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 Official Website

 http://dpac.ece.drexel.edu/current-research-projects/sigil/

 Contact: michael.d.lui@drexel.edu

 Related Publications
 “Platform-independent Analysis of Function-level Communication in Workloads”, 

Siddharth Nilakantan and Mark Hempstead, IISWC 2013

 “Metrics for Early-Stage Modeling of Many-Accelerator Architectures”, 

Siddharth Nilakantan, Steven Battle and Mark Hempstead, CAL July-Dec 2012

http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu


Getting Sigil

3

 Available open source

git clone https://github.com/snilakan/Sigil

 Documentation included

 Tested and validated in Linux

 Officially tested distros: CentOS6, Ubuntu 12.04 LTS, 

Ubuntu 14.04 LTS

 Supported by any system supported by Valgrind

(3.10.1)

https://github.com/snilakan/Sigil


Outline
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Accelerator Selection Problem
 Example

 Sigil Overview

 Sigil Methodology for Accelerator Selection

 Partitioning Example

 Building and Running Sigil



Motivational Applications
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 Pipelined parallel apps typically chosen for HW acceleration



What is accelerator selection?

6

 Which functions to accelerate?
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 What are limiting factors for selection?
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 Which functions to accelerate?

 What are limiting factors for selection?



Accelerator selection
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Platform-independent metrics
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 Accelerator time and communication time are 

implementation-dependent!

 Large design space for implementations

 Early stage design approach: Capture platform-

independent metrics as proxy

 Accelerator time  Compute operations

 Communication Time  I/O set of bytes for each function



Capturing Input/Output Set
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 Input/Output set: NOT all memory reads and writes, only unique 
ones

 Biggest challenge: Measuring unique communication
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Enter Sigil
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 Novelty: Sigil measures these metrics *automatically*

 Classifying communication (unique and total bytes)

 Compute operations for each function

 Produces control data flow graph (CDFG) representations

 Revisit the Q: Which functions to accelerate?

 Apply HW/SW partitioning algorithm to graphs!

 Goals of algorithm

 Minimize unique communication

 Maximizing coverage in HW



Outline
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 Accelerator selection problem

Sigil Overview

 Sigil Methodology for Accelerator Selection

 Partitioning Example

 Building and Running Sigil



Sigil Implementation
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 Implemented into Callgrind

 Works on binary, no source changes

 Can be implemented on any framework. Requires

 Functions

 Load/Store addresses

• Cache simulation

• Branch prediction

• Control data flow graph

• Unique and local communication costs

and edges

• Dynamic binary instrumentation

• VEX IR generation



Sigil - Binary Instrumentation

18

 Why Valgrind?

 VEX IR provides 

 Abstract compute

 Abstract load/store

 Inspect every byte

 Memory addresses and widths

 Callgrind provides 

 function calls, returns, et al

 Multi-platform support

 Mature Linux support



Tracking unique communication
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Tracking unique communication
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Tracking unique communication
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Tracking unique communication
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Inside Shadow Memory
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Inside Shadow Memory
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Inside Shadow Memory 
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 Challenges & Considerations

 Redesigning shadow memory

 Need to track more state than memcheck

 Memcheck

 1-bit addressable

 1-bit valid

 1-void* LIVE heap locations

 Some alignment state

 Heuristic algorithms developed over time



Inside Shadow Memory 
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 Challenges & Considerations

 Redesigning shadow memory

 Need to track more state than memcheck
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Inside Shadow Memory 
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 Challenges & Considerations

 Redesigning shadow memory

 Need to track more state than memcheck

 Sigil resources

 – 2GB of user space memory  34GB minimum!

 +Only need to run once



Outline
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 Accelerator selection problem

 Sigil Overview

 Sigil Methodology for Accelerator 
Selection
 Control Data flow graphs

 Partitioning process

 Partitioning Example

 Building and Running Sigil



Control Data Flow graphs
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 Function calltrees….

 Hierarchical representation of functions in application

 Obtained via Callgrind

main
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C ED1 D2



Control Data Flow graphs

32

 Function calltrees annotated with unique

communication flow

 Obtained via Sigil
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Control Data Flow graphs
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 Function calltrees annotated with unique
communication flow

 Add computation costs in as well

 Also obtained via Sigil
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Platform-independent metrics
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 Accelerator time and communication time are 

implementation-dependent!

 Large design space for implementations

 Early stage design approach: Capture platform-

independent metrics as proxy

 Accelerator time  Compute operations

 Communication Time  I/O set of bytes for each function



Accelerator selection
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HW/SW partitioning process

36

 How to pick accelerator candidates in hierarchical 

CDFG?
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HW/SW partitioning process
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 How to pick accelerator candidates? 

 Leaf nodes are self contained – Natural candidates

 If coverage of work too low?
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HW/SW partitioning process
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 How to pick accelerator candidates? 

 Leaf nodes are self contained – Natural candidates

 Non-leaf nodes? Include functionality of sub-calltree
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Calculate inclusive costs
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 Non-leaf nodes: Merge sub-calltree

 Inclusive computation costs – Add up operations

 Inclusive communication costs – Edges crossing the box
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 Accelerator selection problem

 Sigil Overview

 Sigil methodology for accelerator selection

Partitioning examples
 In-depth look: 456.Hmmer

 Results: Multiple benchmarks

 Building and Running Sigil



Partitioning algorithm
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 Employ any partitioning algorithm

 Existing algorithms

 Intuitive: Computation to Communication ratio

 State-of-the-art: Simulated Annealing, Genetic algorithms

 We use a demonstrative algorithm utilizing:

 software time – from Callgrind

 communication time – from Sigil

 compute time – from Sigil

 Does not indicate amenability of functions

 HLS tools show amenability



Partitioning example: Spec 456.Hmmer
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main

Random 

Seq.

FChoose

Hmm
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 After partitioning

 Call edges shown

 Communication edges 
not shown

 Candidates in box

 Assumptions

 For SW time –
2.5GHz CPU

 For Comm. Time –
16GB/s transfer rate



Partitioning example: Spec 456.Hmmer

43
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Partitioning Results - PARSEC
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Source: [1] C. Bienia et al. “The PARSEC Benchmark Suite: Characterization and Architectural Implications”, Princeton Technical Report

Rank Blackscholes Freqmine Dedup

1 String to float sort sha1_block_data_order

2 ieee754_exp FP_Array_scan2* sha1_block_data_order

3 ieee754_expf sort compress2*

4 ieee754_logf FP_Array_scan2* write_file*

Functions from demonstrative partitioning for PARSEC benchmarks

 ieee_754/mul – IEEE “math” library functions

 sha1_block_data_order – core of SHA1 calculation

 FP_Array_scan2 – Builds “prefix-tree” for frequent pattern mining [1]

*  merged function



Partitioning Results - PARSEC
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 S/W Coverage with accelerator candidates



Outline
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 Accelerator selection problem

 Sigil Overview

 Sigil methodology for accelerator selection

 Partitioning examples

Building and Running Sigil



Getting Sigil
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 Available open source

 git clone https://github.com/snilakan/Sigil

 Documentation included

 Tested and validated in Linux

 Officially tested distros: CentOS6, Ubuntu 12.04 LTS, 

Ubuntu 14.04 LTS

 Supported by any system supported by Valgrind

(3.10.1)

https://github.com/snilakan/Sigil


Building Sigil
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 Automated script

 Checks dependencies and builds Valgrind with 
Sigil/Callgrind

 Configures post processing scripts

 Manual build process

 Autotools build process – basically building Valgrind

 $ ./autogen.sh

 $ ./configure

 $ make

 Small path modifications in post processing scripts

 See documentation



Running Sigil
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 Compile user program with debug 
flags

 Generate CDFGs 
 $ ./run_sigil.sh my_binary

 Outputs sigil.totals.out-#
 Thread #

 Partitioning the graph

 Post-processing not part of Sigil
 $ ./aggregate_costs.py –help

 Our example partitioning algorithm

 Can plug in your own partitioning 
algorithm!



Running Sigil - Caveats
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 Before we begin…
 $ ./run_sigil.sh 

 Just a wrapper for typical usage of Sigil

 May have to tweak built-in options
 e.g. --separate-callers=# 

 Essentially specifies max nested function calls

 Callgrind option

 Bounded by (Val/Call)grind’s abilities

 Usually memory allocation problems, if any at all

 Now, don’t be a stranger!
 Please contact us with issues or suggestions!



Sigil Output
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 Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

 …top of file



Sigil Output
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 Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

 …meanwhile way below…



Sigil Output
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 Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

 Interesting, but not very clear on its own

 Gives us:

 Communication edges

 Classified communication counts

 Compute counts

 Some tool usage stats



Post Processing

54

 Let’s do something with this data!

 Partition call-tree (from Callgrind) with

communication and computation costs (from Sigil) 

 Create call-tree (with Callgrind)
 $ vg-in-place --tool=callgrind --cache-sim=yes --branch-sim=yes my_binary

 Read in the data and make partitioning choices



Post Processing
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Remember me?



Post Processing
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 Let’s do something with this data!

 Partition call-tree (from Callgrind) with
communication and computation costs (from Sigil) 

 Create call-tree (with Callgrind)
 $ vg-in-place --tool=callgrind --cache-sim=yes --branch-sim=yes my_binary

 Read in the data and make partitioning choices

 Our demonstrative partitioning script is included

 Example use:
 $ ./aggregate_costs_gran.py …/sigil.totals.out-1 --trim-tree --cg-file=…/callgrind_output_file

--gran-mode=metric > my_postprocessed_workload.txt



Post Processing
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 Let’s do something with this data!



Post Processing

58

 Let’s do something with this data!

 …and we finally have our merged, leaf node 

candidates, from our demonstrative algorithm!



Looking forward
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 We plan on releasing results from SPEC, PARSEC, 
BioBench and more

 Improving interface and documentation

 Under the hood overhaul

 Commonality of functions between applications

 Area may be free, design and verification are not

 Need more applications!

 Run Sigil on your workload and tell us what you find



Wrap Up
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 Available 

 git clone https://github.com/snilakan/Sigil

 http://dpac.ece.drexel.edu/current-research-projects/sigil/

 Contact: michael.d.lui@drexel.edu

 Demo Later

 Related Publications
 “Platform-independent Analysis of Function-level Communication in Workloads”, Siddharth

Nilakantan and Mark Hempstead, IISWC 2013

 “Metrics for Early-Stage Modeling of Many-Accelerator Architectures”, Siddharth Nilakantan, 
Steven Battle and Mark Hempstead, CAL July-Dec 2012

https://github.com/snilakan/Sigil
http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu
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BACKUP SLIDES



Partitioning steps
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 First, use a metric to compare nodes against parents

 Merge nodes when parents make better candidates

 Second, rank leaf nodes by same metric
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Metric for merging & ranking
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 Breakeven-speedup 

 Minimum factor of computational acceleration, given 

communication

 For calculation of communication; we can plug in a 

transfer rate

Breakeven-speedup =A’

tsw

A

I/P O/P

tcomm:ip:

accel

tcomm:op:

accel


