An Online Learning Community to Conduct Collaborative Education and Innovation in Renewable Energy, Environment, and Manufacturing

Richard Y. Chiou¹, Tzu-Liang (Bill) Tseng², Michael G. Mauk¹, Irina C. Husanu¹, and Regina Ruane³

> ¹Department of Engineering, Leadership, and Society College of Engineering Drexel University Philadelphia, PA 19104

²Department of Industrial, Manufacturing and Systems Engineering The University of Texas at El Paso El Paso, TX 79968

> ³Data Science Institute Fox School of Business Temple University Philadelphia, PA 19122

Introduction

- An online learning community for education research within the green energy manufacturing with the topics on virtual reality modeling related to energy and environment.
- An innovative solution for optimizing learning effectiveness and improving educational outcomes through the development of virtual models that can be used and integrated into the existing renewable energy laboratory.
- Project-based learning result of green energy manufacturing integrated with virtual reality (VR).
- Train undergraduate engineering students in renewable energy education and offer experiential learning opportunities in 3D modeling, simulation, and visualization.
- Interactive project-based learning gives students an incentive to seek creative solutions to accomplishing project goals.

Industrial Evolution

18th century.	20th century	70th	Source: DFKI/Bauer IAO	
End of the	Beginning of the	Beginning of the	Today	
1. Industrial revolution Introducing mechanical production machines powered by water and steam Industry 1.0	Industry 2.0	Industry 3.0	Industry 4.0	Level of co
		3. Industrial revolution Through the use of electronics and IT further progression in autonomous production		omplexity
			4. Industrial revolution Based on cyber-physical- systems	

DU-UTEP Collaboration Framework

STEM learning community, research integration, and faculty and student development.

STEM learning community: Student participation in collaborative activities from both universities. Platform of resource repository. Engage student in professional dialogues.

Research integration: Students will be mentored from the experts of collaborating institutions and students will work on collaborative project by sharing their ideas and institutional resources.

Faculty and Student Development: Workshop and lab visit program with the purpose of enhancing students learning experience in STEM education.

STEM Learning Community

Students' participation in

Develop and Implement Online Learning Community and Repository for Students

Development of Online VR Learning Materials

DU Project Website: https://research.coe.drexel.edu/et/greenstem

Green Welding Research in the Student Conference on Global Challenges

Building a Robotic 3D Scanner and Sortation System

Monthly Online Video Conference Meeting Between DU and UTEP

Development of a Virtual Reality Learning Platform for Green Energy: VR Learning Modules of PEM Fuel Cell and Solar Cell

Overview

- Role of Multisensory Teaching
- Developing the Virtual Reality Learning Environment
- VR Renewable Energy lab description
- PEM Fuel Cell and Solar Cell VR Learning Module VR module:
 - Immersive learning of theoretical aspects
 - Laboratory activity
 - Numerical simulation for live data feed
- Learning Assessment protocol

Social Network for Online Learning (DU-UTEP)

Free group messaging that works on every phone.

Green Energy Manufacturing Online Learning Community

Join Group

Topic Prompt	Due Date	
Introductions- Introduce yourself to the group stating your name, major, and year. Then, explain if and why you believe green energy manufacturing is important. What is the most surprising fact or aspect of green energy manufacturing that you have learned about so far in your overview of the industry?	Wednesday, October 25th, 2017	
Wind Power- By now you have all learned about wind power systems. What do you see as the biggest hurdle in implementing wind power on a large scale? How have areas that have implemented it worked around these challenges?	Wednesday, November 2st, 2017	
Solar Power- By now you have all learned about solar energy. What is the difference between solar photo voltaic power and solar thermal power? What are the pros and cons to trying to implement each?	Wednesday, November 8th, 2017	
Green Energy Systems- Do you see any potential implementation of green energy systems? What are the benefits of green energy systems? Please cite examples of impact you have seen as a result of green energy systems.	Wednesday, November 15th, 2017	
Life Cycle Assessment (Part One)- What is a product life cycle and what are its main phases? Describe the four steps in performing life cycle assessment (LCA). How do you achieve the life cycle simulation in goal and scope, life cycle inventory, life cycle impact assessment, and interpretation?	Wednesday, November 22nd, 2017	

ACKNOWLEDGEMENT

This work has been supported by the US Department of Education under the joint MSEIP Program with the University of Texas at El Paso, PR/Award No.: P120A180101. The authors wish to express sincere gratitude for their financial support.