 5.5% in the worst case with CoMD. �ere is high

correlation in x86-generated and Armv8-generated traces due to the translation to the intermediate

ISA (VEX) of Valgrind and the abstraction of instructions into events. �is allows the traces to be

suitable for modeling multiple platforms in an early stage of design, particularly to study uncore

performance characteristics and scalability across threads.

5.4 Scalability of Simulating HPC-focused Applications
Due to the reduced modeling overhead, SynchroTrace can tractably scale to 64 threads with modest

increases in simulation time; unlike gem5, simulating additional cores does not increase the core-

modeling overhead in SynchroTrace.

Figure 11 shows the relative simulation time for increasing the thread count of each application in

SynchroTrace and gem5 using the x86 platform. With gem5, the worst case simulation time scaling

occurs with simulations of LULESH, as 8 thread simulations require a 95% increase of simulation

time over single thread simulations. However, the equivalent simulation in SynchroTrace requires
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Fig. 10. SynchroTrace and gem5 Comparison in Thread Scaling
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Fig. 11. HPC Simulation Time Comparison Across Threads

only a 12% increase in simulation time in comparison to a single-thread simulation. Simulation

time increases less with SynchroTrace than with gem5 as the number of threads increases.

To determine if SynchroTrace is tractable for a large amount of threads, the four HPC benchmarks

are simulated up to 64 threads in SynchroTrace. Figure 12 shows the simulation time of each

benchmark up to 64 threads, normalized to the single thread simulation of each benchmark. For

applications that match ideal strong-scaling, such as Graph500, SynchroTrace only has a slight

increase in simulation time as the number of threads is increased. With SynchroTrace at 64 threads,

Graph500 has a 5% increase in simulation time over a single-thread simulation; in comparison,
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the eight thread simulation in gem5 requires a 23% increase in simulation time. In the worst case,

SynchroTrace has a 70% increase in simulation time for 64 threads for LULESH. However, it is

evident that CoMD with two threads and Graph500 with 2-8 threads have a faster simulation times

than their respective single threaded execution. SynchroTrace spends the majority of the simulation

time processing the detailed memory model of gem5 (Ruby/Garnet or M5 classic memory model).

As each memory request proceeds deeper into the memory stack (e.g. from L1 cache to L2 cache

or from L2 cache to the main memory controller), there is an increase in the number memory

sub-components that require computation. �us, benchmarks and design con�gurations that more

o�en access the L2 cache and main memory require higher simulation time. For example, the

compute-intensive CoMD has a simulation with an L1 cache hit rate of 99%. As we increase the

number of cores, we e�ectively increase the L1 cache size for CoMD simulation. �us, when

simulating CoMD with two threads, we achieve a speedup of 12% due to the reduced simulation

time spent by processing fewer transactions in the L2 cache and NoC transactions. However, as

we further increase the number of cores, we do indeed increase the overall amount of the detailed

memory sub-components (e.g. cache, interconnect busses, NoC components) modeled through

increased thread communication, and thus, increase the simulation time. Overall, given the limited

simulation time overhead, it is observed that SynchroTrace can tractably scale to 64 threads.

6 TRACE OPTIMIZATION TECHNIQUES FOR FAST CMP DESIGN EXPLORATION
Although our SynchroTrace simulation �ow is by default faster than gem5, our multi-threaded

traces can be used to speed up simulation further by trading o� accuracy for simulation speed. To

this end we propose techniques including event compression, hit prediction, and trace �ltering.

Figure 14 illustrates the speedup of the SynchroTrace simulation �ow for all the trace techniques

over gem5. For this experiment, we simulate a modern CMP con�guration most closely represented

by the largest design point in Tables 2 and 3 (i.e. from [16]) for applications with 8 threads. We show

up to 18.7× gains compared to gem5 in simulation performance. We also evaluate the accuracy in

terms of design space exploration for the technique that showed the most promise: trace �ltering.

6.1 Speedup using Multi-Threaded Trace Techniques
Exploring design spaces using architecture simulation can take a signi�cant amount of time, from

days to months. Our event-traces o�er a signi�cant advantage by reducing simulation time. �e

�rst bar in Figure 14 shows the speedup in simulation time from using SynchroTrace versus the

gem5 full-system TimingSimpleCPU-based model. We simulate multiple benchmarks from the

PARSEC-3 and Splash-2X benchmark suites for both the multi-threaded trace-based simulation

�ow and the gem5 full-system simulation �ow. With the light-weight core model of SynchroTrace,

the multi-threaded trace-based simulation �ow has up to a 5.2× speedup with an average of 2.9×

speedup over gem5 across the benchmark simulation executions.
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Fig. 12. SynchroTrace Simulation Time up to 64 Threads
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Algorithm 3 Event Compression

1: if IOPEV ENT then
2: IOPcnt += 1

3: else if FLOPEV ENT then
4: FLOPcnt += 1

5: else if STOREEV ENT then
6: STOREcnt += 1

7: AddrList = AddrList
⋃
STOREAddrs

8: if STOREcnt > CompressLimit then
9: f lushAndResetComputationEvent
10: end if
11: else if LOADEV ENT then
12: if isCommunicationEdдe then

13: f lushAndResetComputationEvent
14: f lushCommunicationEdдe
15: else
16: LOADcnt += 1

17: AddrList = AddrList
⋃
LOADAddrs

18: if LOADcnt > CompressLimit then
19: f lushAndResetComputationEvent
20: end if
21: end if
22: else if SYNCEV ENT then
23: f lushAndResetComputationEvent
24: f lushSyncData
25: end if

19,1 # 3 12 0xffefffe58 0xffefffe5f 
20,1,4,0,1,0 * 0xffefffe60 0xffefffe67 
21,1,4,0,1,0 * 0xffefffe68 0xffefffe6f 
22,1,4,0,1,0 * 0xffefffe70 0xffefffe7 
23,1,pth_ty:1^0x6c2d20 
24,1,4,0,1,0 * 0xffefffe80 0xffefffe87 

   14,1 # 3 12 0xffefffe58 0xffefffe5f 
 
 
   15,1,12,0,3,0 * 0xffefffe60 0xffefffe77 
   16,1,pth_ty:1^0x6c2d20 
   17,1,4,0,1,0 * 0xffefffe80 0xffefffe87 

Normal Trace Compressed Trace 

Fig. 13. An Example of Event Compression

6.2 Trace Compression
Our traces are generated by abstracting the program behavior into events and aggregating the

events as explained in Section 2; we produce Computation, Synchronization, and Communication

events for multi-threaded programs that use prevailing synchronization APIs. �is provides an

opportunity to compress the trace by merging together multiple consecutive operations which fall

under the computation or communication categories. When consecutive Computation events are

merged together, the �elds that represent counts, i.e. Integer Op Count, Floating Point Op Count,

Memory Read Count, Memory Write Count are all added together. Recall the �elds in each event

type as shown in Listing 1 and 3. �e �elds that represent address ranges are merged together to

keep only the unique address ranges. Consecutive Communication events can be merged by simply

merging the address ranges as described above and Synchronization events cannot be merged. �e

compression is demonstrated in Algorithm 3 with an illustrated example of the merged events in

Figure 13.

When parsing a merged event, the Replay mechanism also optimizes playback by a�ributing

cycles for hits within a merged-event. Merging events together will lose some ordering information

amongst operations for the bene�t of compression. We can set a limit on the number of events that

can be merged together in the trace, so as to maintain accuracy. For the PARSEC 3 and Splash-2X

benchmarks tested, we found the optimal trace compression limit was 100 events per line, which

produces around 6% di�erence in execution time, but shows large improvement in compression

and simulation time. �is compression reduces zipped �le sizes by up to 93% for some benchmarks

and 87% on average, while the simulation �ow has up to an 12.4× speedup with an average of 7.3×

speedup over gem5 full-system as shown in Figure 14.
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Fig. 14. SynchroTrace Speedup in Simulation using our Multi-Threaded Trace Techniques over gem5

6.3 Trace Filtering
We also studied the reduction in simulation time using a trace �ltering approach inspired by

prior work in the context of traces for single-threaded applications [31, 38]. Puzak [31] uses a

direct mapped cache to �lter out hits from a trace. �e resulting trace only contains misses. In a

multi-processor system, this will not work without modi�cation as memory reads and writes could

also potentially cause coherence actions compromising accuracy. While Wu et al. [38] a�empt

to apply the technique to multi-processor scenarios, they use a multi-pass approach which was

not evaluated for accuracy or the e�ect on coherence. Here we demonstrate the promise of this

technique by �ltering hits only to non-shared data (local accesses) from computation events; we do

not �lter hits to shared data as it can become complex due to non-determinism.

�e �ltering technique we implement post-processes the trace and uses a �lter cache structure

to remove address ranges from computation events if they hit in the �lter cache. �e technique

also adds a �eld to the trace to record the hit count, which can be used to estimate cycles by the

Replay mechanism. �e con�guration parameters of this �lter cache determine the speedup and

accuracy associated with simulating �ltered traces for design space exploration. We use an 8kB,

fully associative structure with a line size of 8 bytes. Prior work has shown that stack distance

in a fully associative structure is su�ciently representative of set-associative caches employed

in modern architectures [1, 4]. Hits in the 8kB structure are very likely to hit in caches larger

than 8kB during simulation, making it an e�ective predictor of hits. We use an 8-byte line size

to conservatively allow for line size changes in the simulated con�guration and to account for

accesses that straddle cache line boundaries.

We show an 18.7× increase in speedup over gem5 with an average of 9.6× as detailed in Figure 14.

Canneal, Water-NSquared, and Water-Spatial traces are relatively large and would bene�t from

more aggressive compression and �ltering techniques.

We ran the equivalent design space exploration experiment of the Section 4, and as shown in

Figure 15a, we found the same optimal performing designs given the 75% and 33% power and area

constraints. Additionally, while we obtain large gain in speedup, the accuracy impact is tolerable,

as shown in Figure 15b, with a median error of 5.7% and a standard deviation of 1.4%.

7 BACKGROUND AND RELATEDWORK
�emost accurate solution for a simulation-based design space exploration can be obtained through

full-system simulators such as gem5 [3] that execute entire applications. A number of scalable

simulators that use parallel simulation have been released [6, 23, 33]. �ey allow di�erent levels
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of slack in the ordering of memory accesses for multi-threaded applications and enforce synchro-

nization between simulation threads at quanta ranging from a few 1000 cycles to entire barrier

regions [6, 23, 33]. �ese parallel simulators have not been fully validated for relative errors and

design space exploration capabilities. Additionally, these prior work are orthogonal to our work in

this paper, as the SynchroTrace methodology can be integrated into any of these simulators to aid

in performance improvement using the SynchroTrace Replay model and trace �ltering.

�e traces used in trace-based simulations are simply a chronological log of the various events (mes-

sages sent over the NoC or cache access or instructions etc.) taking place in a system. Prior

trace-based simulation approaches have encountered di�culty capturing and accurately replaying

multi-threaded traces due to the inherent non-determinism in the execution of multi-threaded

programs [13]. SynchroTrace is able to model non-determinism by capturing and embedding

synchronization events in the trace and tracking dependencies between traces during capture.

7.1 Comparison to Pinplay
PinPlay provides a framework, based upon dynamic instrumentation, to capture execution into

traces (Pinballs) and replay the captured execution, deterministically [30]. �ere are clear bene�ts

to deterministic replay, such as debugging (e.g. DrDebug [36]) or reduced complexity in CMP

simulators for single-threaded applications. However, deterministic replay can fundamentally cause

inaccuracies for design space exploration with multi-threaded benchmarks.

In the context of multi-threaded applications, Pinballs are generated for the execution of each

individual thread. Included in Pinballs is a thread dependency �le that captures shared memory

reads andwrites in order and instruction dependencies among threads to deterministically replay the

traces in the captured order. However, deterministic replay produces the same thread interleaving

for every run and does not allow for timing behavior to a�ect the critical path of multi-threaded

applications. �e enforcement of thread event ordering by Pinplay can cause cycle-time inaccuracy

when replaying multi-threaded Pinballs into a CMP simulator as the imposed thread ordering may

di�er from the native execution of multi-threaded programs on di�erent types of CMPs. In contrast

to Pinplay, SynchroTrace allows thread timing behavior to a�ect the critical path of multi-threaded

applications with a more accurate, non-deterministic playback of multi-threaded applications in

the context of design space exploration.
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7.2 Trace-based Model of Out-of-Order Cores
Elastic Traces [17] accurately captures the ILP and MLP of out-of-order processors with a trace-

based model. Jagtap et al. [17] address several challenges of modeling out-of-order cores with

trace-based simulation, including capturing and enforcing read-a�er-write data dependencies of

instructions, capturing order dependencies of loads and stores, modeling speculative and wrong

path loads, and capturing local computation timing. However, the techniques presented in Elastic

Traces are speci�c to the target microarchitecture and only for single-threaded applications. By

addressing these challenges in the architecture-agnostic tracing tool of this work, SynchroTrace

could be adapted for e�ciently modeling out-of-order cores in CMPs in future work.

7.3 Reducing Simulation Time with Proxy Benchmarking Techniques
Researchers have explored reducing simulation time of benchmarks through creating proxy appli-

cations or synthetic, representative applications. Deniz et al. [8] and Ganesan et al. [11, 12] present

automated frameworks that capture characteristics of multi-threaded applications and generate

portable, light-weight synthetic benchmarks for CMP simulation. �e goal of these frameworks

is to reduce the simulation time of representative applications as to quickly estimate pre-silicon

design performance. �e methodologies of these techniques are similar to tracing; the frameworks

characterize the behavior of applications and create a proxy for a full benchmark simulation.

Overall, the methodologies can be implemented in the SynchroTrace simulation �ow for increased

speedup.

7.4 Other E�icent Modeling Solutions
Prometheus [20] is an emulation-based framework catered toward modeling many-core systems.

While Prometheus can be used to study exascale-level supercomputer nodes, the focus of the work

is in platforms running task-based applications.

Rico et al. [32] present a hybrid simulationmethodology that uses an execution-driven component

to handle threading API calls (parops, in their nomenclature) in multi-threaded applications, while

a trace-driven engine handles the non-parallel portions of the application. �ese traces capture

sequential �ow of execution for each thread, somewhat similar to our methodology [32]. However,

this methodology requires source to source transformations to interface the parops with their

framework, while SynchroTrace does not require source code changes. Also, the authors propose a

simulation framework with complex interfaces, that are not fully validated against hardware or full-

system simulation. �ey have also not characterized simulator performance and only demonstrate

the methodology on two custom applications. �is motivated us to write a methodology with a

simple interface that works with unmodi�ed benchmarks using standard threading libraries.

Trace-based approaches have also been employed to speci�cally explore the CMP design space [14,

15, 29, 34]. Most work in this space has recognized the need to establish causation between

network messages in order to model the associated delays correctly. �us, most of them a�empt to

annotate dependencies in their traces. Raw traces are collected, and dependencies are extracted,

mostly through post-processing approaches [14, 15, 29]. Huang et al. use a bloom �lter inspired

approach for message passing interface (MPI) based applications but cannot handle shared-memory

applications [15]. �e methodology of Ni�a et al. and Netrace su�er from the need for multiple

full-system runs to infer true dependencies [14, 29]. In general, collecting traces through full-system

simulation is not scalable to large number of threads. To the best of our knowledge, SynchroTrace

is the �rst to generate reliable synchronization and dependency-aware multi-threaded traces that

require no changes to application code for architecture simulation.
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8 CONCLUSIONS
In this article, we have presented the SynchroTrace methodology for accurate, �exible, scalable,

and fast design space exploration for multi-threaded applications. As our traces of multi-threaded

applications have dependencies and synchronization embedded in them, we solve the issue of a

modeling the non-determinism of thread interleaving in multi-threaded applications with a trace-

driven methodology. We validate the SynchroTrace simulation �ow by successfully achieving the

equivalent results of a constraint-based CMP design space exploration with the gem5 full-system

simulator. We show how our methodology can trade-o� accuracy for speed by compressing and

�ltering traces. We have also presented new extensions that include support for HPC (OpenMP)

applications [9], a case study with the latest CMP applications (PARSEC-3 [2], and Splash2X [37]),

and a new HPC-focused thread-scalability case study, proving that SynchroTrace can capture

thread scaling behavior accurately and e�ciently. �e results from these case studies show that

our methodology is adaptable across platforms in the early design stage, has a peak speedup of up

to 18.7× over simulation in gem5 full system, and tractably scales to 64 cores.
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