
1

SIGIL
Classifying Workload Communication

Mike Lui
PhD student - Drexel University

Dr. Siddharth Nilakantan
Nvidia

Graduated - Drexel University

Dr. Baris Taskin
Associate Professor - Drexel University

Dr. Mark Hempstead
Associate Professor - Tufts University

Sigil Release

2

 Official Website

 http://dpac.ece.drexel.edu/current-research-projects/sigil/

 Contact: michael.d.lui@drexel.edu

 Related Publications
 “Platform-independent Analysis of Function-level Communication in Workloads”,

Siddharth Nilakantan and Mark Hempstead, IISWC 2013

 “Metrics for Early-Stage Modeling of Many-Accelerator Architectures”,

Siddharth Nilakantan, Steven Battle and Mark Hempstead, CAL July-Dec 2012

http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu

Getting Sigil

3

 Available open source

git clone https://github.com/snilakan/Sigil

 Documentation included

 Tested and validated in Linux

 Officially tested distros: CentOS6, Ubuntu 12.04 LTS,

Ubuntu 14.04 LTS

 Supported by any system supported by Valgrind

(3.10.1)

https://github.com/snilakan/Sigil

Outline

4

Accelerator Selection Problem
 Example

 Sigil Overview

 Sigil Methodology for Accelerator Selection

 Partitioning Example

 Building and Running Sigil

Motivational Applications

5

 Pipelined parallel apps typically chosen for HW acceleration

What is accelerator selection?

6

 Which functions to accelerate?

What is accelerator selection?

7

 Which functions to accelerate?

 What are limiting factors for selection?

What is accelerator selection?

8

 Which functions to accelerate?

 What are limiting factors for selection?

What is accelerator selection?

9

 Which functions to accelerate?

 What are limiting factors for selection?

Accelerator selection

10

Time

CPU time Comm. time Accel. time

Accelerator selection

11

Time

CPU time Comm. time Accel. time

Accelerator selection

12

Time

CPU time Comm. time Accel. time

Platform-independent metrics

13

 Accelerator time and communication time are

implementation-dependent!

 Large design space for implementations

 Early stage design approach: Capture platform-

independent metrics as proxy

 Accelerator time  Compute operations

 Communication Time  I/O set of bytes for each function

Capturing Input/Output Set

14

 Input/Output set: NOT all memory reads and writes, only unique
ones

 Biggest challenge: Measuring unique communication

I/O bytes

Compute

Rd

Addr

Function A Function B

Rd

Addr

Compute

Wr

Addr

Compute

Bytes

added

to I/O

set

Bytes

marked

as

reuse

A B

Enter Sigil

15

 Novelty: Sigil measures these metrics *automatically*

 Classifying communication (unique and total bytes)

 Compute operations for each function

 Produces control data flow graph (CDFG) representations

 Revisit the Q: Which functions to accelerate?

 Apply HW/SW partitioning algorithm to graphs!

 Goals of algorithm

 Minimize unique communication

 Maximizing coverage in HW

Outline

16

 Accelerator selection problem

Sigil Overview

 Sigil Methodology for Accelerator Selection

 Partitioning Example

 Building and Running Sigil

Sigil Implementation

17

 Implemented into Callgrind

 Works on binary, no source changes

 Can be implemented on any framework. Requires

 Functions

 Load/Store addresses

• Cache simulation

• Branch prediction

• Control data flow graph

• Unique and local communication costs

and edges

• Dynamic binary instrumentation

• VEX IR generation

Sigil - Binary Instrumentation

18

 Why Valgrind?

 VEX IR provides

 Abstract compute

 Abstract load/store

 Inspect every byte

 Memory addresses and widths

 Callgrind provides

 function calls, returns, et al

 Multi-platform support

 Mature Linux support

Tracking unique communication

19

Tracking unique communication

20

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

Tracking unique communication

21

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory
Update

last writer

1

Tracking unique communication

22

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

2

Tracking unique communication

23

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

2

3
Last

Writer

Update

last reader

Tracking unique communication

24

Write

Addr. 1

Read

Addr. 1

FunctionA Function B

Monitor

Shadow

Memory

1

2

3

Func. B

Data

store

4Unique/non

-unique

bytes

Inside Shadow Memory

25

Shadow Obj

“

“

Secondary

Maps

Addr[15:0]
Shadow Obj

“

“

0 0 ….

Primary Map

Addr[34:16]

Last Writer = Func A

Last Reader = None

Last Reader Call = 0

ST Addr, Register in Function A

.

.

LD Register, Addr in Function B

A B

Inside Shadow Memory

26

Shadow Obj

“

“

Secondary

Maps

Addr[15:0]
Shadow Obj

“

“

0 0 ….

Primary Map

Addr[34:16]

Last Writer = Func A

Last Reader = Func B

Last Reader Call = 1

26

ST Addr, Register in Function A

.

.

LD Register, Addr in Function B

A B

Inside Shadow Memory

27

 Challenges & Considerations

 Redesigning shadow memory

 Need to track more state than memcheck

 Memcheck

 1-bit addressable

 1-bit valid

 1-void* LIVE heap locations

 Some alignment state

 Heuristic algorithms developed over time

Inside Shadow Memory

28

 Challenges & Considerations

 Redesigning shadow memory

 Need to track more state than memcheck

 Sigil C B
B

ಠ_ಠ
A

D

E

A

A

ZZ

ZZ

Inside Shadow Memory

29

 Challenges & Considerations

 Redesigning shadow memory

 Need to track more state than memcheck

 Sigil resources

 – 2GB of user space memory  34GB minimum!

 +Only need to run once

Outline

30

 Accelerator selection problem

 Sigil Overview

 Sigil Methodology for Accelerator
Selection
 Control Data flow graphs

 Partitioning process

 Partitioning Example

 Building and Running Sigil

Control Data Flow graphs

31

 Function calltrees….

 Hierarchical representation of functions in application

 Obtained via Callgrind

main

A B

C ED1 D2

Control Data Flow graphs

32

 Function calltrees annotated with unique

communication flow

 Obtained via Sigil

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Control Data Flow graphs

33

 Function calltrees annotated with unique
communication flow

 Add computation costs in as well

 Also obtained via Sigil

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

700

400 200

50 300 50 50

Platform-independent metrics

34

 Accelerator time and communication time are

implementation-dependent!

 Large design space for implementations

 Early stage design approach: Capture platform-

independent metrics as proxy

 Accelerator time  Compute operations

 Communication Time  I/O set of bytes for each function

Accelerator selection

35

Time

CPU time Comm. time Accel. time

HW/SW partitioning process

36

 How to pick accelerator candidates in hierarchical

CDFG?

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

HW/SW partitioning process

37

 How to pick accelerator candidates?

 Leaf nodes are self contained – Natural candidates

 If coverage of work too low?

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Software

Accelerator

Candidates

HW/SW partitioning process

38

 How to pick accelerator candidates?

 Leaf nodes are self contained – Natural candidates

 Non-leaf nodes? Include functionality of sub-calltree

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Software

Accelerator

Candidates

Calculate inclusive costs

39

 Non-leaf nodes: Merge sub-calltree

 Inclusive computation costs – Add up operations

 Inclusive communication costs – Edges crossing the box

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

Software

Accelerator

Candidates

Outline

40

 Accelerator selection problem

 Sigil Overview

 Sigil methodology for accelerator selection

Partitioning examples
 In-depth look: 456.Hmmer

 Results: Multiple benchmarks

 Building and Running Sigil

Partitioning algorithm

41

 Employ any partitioning algorithm

 Existing algorithms

 Intuitive: Computation to Communication ratio

 State-of-the-art: Simulated Annealing, Genetic algorithms

 We use a demonstrative algorithm utilizing:

 software time – from Callgrind

 communication time – from Sigil

 compute time – from Sigil

 Does not indicate amenability of functions

 HLS tools show amenability

Partitioning example: Spec 456.Hmmer

42

main

Random

Seq.

FChoose

Hmm

caliber

Gauss

Random

Digitize

Seq.

P7

Viterbi

Other

functions

 After partitioning

 Call edges shown

 Communication edges
not shown

 Candidates in box

 Assumptions

 For SW time –
2.5GHz CPU

 For Comm. Time –
16GB/s transfer rate

Partitioning example: Spec 456.Hmmer

43

main

Random

Seq.

FChoose

Hmm

caliber

Gauss

Random

Digitize

Seq.

P7

Viterbi

Cycles 14%

OPs 10%

Comm. 0.39%

1

4 3 2

Cycles 0.05%

Ops 0.01%

Comm. 1.82%

Cycles 10%

Ops 4.7%

Comm. 49%

Cycles 74%

Ops 83%

Comm. 4.62%

 Rank statistics

 S/W, Flops/Iops and

Communication bytes

coverage %

Comm.  % Communication cost

of merged function/Total

communicated bytes in program

Other

functions

Partitioning Results - PARSEC

44

Source: [1] C. Bienia et al. “The PARSEC Benchmark Suite: Characterization and Architectural Implications”, Princeton Technical Report

Rank Blackscholes Freqmine Dedup

1 String to float sort sha1_block_data_order

2 ieee754_exp FP_Array_scan2* sha1_block_data_order

3 ieee754_expf sort compress2*

4 ieee754_logf FP_Array_scan2* write_file*

Functions from demonstrative partitioning for PARSEC benchmarks

 ieee_754/mul – IEEE “math” library functions

 sha1_block_data_order – core of SHA1 calculation

 FP_Array_scan2 – Builds “prefix-tree” for frequent pattern mining [1]

*  merged function

Partitioning Results - PARSEC

45

 S/W Coverage with accelerator candidates

Outline

46

 Accelerator selection problem

 Sigil Overview

 Sigil methodology for accelerator selection

 Partitioning examples

Building and Running Sigil

Getting Sigil

47

 Available open source

 git clone https://github.com/snilakan/Sigil

 Documentation included

 Tested and validated in Linux

 Officially tested distros: CentOS6, Ubuntu 12.04 LTS,

Ubuntu 14.04 LTS

 Supported by any system supported by Valgrind

(3.10.1)

https://github.com/snilakan/Sigil

Building Sigil

48

 Automated script

 Checks dependencies and builds Valgrind with
Sigil/Callgrind

 Configures post processing scripts

 Manual build process

 Autotools build process – basically building Valgrind

 $./autogen.sh

 $./configure

 $ make

 Small path modifications in post processing scripts

 See documentation

Running Sigil

49

 Compile user program with debug
flags

 Generate CDFGs
 $./run_sigil.sh my_binary

 Outputs sigil.totals.out-#
 Thread #

 Partitioning the graph

 Post-processing not part of Sigil
 $./aggregate_costs.py –help

 Our example partitioning algorithm

 Can plug in your own partitioning
algorithm!

Running Sigil - Caveats

50

 Before we begin…
 $./run_sigil.sh

 Just a wrapper for typical usage of Sigil

 May have to tweak built-in options
 e.g. --separate-callers=#

 Essentially specifies max nested function calls

 Callgrind option

 Bounded by (Val/Call)grind’s abilities

 Usually memory allocation problems, if any at all

 Now, don’t be a stranger!
 Please contact us with issues or suggestions!

Sigil Output

51

 Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

 …top of file

Sigil Output

52

 Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

 …meanwhile way below…

Sigil Output

53

 Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

 Interesting, but not very clear on its own

 Gives us:

 Communication edges

 Classified communication counts

 Compute counts

 Some tool usage stats

Post Processing

54

 Let’s do something with this data!

 Partition call-tree (from Callgrind) with

communication and computation costs (from Sigil)

 Create call-tree (with Callgrind)
 $ vg-in-place --tool=callgrind --cache-sim=yes --branch-sim=yes my_binary

 Read in the data and make partitioning choices

Post Processing

55

Remember me?

Post Processing

56

 Let’s do something with this data!

 Partition call-tree (from Callgrind) with
communication and computation costs (from Sigil)

 Create call-tree (with Callgrind)
 $ vg-in-place --tool=callgrind --cache-sim=yes --branch-sim=yes my_binary

 Read in the data and make partitioning choices

 Our demonstrative partitioning script is included

 Example use:
 $./aggregate_costs_gran.py …/sigil.totals.out-1 --trim-tree --cg-file=…/callgrind_output_file

--gran-mode=metric > my_postprocessed_workload.txt

Post Processing

57

 Let’s do something with this data!

Post Processing

58

 Let’s do something with this data!

 …and we finally have our merged, leaf node

candidates, from our demonstrative algorithm!

Looking forward

59

 We plan on releasing results from SPEC, PARSEC,
BioBench and more

 Improving interface and documentation

 Under the hood overhaul

 Commonality of functions between applications

 Area may be free, design and verification are not

 Need more applications!

 Run Sigil on your workload and tell us what you find

Wrap Up

60

 Available

 git clone https://github.com/snilakan/Sigil

 http://dpac.ece.drexel.edu/current-research-projects/sigil/

 Contact: michael.d.lui@drexel.edu

 Demo Later

 Related Publications
 “Platform-independent Analysis of Function-level Communication in Workloads”, Siddharth

Nilakantan and Mark Hempstead, IISWC 2013

 “Metrics for Early-Stage Modeling of Many-Accelerator Architectures”, Siddharth Nilakantan,
Steven Battle and Mark Hempstead, CAL July-Dec 2012

https://github.com/snilakan/Sigil
http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu

61

BACKUP SLIDES

Partitioning steps

62

 First, use a metric to compare nodes against parents

 Merge nodes when parents make better candidates

 Second, rank leaf nodes by same metric

main

A B

C E

4

4

12

4
8

4

8
8

D1

16

D2

16

main

A B

D2 E

12/16

4

12

4
4

16 8

Metric for merging & ranking

63

 Breakeven-speedup

 Minimum factor of computational acceleration, given

communication

 For calculation of communication; we can plug in a

transfer rate

Breakeven-speedup =A’

tsw

A

I/P O/P

tcomm:ip:

accel

tcomm:op:

accel

