
1

SIGIL
Classifying Workload Communication

Mike Lui
PhD student - Drexel University

Dr. Siddharth Nilakantan
Nvidia

Graduated - Drexel University

Dr. Baris Taskin
Associate Professor - Drexel University

Dr. Mark Hempstead
Associate Professor - Tufts University

Sigil Release

2

 Official Website

 http://dpac.ece.drexel.edu/current-research-projects/sigil/

 Contact: michael.d.lui@drexel.edu

 Related Publications
 “Platform-independent Analysis of Function-level Communication in Workloads”,

Siddharth Nilakantan and Mark Hempstead, IISWC 2013

 “Metrics for Early-Stage Modeling of Many-Accelerator Architectures”,

Siddharth Nilakantan, Steven Battle and Mark Hempstead, CAL July-Dec 2012

http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu

Getting Sigil

3

 Available open source

git clone https://github.com/snilakan/Sigil

 Documentation included

 Tested and validated in Linux

 Officially tested distros: CentOS6, Ubuntu 12.04 LTS,

Ubuntu 14.04 LTS

 Supported by any system supported by Valgrind

(3.10.1)

https://github.com/snilakan/Sigil

Outline

4

Accelerator Selection Problem
 Example

 Sigil Overview

 Sigil Methodology for Accelerator Selection

 Partitioning Example

 Building and Running Sigil

Motivational Applications

5

 Pipelined parallel apps typically chosen for HW acceleration

What is accelerator selection?

6

 Which functions to accelerate?

What is accelerator selection?

7

 Which functions to accelerate?

 What are limiting factors for selection?

What is accelerator selection?

8

 Which functions to accelerate?

 What are limiting factors for selection?

What is accelerator selection?

9

 Which functions to accelerate?

 What are limiting factors for selection?

Accelerator selection

10

Time

CPU time Comm. time Accel. time

Accelerator selection

11

Time

CPU time Comm. time Accel. time

Accelerator selection

12

Time

CPU time Comm. time Accel. time

Platform-independent metrics

13

 Accelerator time and communication time are

implementation-dependent!

 Large design space for implementations

 Early stage design approach: Capture platform-

independent metrics as proxy

 Accelerator time Compute operations

 Communication Time I/O set of bytes for each function

Capturing Input/Output Set

14

 Input/Output set: NOT all memory reads and writes, only unique
ones

 Biggest challenge: Measuring unique communication

I/O bytes

Compute

Rd

Addr

Function A Function B

Rd

Addr

Compute

Wr

Addr

Compute

Bytes

added

to I/O

set

Bytes

marked

as

reuse

A B

Enter Sigil

15

 Novelty: Sigil measures these metrics *automatically*

 Classifying communication (unique and total bytes)

 Compute operations for each function

 Produces control data flow graph (CDFG) representations

 Revisit the Q: Which functions to accelerate?

 Apply HW/SW partitioning algorithm to graphs!

 Goals of algorithm

 Minimize unique communication

 Maximizing coverage in HW

Outline

16

 Accelerator selection problem

Sigil Overview

 Sigil Methodology for Accelerator Selection

 Partitioning Example

 Building and Running Sigil

Sigil Implementation

17

 Implemented into Callgrind

 Works on binary, no source changes

 Can be implemented on any framework. Requires

 Functions

 Load/Store addresses

• Cache simulation

• Branch prediction

• Control data flow graph

• Unique and local communication costs

and edges

• Dynamic binary instrumentation

• VEX IR generation

Sigil - Binary Instrumentation

18

 Why Valgrind?

 VEX IR provides

 Abstract compute

 Abstract load/store

 Inspect every byte

 Memory addresses and widths

 Callgrind provides

 function calls, returns, et al

 Multi-platform support

 Mature Linux support

Tracking unique communication

19

Tracking unique communication

20

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

Tracking unique communication

21

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory
Update

last writer

1

Tracking unique communication

22

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

2

Tracking unique communication

23

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

2

3
Last

Writer

Update

last reader

Tracking unique communication

24

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

2

3

Func. B

Data

store

4Unique/non

-unique

bytes

Inside Shadow Memory

25

Shadow Obj

“

“

Secondary

Maps

Addr[15:0]
Shadow Obj

“

“

0 0 ….

Primary Map

Addr[34:16]

Last Writer = Func A

Last Reader = None

Last Reader Call = 0

ST Addr, Register in Function A

.

.

LD Register, Addr in Function B

A B

Inside Shadow Memory

26

Shadow Obj

“

“

Secondary

Maps

Addr[15:0]
Shadow Obj

“

“

0 0 ….

Primary Map

Addr[34:16]

Last Writer = Func A

Last Reader = Func B

Last Reader Call = 1

26

ST Addr, Register in Function A

.

.

LD Register, Addr in Function B

A B

Inside Shadow Memory

27

 Challenges & Considerations

 Redesigning shadow memory

 Need to track more state than memcheck

 Memcheck

 1-bit addressable

 1-bit valid

 1-void* LIVE heap locations

 Some alignment state

 Heuristic algorithms developed over time

Inside Shadow Memory

28

 Challenges & Considerations

 Redesigning shadow memory

 Need to track more state than memcheck

 Sigil C B
B

ಠ_ಠ
A

D

E

A

A

ZZ

ZZ

Inside Shadow Memory

29

 Challenges & Considerations

 Redesigning shadow memory

 Need to track more state than memcheck

 Sigil resources

 – 2GB of user space memory 34GB minimum!

 +Only need to run once

Outline

30

 Accelerator selection problem

 Sigil Overview

 Sigil Methodology for Accelerator
Selection
 Control Data flow graphs

 Partitioning process

 Partitioning Example

 Building and Running Sigil

Control Data Flow graphs

31

 Function calltrees….

 Hierarchical representation of functions in application

 Obtained via Callgrind

main

A B

C ED1 D2

Control Data Flow graphs

32

 Function calltrees annotated with unique

communication flow

 Obtained via Sigil

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Control Data Flow graphs

33

 Function calltrees annotated with unique
communication flow

 Add computation costs in as well

 Also obtained via Sigil

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

700

400 200

50 300 50 50

Platform-independent metrics

34

 Accelerator time and communication time are

implementation-dependent!

 Large design space for implementations

 Early stage design approach: Capture platform-

independent metrics as proxy

 Accelerator time Compute operations

 Communication Time I/O set of bytes for each function

Accelerator selection

35

Time

CPU time Comm. time Accel. time

HW/SW partitioning process

36

 How to pick accelerator candidates in hierarchical

CDFG?

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

HW/SW partitioning process

37

 How to pick accelerator candidates?

 Leaf nodes are self contained – Natural candidates

 If coverage of work too low?

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Software

Accelerator

Candidates

HW/SW partitioning process

38

 How to pick accelerator candidates?

 Leaf nodes are self contained – Natural candidates

 Non-leaf nodes? Include functionality of sub-calltree

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Software

Accelerator

Candidates

Calculate inclusive costs

39

 Non-leaf nodes: Merge sub-calltree

 Inclusive computation costs – Add up operations

 Inclusive communication costs – Edges crossing the box

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Software

Accelerator

Candidates

Outline

40

 Accelerator selection problem

 Sigil Overview

 Sigil methodology for accelerator selection

Partitioning examples
 In-depth look: 456.Hmmer

 Results: Multiple benchmarks

 Building and Running Sigil

Partitioning algorithm

41

 Employ any partitioning algorithm

 Existing algorithms

 Intuitive: Computation to Communication ratio

 State-of-the-art: Simulated Annealing, Genetic algorithms

 We use a demonstrative algorithm utilizing:

 software time – from Callgrind

 communication time – from Sigil

 compute time – from Sigil

 Does not indicate amenability of functions

 HLS tools show amenability

Partitioning example: Spec 456.Hmmer

42

main

Random

Seq.

FChoose

Hmm

caliber

Gauss

Random

Digitize

Seq.

P7

Viterbi

Other

functions

 After partitioning

 Call edges shown

 Communication edges
not shown

 Candidates in box

 Assumptions

 For SW time –
2.5GHz CPU

 For Comm. Time –
16GB/s transfer rate

Partitioning example: Spec 456.Hmmer

43

main

Random

Seq.

FChoose

Hmm

caliber

Gauss

Random

Digitize

Seq.

P7

Viterbi

Cycles 14%

OPs 10%

Comm. 0.39%

1

4 3 2

Cycles 0.05%

Ops 0.01%

Comm. 1.82%

Cycles 10%

Ops 4.7%

Comm. 49%

Cycles 74%

Ops 83%

Comm. 4.62%

 Rank statistics

 S/W, Flops/Iops and

Communication bytes

coverage %

Comm. % Communication cost

of merged function/Total

communicated bytes in program

Other

functions

Partitioning Results - PARSEC

44

Source: [1] C. Bienia et al. “The PARSEC Benchmark Suite: Characterization and Architectural Implications”, Princeton Technical Report

Rank Blackscholes Freqmine Dedup

1 String to float sort sha1_block_data_order

2 ieee754_exp FP_Array_scan2* sha1_block_data_order

3 ieee754_expf sort compress2*

4 ieee754_logf FP_Array_scan2* write_file*

Functions from demonstrative partitioning for PARSEC benchmarks

 ieee_754/mul – IEEE “math” library functions

 sha1_block_data_order – core of SHA1 calculation

 FP_Array_scan2 – Builds “prefix-tree” for frequent pattern mining [1]

* merged function

Partitioning Results - PARSEC

45

 S/W Coverage with accelerator candidates

Outline

46

 Accelerator selection problem

 Sigil Overview

 Sigil methodology for accelerator selection

 Partitioning examples

Building and Running Sigil

Getting Sigil

47

 Available open source

 git clone https://github.com/snilakan/Sigil

 Documentation included

 Tested and validated in Linux

 Officially tested distros: CentOS6, Ubuntu 12.04 LTS,

Ubuntu 14.04 LTS

 Supported by any system supported by Valgrind

(3.10.1)

https://github.com/snilakan/Sigil

Building Sigil

48

 Automated script

 Checks dependencies and builds Valgrind with
Sigil/Callgrind

 Configures post processing scripts

 Manual build process

 Autotools build process – basically building Valgrind

 $./autogen.sh

 $./configure

 $ make

 Small path modifications in post processing scripts

 See documentation

Running Sigil

49

 Compile user program with debug
flags

 Generate CDFGs
 $./run_sigil.sh my_binary

 Outputs sigil.totals.out-#
 Thread #

 Partitioning the graph

 Post-processing not part of Sigil
 $./aggregate_costs.py –help

 Our example partitioning algorithm

 Can plug in your own partitioning
algorithm!

Running Sigil - Caveats

50

 Before we begin…
 $./run_sigil.sh

 Just a wrapper for typical usage of Sigil

 May have to tweak built-in options
 e.g. --separate-callers=#

 Essentially specifies max nested function calls

 Callgrind option

 Bounded by (Val/Call)grind’s abilities

 Usually memory allocation problems, if any at all

 Now, don’t be a stranger!
 Please contact us with issues or suggestions!

Sigil Output

51

 Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

 …top of file

Sigil Output

52

 Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

 …meanwhile way below…

Sigil Output

53

 Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

 Interesting, but not very clear on its own

 Gives us:

 Communication edges

 Classified communication counts

 Compute counts

 Some tool usage stats

Post Processing

54

 Let’s do something with this data!

 Partition call-tree (from Callgrind) with

communication and computation costs (from Sigil)

 Create call-tree (with Callgrind)
 $ vg-in-place --tool=callgrind --cache-sim=yes --branch-sim=yes my_binary

 Read in the data and make partitioning choices

Post Processing

55

Remember me?

Post Processing

56

 Let’s do something with this data!

 Partition call-tree (from Callgrind) with
communication and computation costs (from Sigil)

 Create call-tree (with Callgrind)
 $ vg-in-place --tool=callgrind --cache-sim=yes --branch-sim=yes my_binary

 Read in the data and make partitioning choices

 Our demonstrative partitioning script is included

 Example use:
 $./aggregate_costs_gran.py …/sigil.totals.out-1 --trim-tree --cg-file=…/callgrind_output_file

--gran-mode=metric > my_postprocessed_workload.txt

Post Processing

57

 Let’s do something with this data!

Post Processing

58

 Let’s do something with this data!

 …and we finally have our merged, leaf node

candidates, from our demonstrative algorithm!

Looking forward

59

 We plan on releasing results from SPEC, PARSEC,
BioBench and more

 Improving interface and documentation

 Under the hood overhaul

 Commonality of functions between applications

 Area may be free, design and verification are not

 Need more applications!

 Run Sigil on your workload and tell us what you find

Wrap Up

60

 Available

 git clone https://github.com/snilakan/Sigil

 http://dpac.ece.drexel.edu/current-research-projects/sigil/

 Contact: michael.d.lui@drexel.edu

 Demo Later

 Related Publications
 “Platform-independent Analysis of Function-level Communication in Workloads”, Siddharth

Nilakantan and Mark Hempstead, IISWC 2013

 “Metrics for Early-Stage Modeling of Many-Accelerator Architectures”, Siddharth Nilakantan,
Steven Battle and Mark Hempstead, CAL July-Dec 2012

https://github.com/snilakan/Sigil
http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu

61

BACKUP SLIDES

Partitioning steps

62

 First, use a metric to compare nodes against parents

 Merge nodes when parents make better candidates

 Second, rank leaf nodes by same metric

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

main

A B

D2 E

12/16

4

12

4
4

16 8

Metric for merging & ranking

63

 Breakeven-speedup

 Minimum factor of computational acceleration, given

communication

 For calculation of communication; we can plug in a

transfer rate

Breakeven-speedup =A’

tsw

A

I/P O/P

tcomm:ip:

accel

tcomm:op:

accel

