SIGIL

Classifying Workload Communication

Mike Lui

PhD student - Drexel University

Dr. Siddharth Nilakantan
Nvidia
Graduated - Drexel University

Dr. Baris Taskin
Associate Professor - Drexel University

Dr. Mark Hempstead

Associate Professor - Tufts University

Sigil Release

Official Website

Contact:

Related Publications

O “Platform-independent Analysis of Function-level Communication in Workloads”,
Siddharth Nilakantan and Mark Hempstead, ISWC 2013

O “Metrics for Early-Stage Modeling of Many-Accelerator Architectures”,
Siddharth Nilakantan, Steven Battle and Mark Hempstead, CAL July-Dec 2012

http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu

Getting Sigil

Available open source

Ogit clone

O Documentation included

Tested and validated in Linux

O Officially tested distros: CentOS6, Ubuntu 12.04 LTS,
Ubuntu 14.04 LTS

O Supported by any system supported by Valgrind
(3.10.1)

https://github.com/snilakan/Sigil

Qutline

Accelerator Selection Problem
O Example

Sigil Overview

Sigil Methodology for Accelerator Selection

Partitioning Example

Building and Running Sigil

Motivational Applications Drexel

UNIVERSITY

Pipelined parallel apps typically chosen for HW acceleration

Memory Resources
(Buffer, Texture,
Constant Buffer)

Input-Assember
Stage

Vertex Shader
Stage

1L

Hull Shader Y=
Stage

JL Fn-1

Tessellator (reference)

Stage

Domain Shader
Stage

Fn N Dn
(current) hO—_’ T Quant.)

Motion

Estimation

Inter

Motion
Compensation
Intra
Predictor
Vectors and

Intra headers

Fn) uF'n D'n M L Entro Coded
le— Filter e » Py e
(reconstruct) + T Rescale X Reorder | Encoder — bitstream

Geometry Shader
Stage

Stream Output —
:/r\ Stage

Z
Rasterizer
Stage

Pixel-Shader e
Stage o

Output-Merger
Stage

What is accelerator selection?

Which functions to accelerate?

What is accelerator selection?

Which functions to accelerate?

O What are limiting factors for selection?

Dependence
Chain

What is accelerator selection?

Which functions to accelerate?

O What are limiting factors for selection?

Dependence
Chain

| B (5.
What is accelerator selection¢ Drexel

UNIVERSITY

Which functions to accelerate?

O What are limiting factors for selection?

Dependence >
Chain
Compute
Operations A C

10

Accelerator selection

Selection 1

H/W

|

Al

Time

Comm. time

7z

Accel. time

11

S/W

Accelerator selection

Selection 1
H/W

S/W

Selection 2
H/W

A B

Time

Comm. time

7z

Accel. time

12

Accelerator selection

S/W

Selection 1
H/W

S/W

Selection 2
H/W

S/W

Selection 3
H/W

-
-
-

Time

BCPU time

Comm. time

7z

Accel. time

Platform-independent metrics

13

Accelerator time and communication time are

implementation-dependent!

O Large design space for implementations

Early stage design approach: Capture platform-
independent metrics as proxy

O Accelerator time = Compute operations

O Communication Time =2 |/O set of bytes for each function

14

Capturing Input/Output Set I()‘Smgl

UNIVERSITY

Input/Output set: NOT all memory reads and writes, only unique
ones

Biggest challenge: Measuring unique communication

Function A Function B
Compute Bytes [Compute]
[] added

to 1/O
/O bytes | Wr] set (_Rd
Addr |\ Addr
Byte [Compute]

marked

as Rd
reuse Addr

15

Enter Sigil (ﬁ!

Drexel

UNIVERSITY

Novelty: Sigil measures these metrics *automatically™

O Classifying communication (unique and total bytes)
O Compute operations for each function

O Produces control data flow graph (CDFG) representations

Revisit the Q: Which functions to accelerate?
O Apply HW/SW partitioning algorithm to graphs!
O Goals of algorithm

Minimize unique communication

Maximizing coverage in HW

16

Qutline

Accelerator selection problem

Sigil Overview
Sigil Methodology for Accelerator Selection
Partitioning Example

Building and Running Sigil

17

Sigil Implementation

Implemented into Callgrind

Works on binary, no source changes

Can be implemented on any framework. Requires

O Functions

O Load/Store addresses

Control data flow graph

Unique and local communication costs
and edges

* Cache simulation Caligrind
* Branch prediction

* Dynamic binary instrumentation
* VEX IR generation

Valgrind

Sigil - Binary Instrumentation

Why Valgrind?
O VEX IR provides

Abstract compute
Abstract load/store
Inspect every byte

Memory addresses and widths
O Callgrind provides

function calls, returns, et al

O Multi-platform support

Mature Linux support

19

Tracking unique communication

Tracking unique communication

FunctionA Function B
G Write
Addr. 1
Read
Addr. 1
—> Monitor
Shadow

Memory

Tracking unique communication

FunctionA Function B
G Write
Addr. 1
Read
Addr. 1
—> Monitor
Shadow
Update —> M
| i emory
ast writer

22

Tracking unique communication

FunctionA Function B __
G Write
Addr. 1
Q Read
f Addr. 1
—> Monitor
Shadow

Memory

23

Tracking unique communication

FunctionA Function B __
a Write
Addr. 1
Q Read
f Addr. 1
—> Monitor
Last
TWritere
Shadow
Update — M
emory
last reader

24

Tracking unique communication

FunctionA Function B __
a Write
Addr. 1
Q Read
f Addr. 1
—> Monitor
Unique /non la T e
-unique
bytes - .
one. Shadow
Data
Memory
store

Inside Shadow Memory Drexel

UNIVERSITY
25

‘—G I ST Addr, Register in Function A I

LD Register, Addr in Function B

Primary Map
Addr[34:16]
> 0 0
\ Last Writer = Func A
Addr[15:0] —
> | Shadow Obj Shadow Obij Last Reader = None
Secondary Last Reader Call = 0

Maps

Inside Shadow Memory

26

ST Addr, Register in Function A

|_LD Register, Addr in Function B |

Primary Map
Addr[34:16]
> 0 0
\ Last Writer = Func A
Addr[15:0] —_
> | Shadow Obj Shadow Obj Last Reader = Func B
Secondary Last Reader Call = 1

Maps

Inside Shadow Memory

27

Challenges & Considerations

O Redesigning shadow memory

Need to track more state than memcheck

O Memcheck
1-bit addressable
1-bit valid
1-void™ LIVE heap locations
Some alignment state

Heuristic algorithms developed over time

28

Inside Shadow Memory

Challenges & Considerations

O Redesigning shadow memory

Need to track more state than memcheck

29

Inside Shadow Memory

Challenges & Considerations

O Redesigning shadow memory

Need to track more state than memcheck

O Sigil resources
— 2GB of user space memory =2 34GB minimum!

Only need to run once

30

Qutline

Accelerator selection problem

Sigil Overview

Sigil Methodology for Accelerator

Selection

O Control Data flow graphs
O Partitioning process

Partitioning Example

Building and Running Sigil

31

Control Data Flow graphs

Function calltrees....

O Hierarchical representation of functions in application

O Obtained via Callgrind

32

Control Data Flow graphs

Function calltrees annotated with unique

communication flow
O Obtained via Sigil

33

Control Data Flow graphs

Function calltrees annotated with unique
communication flow

O Add computation costs in as well
O Also obtained via Sigil

Platform-independent metrics

34

Accelerator time and communication time are

implementation-dependent!

O Large design space for implementations

Early stage design approach: Capture platform-
independent metrics as proxy

O Accelerator time = Compute operations

O Communication Time =2 |/O set of bytes for each function

35

S/W

Accelerator selection

Selection 1
H/W

S/W

Selection 2
H/W

S/W

Selection 3
H/W

-
-
-

Time

BCPU time

Comm. time

7z

Accel. time

36

HW /SW partitioning process I()‘Smgl

UNIVERSITY

How to pick accelerator candidates in hierarchical

CDFG?

37

How to pick accelerator candidates?

O Leaf nodes are self contained — Natural candidates

If coverage of work too low?

- - -

Software

Accelerator
Candidates

38

How to pick accelerator candidates?
O Leaf nodes are self contained — Natural candidates

O Non-leaf nodes? Include functionality of sub-calltree

- - -

e ‘\ - ~
< ~ he — =\
,7 -~ N , - NN

Software

Accelerator
Candidates

Calculate inclusive costs

39

Non-leaf nodes: Merge sub-calltree

O Inclusive computation costs — Add up operations

O Inclusive communication costs — Edges crossing the box

Software

Accelerator
Candidates

40

Qutline

Accelerator selection problem

Sigil Overview

Sigil methodology for accelerator selection

Partitioning examples

O In-depth look: 456.Hmmer
O Results: Multiple benchmarks

Building and Running Sigil

41

Partitioning algorithm

Employ any partitioning algorithm

O Existing algorithms
Intuitive: Computation to Communication ratio

State-of-the-art: Simulated Annealing, Genetic algorithms

O We use a demonstrative algorithm utilizing:

software time — from Callgrind
communication time — from Sigil
compute time — from Sigil

O Does not indicate amenability of functions

HLS tools show amenability

Partitioning example: Spec 456.Hmmer

Assumptions After partitioning

O For SW time — meiin O Call edges shown
2.5GHz CPU O Communication edges

O For Comm. Time — \ not shown

16GB /s transfer rate O Candidates in box

~a
-~
~
~
~a
-~

Hmm
caliber

~
~
-~
~
-~
~
~
~
~
-~
~
-~
~~
-

- = = - —— g = - /= = ——

Random
Seq.

Other
functions

Digitize
Seq.

Partitioning example: Spec 456.Hmmer

43

Rank statistics

o S/W, Flops/lops and
Communication bytes

Comm. = % Communication cost .
of merged function /Totall e

communicated bytes in program

coverage %

Hmm

~a
-~
~
~
~a
-~

caliber

~
~
-~
~
-~
~
~
~
~
-~
~
-~
~~
-

- = = -

Random

Other
functions

Digitize
Seq.

3

Cycles 0.05% Cycles 10% Cycles 74%
- . Ops 0.01% Ops 4.7% Ops 83%
0
| Cycles 14% Comm. 1.82% Comm. 49% Comm. 4.62%

| OPs 10%
I Comm. 0.39%

Partitioning Results - PARSEC

44

Functions from demonstrative partitioning for PARSEC benchmarks

Blackscholes Freqmine Dedup

shal block data_order

1 String to float sort

2 ieee/54_exp FP_Array_scan2* shal_block data_order
3 ieee754_expf sort compress2*

4 ieee754_logf FP_Array_scan2* write_file*

ieee_754 /mul — |EEE “math” library functions
shal_block data_order — core of SHAT calculation
FP_Array_scan2 — Builds “prefix-tree” for frequent pattern mining [1]

* 2 merged function

Source: [1] C. Bienia et al. “The PARSEC Benchmark Suite: Characterization and Architectural Implications”, Princeton Technical Report

45

S/W Coverage with accelerator candidates

[Software functions
B Accel candidates

Normalized Software Time

46

Qutline

Accelerator selection problem

Sigil Overview

Sigil methodology for accelerator selection

Partitioning examples

Building and Running Sigil

47

Getting Sigil

Available open source

O git clone

O Documentation included

Tested and validated in Linux

O Officially tested distros: CentOS6, Ubuntu 12.04 LTS,
Ubuntu 14.04 LTS

O Supported by any system supported by Valgrind
(3.10.1)

https://github.com/snilakan/Sigil

48

Automated script

O Checks dependencies and builds Valgrind with
Sigil /Callgrind

O Configures post processing scripts

Manual build process

O Autotools build process — basically building Valgrind
S ./autogen.sh
S ./configure
S make

O Small path modifications in post processing scripts

See documentation

Running Sigil

49

Compile user program with debug
flags

Generate CDFGs

OS ./run sigil.sh my binary
O Outputs sigil.totals.out-#
Thread #

Partitioning the graph

O Post-processing not part of Sigil

O S ./aggregate costs.py —help
O Our example partitioning algorithm

O Can plug in your own partitioning
algorithm!

SO Emm o o E—— o —

&

Drexel

UNIVERSITY

Accelerator candidates

HW/SW partitioning

algorithm

Control data flow graphs

Callgrind I
|

Valgrind I

Instrumented Binary

.___T___al___.»

Unmodified Source Binary

—— o o o o o o —

Running Sigil - Caveats

50

Before we begin...
$./run sigil.sh

O Just a wrapper for typical usage of Sigil

O May have to tweak built-in options

e.g. --separate-callers=#
Essentially specifies max nested function calls
Callgrind option

Bounded by (Val/Call)grind’s abilities

O Usually memory allocation problems, if any at all

Now, don't be a stranger!
O with issues or suggestions!

51

Sigil Output Drexel

UNIVERSITY

Sample output from FFT kernel in Parsec 3.0 / SPLASH2x
...top of file

SUMMARY :

Total Memory EBeads (bytes): 329263018 Total Memory Writes (bytesz): 192147336

Hum SM=: &7 mcinsts: 525 Memory for SM(bytes): 281

BER, FUNC TNS5T NUM, Children?, Number of calls

52

Sigil Output Drexel

UNIVERSITY

Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

...meanwhile way below...

DATa DUMP

THREAD NUMEER FUNCTICH HNUMEBER FUNC IWST HUM FUNCTICH HAME

53

Sigil Output ﬁ

Drexel

UNIVERSITY

Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

O Interesting, but not very clear on its own

Gives us:

O Communication edges

O Classified communication counts
O Compute counts

O Some tool usage stats

Post Processing

54

Let’s do something with this datal

Partition call-tree (from Callgrind) with
communication and computation costs (from Sigil)

O Create call-tree (with Callgrind)

$ vg-in-place --tool=callgrind --cache-sim=yes --branch-sim=yes my_binary

O Read in the data and make partitioning choices

Post Processing

Accelerator candidates

HW/SW partitioning

Remember me? i algorithm

Control data flow graphs

Callgrind I
|

|
!
!
!
| 2
!
|
\

Valgrind |

—— o o o o o o —

Instrumented Binary

.___T___al___.»

Unmodified Source Binary

Post Processing

56

Let’s do something with this datal

Partition call-tree (from Callgrind) with
communication and computation costs (from Sigil)

O Create call-tree (with Callgrind)

$ vg-in-place --tool=callgrind --cache-sim=yes --branch-sim=yes my_binary
O Read in the data and make partitioning choices
Our demonstrative partitioning script is included

Example use:

$./aggregate_costs_gran.py .../sigil.totals.out-1 --trim-tree --cg-file=.../callgrind_output_file
--gran-mode=metric > my_postprocessed_workload.txt

Post Processing

Let’s do something

bl

o I |
F I

[T =T e = |
I O e T e I

[DO % B 'S R [L R 'S R R |

| el
[g
s I e B e B

[T T

-1 ¬n
I

= I

_dl addr
printf
viprintf

4
4
4
4
L
L 0
57 W]
L
9
9
9
9
2
2

[S
= I

Trimming tree.....

Func num Func Im=st Function

Uppertree Software Time
Bottom nodes Software

e |
=]

S I g Y Y

-1 tn

oI L% B L R S R N]
[=T AT

[O e T e T e O =

malloc hook ini
ptmalloc

init.part.

name

LConstprop. 2

with this datal

on
B B R
[T A Y
B B R

(Sl]
(Sl]

L
=

-l L oo
I
B B R

Humcalls

Inatrs

[O e T i T e Y i I e N e Y e TN e Y oF O e Y e I e O e |

[e T T e O e T

I
L

Post Processing

58

Let’s do something with this datal

...and we finally have our merged, leaf node
candidates, from our demonstrative algorithm!

Looking forward

59

We plan on releasing results from SPEC, PARSEC,
BioBench and more

Improving interface and documentation
O Under the hood overhaul

Commonality of functions between applications

O Area may be free, design and verification are not

Need more applications!

O Run Sigil on your workload and tell us what you find

60

Available

O git clone
O

Contact:

Demo Later

Related Publications

O “Platform-independent Analysis of Function-level Communication in Workloads”, Siddharth
Nilakantan and Mark Hempstead, ISWC 2013

O “Metrics for Early-Stage Modeling of Many-Accelerator Architectures”, Siddharth Nilakantan,
Steven Battle and Mark Hempstead, CAL July-Dec 2012

https://github.com/snilakan/Sigil
http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu

BACKUP SLIDES

teps

ing s

Partition

N
O

t parents

ic to compare nodes agains

, use d metr

t
Merge nodes when parents make better candidates

Firs

IC

rank leaf nodes by same metr

Second,

Metric for merging & ranking

63

Breakeven-speedup

O Minimum factor of computational acceleration, given
communication

O For calculation of communication; we can plug in a
transfer rate

«—Tsw ——>

A
/P A O/P Breakeven-speedup =
'« -»>! '« -»>! tsw
fcomm:ip: 1'comm:op: + — (f o 1t)
accel accel ‘sw comm:ip:accel ‘comm:op:accel

