Ragh Kuttappa

Department of Electrical and Computer Engineering Drexel University, Bossone 405, 3141 Chestnut Street Philadelphia, PA 19104-2875		Phone: (415)-439-9584 E-mail: ragh@drexel.edu url: vlsi.ece.drexel.edu	
Education	Ph.D., Electrical Engineering , GPA: 3.95 Drexel University, Philadelphia, PA.	(expected graduation 2019)	
	M.S., Electrical and Computer Engineering, GPA: San Francisco State University, San Francisco, CA.	3.8 August 2015	
	B.E., Electronics and Communication , GPA:3.5 Visvesvaraya Technological University, Karnataka, India.	July 2012	
Professional Experience	Ph.D. Candidate, VLSI and Architecture Laboratory, Drexel University Advisor: Dr. Baris Taskin	September 2015 - present	
	 Design of transistor level and gate level low power circuits using cadence suite. Implementation of Verilog-A models for emerging optoelectronic components for CMOS integration. 		
	• Development of backend automation flow using Cae	dence EDI,	
	-Custom design for resonant rotary clocks.Custom methodology for frequency division of resonant clocks, ranging for MHz to GHz.		
	 Physical digital design and optimization of resonant and PLL-based designs. -Floorplan, Placement, Clock tree Synthesis and Routing of resonant-based circuits. 		
	Ph.D. Intern, Samsung Austin Research Center 2017	(SARC) April 2017 - Sept.	
	CAD Internship		
	 Standard cell characterization and timing correlation Signoff for latest CPU, RTL to GDS. Metal stack evaluation for lower process nodes. 	on.	
	-		
	Masters Student, Nano-electronics and Computing Research Laboratory, Sa Advisor: Dr. Hamid Mahmoodi		
	 Reliability Analysis of Spin Transfer Torque (STT) Low power design methodologies for reconfigurable (LUT). 		
	 Developed circuit architectures for reconfigurable S Thesis: Circuit Reliability Analysis under Variation 		
Publications	• Ragh Kuttappa and Baris Taskin, "Low Frequency cillators", in <i>Proceedings of the IEEE International Systems (ISCAS)</i> , May 2018.	· ·	
	• Ragh Kuttappa, Baris Taskin, Lunal Khuon and Ba Capacitor Threshold Logic Gates" <i>IEEE Transact</i>		

Capacitor Threshold Logic Gates", *IEEE Transactions on Very Large Scale In*tegration (VLSI) Systems (TVLSI) - in review.

	 Ragh Kuttappa, Leo Filippini, Scott Lerner and Baris Taskin, "Stability of Rotary Traveling Wave Oscillators under Process Variations and NBTI", in Pro- ceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), May 2017. Ragh Kuttappa, Lunal Khuon, Bahram Nabet and Baris Taskin, "Reconfigurable Threshold Logic Gates using Optoelectronic Capacitors", in Proceedings of the Design, Automation and Test in Europe (DATE), March 2017. Ragh Kuttappa, Houman Homayoun, Hassan Salmani and Hamid Mahmoodi, "Comparative Analysis of Robustness of Spin Transfer Torque based Look Up Tables under Process Variations", in Proceedings of the IEEE International Sym- posium on Circuits and Systems (ISCAS), May 2016. Ragh Kuttappa, Houman Homayoun, Hassan Salmani and Hamid Mahmoodi, "Reliability Analysis of Spin Transfer Torque based Look up Tables under Pro- cess Variations and NBTI Aging", Elsevier Microelectronics Reliability Journal, March 2016.
Graduate Level Coursework	CMOS VLSI Design, Custom VLSI Design I/II, Advanced VLSI Design, Advanced Dig- ital Design, Nano-Scale Circuits and Systems, Advanced Microprocessor Architecture, Parallel Computer Architecture.
Graduate Level Projects	 Custom VLSI Design I: Design of 64x32 bit SRAM Design of full custom 64x32 bit SRAM schematic, layout, DRC, LVS and StarRc. Optimizing the design for speed, area, stability, dynamic and static power consumption. Optimized the circuit by smart controller logic design resulting in 1.8GHz clock frequency and 23% area reduction. Custom VLSI Design II: On-chip two level power distribution network in IBM 180 nm technology Design of power distribution network while analyzing noise sources and techniques for noise reduction. Implementation of a two-level interdigitated grid topology and analysis of Power Distribution Noise with Switched Decoupling Capacitors. Power gating implemented and effect on noise in different local grids are studied. IC Design using Synopsys Tools Defined core, placement row structure and inserted filler pad cells and macros and analyzed congestion, timing, power and IR drop using Power Network Analysis. Generated and analyzed clock tree skew and timing reports to determine CTS QoR using Synopsys and optimized the design for better area and performed
	 routing the clock nets. Analyzed the design for timing, logical and physical DRC and LVS violations and reduced critical areas by wire spreading. Designed an IC and performed floor planning, placement, CTS, routing and chip finishing and streamed out GDSII data. Static Timing Analysis of ORCA using Synopsys Prime Time Analyzed a timing report from input and output ports for setup and hold and generated summary reports for the violations in ORCA.

	• Created a setup file for PrimeTime that includes aliases and useful TCL procedures.	
	• Debugged hold violation using SPEF parasitics.	
 Digital Design: Design of full search motion estimator used in Low power H.264 Video Compression Architectures The aim of this project is to find motion vectors between two successive motion frames by motion estimation. 		
	• Bottom-up design approach is followed and each module is tested before top level integration with memory modules resulting in stable efficient design.	
	• Verilog RTL design, simulation, synthesis and timing analysis.	
Skills	• Synopsys - Custom Designer, Design Compiler, IC Compiler I/II, PrimeTime Cadence - Virtuoso Suite, Encounter, RTL Compiler	
	• C, C++, Perl, TCL, SKILL, Verilog, VHDL, $L^{AT}EX$	
Teaching Assistant Coursework	 Computational Lab I/II, F'15 - W'16, F'17 - W'18 Freshman Level Class Analog Electronics Lab, F'15, Junior Level Class Micro-controller Design, W'16 - S'16, Winter 2018 Junior Level Class Digital Logic Design, S'16, F'16, Sophomore Level Class Digital Design Projects, S'16, Junior Level Class ASIC Design I/II, F'16 - W'17, Graduate Level Class Custom VLSI Design I, W'18, Graduate Level Class 	
References	 Dr. Baris Taskin Professor, Department of Electrical and Computer Engineering Drexel University, Philadelphia, PA Dr. Ioannis Savidis Assistant Professor, Department of Electrical and Computer Engineering Drexel University, Philadelphia, PA Dr. Hamid Mahmoodi Professor, Department of Computer Engineering San Francisco State University, Philadelphia, PA 	