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Sigil Release

Official Website

Contact:

Related Publications

O “Platform-independent Analysis of Function-level Communication in Workloads”,
Siddharth Nilakantan and Mark Hempstead, ISWC 2013

O “Metrics for Early-Stage Modeling of Many-Accelerator Architectures”,
Siddharth Nilakantan, Steven Battle and Mark Hempstead, CAL July-Dec 2012


http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu

Getting Sigil

Available open source

Ogit clone

O Documentation included

Tested and validated in Linux

O Officially tested distros: CentOS6, Ubuntu 12.04 LTS,
Ubuntu 14.04 LTS

O Supported by any system supported by Valgrind
(3.10.1)


https://github.com/snilakan/Sigil
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Motivational Applications Drexel

UNIVERSITY

Pipelined parallel apps typically chosen for HW acceleration
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Which functions to accelerate?

O What are limiting factors for selection?
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Accelerator selection
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Accelerator selection
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Platform-independent metrics
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Accelerator time and communication time are

implementation-dependent!

O Large design space for implementations

Early stage design approach: Capture platform-
independent metrics as proxy

O Accelerator time = Compute operations

O Communication Time =2 |/O set of bytes for each function
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Capturing Input/Output Set I()‘Smgl

UNIVERSITY

Input/Output set: NOT all memory reads and writes, only unique
ones

Biggest challenge: Measuring unique communication
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Enter Sigil (ﬁ!

Drexel

UNIVERSITY

Novelty: Sigil measures these metrics *automatically™

O Classifying communication (unique and total bytes)
O Compute operations for each function

O Produces control data flow graph (CDFG) representations

Revisit the Q: Which functions to accelerate?
O Apply HW/SW partitioning algorithm to graphs!
O Goals of algorithm

Minimize unique communication

Maximizing coverage in HW
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Sigil Implementation

Implemented into Callgrind

Works on binary, no source changes

Can be implemented on any framework. Requires

O Functions

O Load/Store addresses

Control data flow graph

Unique and local communication costs
and edges

* Cache simulation Caligrind
* Branch prediction

* Dynamic binary instrumentation
* VEX IR generation

Valgrind




Sigil - Binary Instrumentation

Why Valgrind?
O VEX IR provides

Abstract compute
Abstract load/store
Inspect every byte

Memory addresses and widths
O Callgrind provides

function calls, returns, et al

O Multi-platform support

Mature Linux support
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Tracking unique communication
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Tracking unique communication
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Tracking unique communication
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Tracking unique communication
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Inside Shadow Memory Drexel
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Inside Shadow Memory
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ST Addr, Register in Function A

|_LD Register, Addr in Function B |

Primary Map
Addr[34:16]
> 0 0
\ Last Writer = Func A
Addr[15:0] —_
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Secondary Last Reader Call = 1
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Inside Shadow Memory
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Challenges & Considerations

O Redesigning shadow memory

Need to track more state than memcheck

O Memcheck
1-bit addressable
1-bit valid
1-void™ LIVE heap locations
Some alignment state

Heuristic algorithms developed over time
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Inside Shadow Memory

Challenges & Considerations
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Inside Shadow Memory

Challenges & Considerations

O Redesigning shadow memory

Need to track more state than memcheck

O Sigil resources
— 2GB of user space memory =2 34GB minimum!

Only need to run once
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Qutline
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Control Data Flow graphs

Function calltrees....

O Hierarchical representation of functions in application

O Obtained via Callgrind
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Control Data Flow graphs

Function calltrees annotated with unique

communication flow
O Obtained via Sigil
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Control Data Flow graphs

Function calltrees annotated with unique
communication flow

O Add computation costs in as well
O Also obtained via Sigil




Platform-independent metrics
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Accelerator time and communication time are

implementation-dependent!

O Large design space for implementations

Early stage design approach: Capture platform-
independent metrics as proxy

O Accelerator time = Compute operations

O Communication Time =2 |/O set of bytes for each function
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HW /SW partitioning process I()‘Smgl

UNIVERSITY

How to pick accelerator candidates in hierarchical

CDFG?
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How to pick accelerator candidates?

O Leaf nodes are self contained — Natural candidates

If coverage of work too low?

- - -

Software

Accelerator
Candidates
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How to pick accelerator candidates?
O Leaf nodes are self contained — Natural candidates

O Non-leaf nodes? Include functionality of sub-calltree

- - -
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Software
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Calculate inclusive costs
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Non-leaf nodes: Merge sub-calltree

O Inclusive computation costs — Add up operations

O Inclusive communication costs — Edges crossing the box

Software

Accelerator
Candidates
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Qutline

Accelerator selection problem

Sigil Overview

Sigil methodology for accelerator selection

Partitioning examples

O In-depth look: 456.Hmmer
O Results: Multiple benchmarks

Building and Running Sigil
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Partitioning algorithm

Employ any partitioning algorithm

O Existing algorithms
Intuitive: Computation to Communication ratio

State-of-the-art: Simulated Annealing, Genetic algorithms

O We use a demonstrative algorithm utilizing:

software time — from Callgrind
communication time — from Sigil
compute time — from Sigil

O Does not indicate amenability of functions

HLS tools show amenability



Partitioning example: Spec 456.Hmmer

Assumptions After partitioning

O For SW time — meiin O Call edges shown
2.5GHz CPU O Communication edges

O For Comm. Time — \ not shown

16GB /s transfer rate O Candidates in box
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Partitioning example: Spec 456.Hmmer
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Rank statistics

o S/W, Flops/lops and
Communication bytes
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Partitioning Results - PARSEC
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Functions from demonstrative partitioning for PARSEC benchmarks

Blackscholes Freqmine Dedup

shal block data_order

1 String to float sort

2 ieee/54_exp FP_Array_scan2* shal_block data_order
3 ieee754_expf sort compress2*

4 ieee754_logf FP_Array_scan2* write_file*

ieee_754 /mul — |EEE “math” library functions
shal_block data_order — core of SHAT calculation
FP_Array_scan2 — Builds “prefix-tree” for frequent pattern mining [1]

* 2 merged function

Source: [1] C. Bienia et al. “The PARSEC Benchmark Suite: Characterization and Architectural Implications”, Princeton Technical Report
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S/W Coverage with accelerator candidates

[ Software functions
B Accel candidates

Normalized Software Time




46

Qutline

Accelerator selection problem

Sigil Overview

Sigil methodology for accelerator selection

Partitioning examples

Building and Running Sigil




47

Getting Sigil

Available open source

O git clone

O Documentation included

Tested and validated in Linux

O Officially tested distros: CentOS6, Ubuntu 12.04 LTS,
Ubuntu 14.04 LTS

O Supported by any system supported by Valgrind
(3.10.1)


https://github.com/snilakan/Sigil
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Automated script

O Checks dependencies and builds Valgrind with
Sigil /Callgrind

O Configures post processing scripts

Manual build process

O Autotools build process — basically building Valgrind
S ./autogen.sh
S ./configure
S make

O Small path modifications in post processing scripts

See documentation



Running Sigil
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Compile user program with debug
flags

Generate CDFGs

OS ./run sigil.sh my binary
O Outputs sigil.totals.out-#
Thread #

Partitioning the graph

O Post-processing not part of Sigil

O S ./aggregate costs.py —help
O Our example partitioning algorithm

O Can plug in your own partitioning
algorithm!

SO Emm o o E—— o —

&

Drexel

UNIVERSITY

Accelerator candidates

HW/SW partitioning

algorithm

Control data flow graphs

Callgrind I
|

Valgrind I

Instrumented Binary

.___T___al\___.»

Unmodified Source Binary

—— o o o o o o —



Running Sigil - Caveats
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Before we begin...
$ ./run sigil.sh

O Just a wrapper for typical usage of Sigil

O May have to tweak built-in options

e.g. --separate-callers=#
Essentially specifies max nested function calls
Callgrind option

Bounded by (Val/Call)grind’s abilities

O Usually memory allocation problems, if any at all

Now, don't be a stranger!
O with issues or suggestions!
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Sigil Output Drexel

UNIVERSITY

Sample output from FFT kernel in Parsec 3.0 / SPLASH2x
...top of file

SUMMARY :

Total Memory EBeads (bytes): 329263018 Total Memory Writes (bytesz): 192147336

Hum SM=: &7 mcinsts: 525 Memory for SM(bytes): 281

BER, FUNC TNS5T NUM, Children?, Number of calls




52

Sigil Output Drexel

UNIVERSITY

Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

...meanwhile way below...

DATa DUMP

THREAD NUMEER FUNCTICH HNUMEBER FUNC IWST HUM FUNCTICH HAME
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Sigil Output ﬁ

Drexel

UNIVERSITY

Sample output from FFT kernel in Parsec 3.0 / SPLASH2x

O Interesting, but not very clear on its own

Gives us:

O Communication edges

O Classified communication counts
O Compute counts

O Some tool usage stats



Post Processing
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Let’s do something with this datal

Partition call-tree (from Callgrind) with
communication and computation costs (from Sigil)

O Create call-tree (with Callgrind)

$ vg-in-place --tool=callgrind --cache-sim=yes --branch-sim=yes my_binary

O Read in the data and make partitioning choices




Post Processing

Accelerator candidates

HW/SW partitioning

Remember me? i algorithm

Control data flow graphs
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Post Processing
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Let’s do something with this datal

Partition call-tree (from Callgrind) with
communication and computation costs (from Sigil)

O Create call-tree (with Callgrind)

$ vg-in-place --tool=callgrind --cache-sim=yes --branch-sim=yes my_binary
O Read in the data and make partitioning choices
Our demonstrative partitioning script is included

Example use:

$ ./aggregate_costs_gran.py .../sigil.totals.out-1 --trim-tree --cg-file=.../callgrind_output_file
--gran-mode=metric > my_postprocessed_workload.txt



Post Processing

Let’s do something
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Post Processing
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Let’s do something with this datal

...and we finally have our merged, leaf node
candidates, from our demonstrative algorithm!



Looking forward
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We plan on releasing results from SPEC, PARSEC,
BioBench and more

Improving interface and documentation
O Under the hood overhaul

Commonality of functions between applications

O Area may be free, design and verification are not

Need more applications!

O Run Sigil on your workload and tell us what you find
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Available

O git clone
O

Contact:

Demo Later

Related Publications

O “Platform-independent Analysis of Function-level Communication in Workloads”, Siddharth
Nilakantan and Mark Hempstead, ISWC 2013

O “Metrics for Early-Stage Modeling of Many-Accelerator Architectures”, Siddharth Nilakantan,
Steven Battle and Mark Hempstead, CAL July-Dec 2012


https://github.com/snilakan/Sigil
http://dpac.ece.drexel.edu/current-research-projects/sigil/
mailto:michael.d.lui@drexel.edu

BACKUP SLIDES
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Metric for merging & ranking
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Breakeven-speedup

O Minimum factor of computational acceleration, given
communication

O For calculation of communication; we can plug in a
transfer rate

«—Tsw ——>

A
/P A O/P Breakeven-speedup =
'« -»>! '« -»>! tsw
fcomm:ip: 1'comm:op: + — (f o 1t )
accel accel ‘sw comm:ip:accel ‘comm:op:accel



