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Abstract
Nuclear site analysis methods are used to enumerate the normal modes of ABX3 perovskite
polymorphs with octahedral rotations. We provide the modes of the 14 subgroups of the cubic
aristotype describing the Glazer octahedral tilt patterns, which are obtained from rotations of
the BX6 octahedra with different sense and amplitude about high-symmetry axes. We tabulate
all normal modes of each tilt system and specify the contribution of each atomic species to the
mode displacement pattern, elucidating the physical meaning of the symmetry unique modes.
We have systematically generated 705 schematic atomic displacement patterns for the normal
modes of all 15 (14 rotated + 1 unrotated) Glazer tilt systems. We show through some
illustrative examples how to use these tables to identify the octahedral rotations, symmetric
breathing, and first-order Jahn–Teller anti-symmetric breathing distortions of the BX6
octahedra, and the associated Raman selection rules. We anticipate that these tables and
schematics will be useful in understanding the lattice dynamics of bulk perovskites and could
serve as a reference point in elucidating the atomic origins of a wide range of physical
properties of synthetic perovskite thin films and superlattices.

S Online supplementary data available from stacks.iop.org/JPhysCM/25/175902/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

The compounds with the general formula ABX3 (X = O or a
halogen) where A is either an (alkaline) earth or a rare earth
metal and B is a transition metal with partly filled d-orbitals
form the perovskite crystal family. Perovskites are a truly
versatile material class that is malleable both chemically and
structurally. At least 30% of the elements from the periodic
table can occupy the A cation position and over half of
the periodic table fills the B cation position, with almost
100% substitution [1]. The structural adaptability of the ABX3

perovskites, enabled by the flexible and corner-connected BX6

octahedral network, explains why such diverse chemistries are
compatible in the perovskite crystal structure (figure 1).

The chemical and structural compatibility of oxide-based
perovskites at the atomic-scale makes it possible to tune

their macroscopic properties in a variety of ways, e.g., by
judicious choice of the cations (chemical pressure) [2, 3]
and hydrostatic pressure [5]. Consider the perovskite oxide
series ANiO3, where A is a rare earth element: the Ni–O–Ni
bond angles between neighboring octahedra can be made to
approach 180◦ (cubic symmetry), driving an insulator–metal
transition as the A-site ionic radius is increased systematically
by substitution of Eu, Nd, Pr and La [6]. A modern technique
to tune structure-derived electronic properties in perovskites
includes octahedral engineering, where substrate-imposed
strain and superlattice formation are used to alter the
magnitude and flavor of the BO6 octahedral rotation patterns
by exploiting both misfit strain-octahedral rotation and
heterointerfacial coupling between two similar or dissimilar
tilt patterns possessed by the substrate and film [7, 8]. The
directed control of the crystal structure in epitaxial films
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Figure 1. The crystal structure of perovskite oxides with the ABO3 stoichiometry (a). The same structure as in (a) but showing the BO6
octahedral network (b). Schematic illustration of the a0b+b+ structure (c), indicating that adjacent octahedra within the same plane rotate in
opposite sense to maintain corner connectivity. Schematic illustration of the (d) a0a0c+ and (e) a0a0c− rotation patterns. The in-phase
rotations and out-of-phase rotations of the octahedra about the z-axis are discernible in (d) and (e), respectively. (Note that for clarity the
A-site cations and the oxygen atoms are omitted from panels (c), (d) and (e).)

often stabilizes states which are not found in bulk equilibrium
phases, producing dramatic changes in their macroscopic
properties.

Control over macroscopic properties requires an under-
standing of the atomic structure and an appropriately facile
technique to measure both the property-dictating structural
units—in this case the BO6 octahedra—and their response
to external stimuli. In other words, appropriate experimental
methods are required to determine the structural transitions in
functional perovskite oxides induced by hydrostatic or chem-
ical pressures, strain and superlattice formation. However, the
measurement of oxygen positions in ultrathin ABO3 films,
required to identify the octahedral tilt patterns, is non-trivial
for a variety of experimental reasons [9]: thin films present
limited sample volume and often are grown on relatively
thick substrates, which in addition to weak scattering from
the oxygen atoms, makes structure determination of the
film challenging. Raman spectroscopies, along with real and
reciprocal space imaging [10, 11], however, are experimental
techniques that can reliably determine octahedral tilt patterns.

Raman scattering by zone center, k = (0, 0, 0), phonons
is an established method for identifying structural phases
in solid, thin film, and nanostructured semiconductor and
oxide materials, since vibrational modes provide a unique
signature of the crystal structure. Analyses of the appearance,
energies, relative intensities, linewidths and lineshapes, and
symmetry of Raman peaks collected have shown Raman
scattering to be indispensable for investigating important
relationships among correlated structural, electronic charge
and spin, and dipolar degrees of freedom in complex oxide
materials [12]. Despite the optical diffraction-limited spatial
resolution, Raman scattering can probe the onset of a new
phase with local correlation lengths of a few unit cells.

Furthermore, judicious use of the optical polarization vectors’
relationship with respect to the plane of the sample, which
is obtained through cross sectional sample preparation, can
selectively enhance the Raman scattering intensity by selected
phonons, particularly in the vicinity of a phase transition.

Raman spectroscopy studies on ABO3 perovskite systems
(e.g., BaTiO3) have been carried out by DiDomenico et al and
Scott, focusing on the splitting of the Raman active modes
due to the tetragonal- or trigonal-to-cubic transformations in
these systems [13, 14]. More recently, Raman spectroscopy
on ABO3 type perovskite oxides have focused on the
orthorhombic and the rhombohedral structures [15, 16]. The
primary displacement patterns investigated in these studies
include (i) the soft modes associated with the rotation of
the rigid BO6 octahedra about different crystallographic axes,
and (ii) the higher energy symmetric and anti-symmetric
octahedral breathing-type modes associated with first-order
Jahn–Teller effects.

Dubroka et al have shown in La1−ySryMn1−xMxFeO3
(M = Cr,Co,Cu,Zn, Sc or Ga) that the frequency of the
soft mode evolves linearly with the octahedral rotation angle
about the [110]-pseudocubic direction with a positive slope
of 20 cm−1 per degree rotation [17]. Since the oxygen
positions dictate the octahedral tilt angle, Raman scattering
provides a non-destructive and readily accessible means to
determine the oxygen positions in ABO3 perovskites, for
which, alternative experimental methods require substantial
investments in sample preparation, equipment and/or data
processing time.

Higher-frequency modes—the Jahn–Teller activated anti-
symmetric breathing modes and the symmetric breathing
modes—often soften across electronic transitions. For this
reason, monitoring the evolution in Raman modes associated
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with breathing-type octahedral distortions can shed light
on the origin and onset of charge ordering metal–insulator
transitions in bulk perovskites or superlattices formed by
interleaving such materials [18]. In some orthorhombic
structures, the Jahn–Teller activated modes are compatible
with the crystal structure, i.e., there is no symmetry change,
due to two different types of B–O bond lengths induced by
the mode. In contrast, the identical B–O bonds present in
rhombohedral structures would require that the Jahn–Teller
activated modes reduce the crystal symmetry—the appearance
of these modes in a Raman spectrum would reveal a
symmetry-breaking phase transition.

The combined sensitivity of Raman spectroscopy
to symmetry, structural lattice dynamics and correlated
electronic degrees of freedom, and versatility (e.g., facile
application of fields and temperature) makes the technique
well-suited for probing the capabilities of newly identified
octahedral engineering approaches [7, 9]. Reports on Raman
scattering selection rules and experimental work on perovskite
structures realized through octahedral engineering, however,
are rare. In this work we present a comprehensive list of
the normal modes, their vector displacement patterns, and
the associated selection rules for the 15 octahedral rotation
patterns of the ABO3 perovskite system (Glazer systems).
We have systematically generated 705 schematic atomic
displacement patterns for the normal modes of all 15 (14
rotated + 1 unrotated) Glazer tilt systems. Furthermore, we
have shown how some recent experimental findings can be
analyzed using our results and the schematic diagrams to
draw decisive conclusions. Our results should be applicable
immediately to the complete range of bulk ABO3 perovskites
with octahedral tilting. We further anticipate that equipped
with comprehensive knowledge of the parent materials one
should be able to analyze and rationally design more complex
structures (e.g., epitaxial films and superlattices) composed of
these ABO3 perovskites.

2. Structural distortions in perovskites

The ABO3 type perovskite is built from basic building units
of BO6 octahedra that are corner connected with additional
charge balancing A-site cations occupying interstitial posi-
tions (figure 1). The ideal, aristotype structure, is simple
cubic with space group O1

h or equivalently Pm3̄m in the
Hermann–Mauguin notation. The A and B cations occupy
sites with full cubic symmetry (point group Oh), whereas
the O anions occupy sites with D4h symmetry. In the ideal
structure the ionic radii rA, rB and rO are geometrically related
by a characteristic tolerance factor t = (rA + rO)/

√
2(rB +

rO) = 1 [19]. The majority of the perovskites, however, are
not cubic. The ionic radii of A, B and O rarely satisfy the
condition that t = 1. As a result, the ideal cubic structure
undergoes distortions: typical distortions are rotations of
the BO6 octahedra about one or more high-symmetry axes,
(anti)-parallel displacement of the A or B cations away from
their cubic site symmetry, or some combination thereof.

The ABO3 type perovskites can also deviate from the
ideal cubic structure by distortions to the rigid BO6 octahedra,

i.e., by changes in B–O bonds lengths. These types of
distortions are induced by bond valence requirements, orbital
degeneracies, polar distortions and/or valence fluctuations.
Changes in B–O bond lengths, for example, are possible and
expected in systems with d4 or d7 electronic configurations
on the B atoms, leading to Jahn–Teller type anti-symmetric
breathing of the BO6 octahedra.

The issue of the distortion of the octahedra driven by
steric constraints requires special discussion. In the aristotype
Pm3̄m, the octahedra are necessarily regular. The other
polymorphs allow distortions and, in general, occur in real
systems. Stokes et al showed that under certain conditions,
however, the geometry may not require them [20]. Consider
the simple tilt system a0a0c+ (No. 127, P4/mbm); this system
permits octahedral distortions, but does not necessitate them.
If the octahedra are rotated by angle φ around the z axis, then
it can be shown that the octahedra will be regular provided
a/c = cosφ(21/2).

If the ratio of a/c differs from this (and in general it will),
the octahedra will be either axially elongated or compressed.
Nonetheless, the bond length distortions are almost always
compatible with the symmetry reduction induced by the
antiferrodistortive rotations. Indeed, Stokes et al examined
the geometrical constrains for the octahedral distortions and
found that among the 15 perovskite systems with simple
rotation patterns, only one tilt pattern (space group P42/nmc,
no. 137) requires distortions to the octahedra, i.e., it cannot be
accommodated without changes in the B–O bond lengths [20].
In general, departure from the cubic symmetry to a structure
of lower symmetry will occur with both rigid rotations of
octahedra and bond length distortions as the latter, secondary
modes, often produce further energy stabilization of the
crystal structure.

2.1. Octahedral rotation syntax

The classification of perovskite crystals according to the
rotation patterns of rigid BO6 octahedra is attributed to
Glazer [2, 3, 20–23]. The corner connectivity of the BO6
octahedra in the perovskite structure constrains the rotations
of the adjacent octahedra. The rotations of an octahedron
about a given axis requires that successive octahedra along
directions perpendicular to that axis rotate in the opposite
sense about that axis. Figure 1(c) shows that a positive rotation
(e.g., counterclockwise) of an octahedron about the ẑ-axis
with magnitude a results in a negative (clockwise) rotation
about ẑ of equal magnitude of the adjacent octahedra located
along the x̂ and ŷ directions. However, successive octahedra
along the rotation axis, ẑ, can have either the same or opposite
rotation sense (figures 1(d) and (e)).

To simplify and generalize this description, Glazer
introduced a notation whereby rotations in perovskites are
classified according to how adjacent octahedra rotate along a
particular Cartesian axis passing through the B-site: a− (a+)
indicates out-of-phase (in-phase) rotations while a0 denotes
no rotations. For example, in a perovskite with the rotation
pattern a+b−b− the adjacent octahedra along the x-axis rotate
in phase (e.g., all clockwise) and the adjacent octahedra along
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Table 1. The Glazer systems found in perovskites. The space group symmetries, point symmetries, formula units, and experimental
compounds, where available, are enumerated for each rotation pattern. The references for the experimental compounds can be found
in [3, 4] and are not be repeated here.‘—’ indicates no known example.

Tilt systems Space group Point symmetry Known example

(1) a0a0a0 Pm3̄m (221) Z = 1 m3̄m (Oh) SrTiO3

(2) a0a0c+ P4/mbm (127) Z = 2 4/mmm (D4h) CsSnI3 (351–425 K)
(3) a0b+b+ I4/mmm (139) Z = 8 4/mmm (D4h) —
(4) a+a+a+ Im3̄ (204) Z = 8 m3̄ (Th) Ca0.25Cu0.75MnO3
(5) a+b+c+ I/mmm (71) Z = 8 mmm (D2h) —
(6) a0a0c− I4/mcm (140) Z = 4 4/mmm (D4h) SrTiO3 (<110 K)
(7) a0b−b− Imma (74) Z = 4 mmm (D2h) PrAlO3 (151–205 K)
(8) a−a−a− R3̄c (167) Z = 4 3̄m (D3h) LaNiO3

(9) a0b−c− C2/m (12) Z = 4 2/m (C2h) PrAlO3 (<135 K)
(10) a−b−b− C2/c (15) Z = 4 2/m (C2h) Pb2TmSbO6

(11) a−b−c− P1̄ (2) Z = 2 1̄ (Ci) WO3 (230–300 K)
(12) a0b+c− Cmcm (63) Z = 8 mmm (D2h) SrZrAlO3 (973–1103 K)
(13) a+b−b− Pnma (62) Z = 4 mmm (D2h) LaMnO3
(14) a+b−c− P21/m (11) Z = 4 2/m (C2h) GaLiBr3
(15) a+a+c− P42/nmc (137) Z = 8 4/mmm (D2h) CaFeTi2O3

the y and z axes rotate out of phase by the same angle b.
Examples of the two single tilt systems, a0a0c+ and a0a0c−,
are shown schematically in figures 1(d) and (e).

Rotations of the octahedra double the repeat distances
perpendicular to the rotation axis and can result in unit cell
vectors inclined to each other by angles other than 90◦ due
to ferroelastic strains [24]. The transition into the distorted
phase changes the number of formula units in the unit cell
and the full space group symmetry of the crystal system.
By considering all possible rotation senses and amplitudes
along various Cartesian directions, Glazer determined that
there are a total of 23 different possible rotation patterns.
(They are also called tilt systems in the literature.) Some
of the tilt systems yield identical space group symmetries:
group-theoretical analysis by Howard and Stokes [20] shows
that of the 23 tilt systems, 15 simple rotation patterns produce
15 centrosymmetric space groups. Table 1 shows these 15
tilt systems with the appropriate Glazer symbols, the space
group notations (and numbers in parentheses), the number of
formula units (Z), the point symmetry, and known example
compounds. The eight tilt systems that are absent from
the group-theoretical analysis were found to have higher
symmetry than the corresponding space groups. Exhaustive
studies by Woodward show that 13 of the 15 tilt systems
reported by Howard and Stokes naturally exist (table 1). None
of the eight Glazer tilt systems omitted by Howard and Stokes
have been experimentally observed [3].

3. Crystal symmetry: point groups and space groups

Before describing the method for normal mode and selection
rule determination in the Glazer systems, we provide a brief
discussion of point groups, space groups and the relevant
symmetry issues pertinent to this analysis.

Crystallographic point groups. The description of a
physical crystal requires describing the underlying Bravais
lattice—an infinite array of discrete points that appears
identical from every point of the array—and the arrangement

of atoms or molecular building blocks within a primitive
cell. Each crystal system is characterized by a set of
rigid operations that takes the system onto itself. This
set of operations is known as the symmetry group of
the crystal system and includes all translations through
the lattice vectors and the point symmetry operations,
which are rotations, reflections, and inversions, or some
combinations of these. Excluding the translations one
obtains the subgroup of operations known as the point
symmetry group. Although in principle objects can have many
configurations and infinite number of point symmetry groups,
the crystalline environment puts severe limitations on the
allowed configurations and results in 32 crystallographic point
groups.

Space groups. When a crystal is formed by inserting a
motif into a Bravais lattice, the full symmetry of the crystal
depends on both the symmetry of that object and that of the
Bravais lattice; the full symmetry group is called the space
group of the crystal. As a first-order approximation, then, the
total number of space groups can be simply compounded out
of the 32 crystallographic point groups and the translation
symmetry of the motif. There are additional considerations,
however, in the case of the space groups that do not result
from simple compounding of the Bravais lattice systems with
the respective point groups. In the space group, a point is
considered invariant if it is either left in place by a particular
symmetry operation or is carried over to a position in an
adjacent unit cell, which is reached by a simple translation
of one unit cell. Also, the presence of different atomic
motifs within the crystal and their different sets of symmetry
operations mean that the rotational axes and the symmetry
planes need not coincide at a common point. As a result more
than one set of operations may fall within the same class. For
these reasons, two additional types of compound symmetry
operations appear in space groups: screw axes and glide
planes are unique for the space groups. A screw axis operation
produces a rotation followed by a translation along the axial
direction while a glide plane operation yields reflection across
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a plane followed by translation along that plane. This results in
total of 230 space groups. The Glazer systems for perovskites
with octahedral rotations are found in 15 of the general 230
available space groups.

Site symmetry. Within each unit cell defined by a
crystallographic space group, there are special sets of
positions in which each point of the set has identical
surroundings, because one or more symmetry elements
coincide at that position. These points, or sites, and the set
of symmetry operations that leave them invariant define the
site group of the set of points; one point belonging to this set
is called a Wyckoff position. The site group is a subgroup
of the space group and is isomorphous with one of the
32 crystallographic point groups compatible with the space
group. The number of equivalent points n in a site group is
equal to the order of the factor group (space group) H divided
by the order of the site group h, i.e., n = H/h. For example,
in the simplest Glazer tilt system without any octahedral
rotations, a0a0a0 (space group O1

h or Pm3̄m), the A-site atom
belongs to the site group 1a, with site symmetry Oh, the
B-atom belongs to the site group 1b with site symmetry
Oh, and the three oxygen atoms belong to the site group 3c
with site symmetry D4h.1 The importance of site symmetry
becomes evident in section 4 where we discuss the methods
of normal mode determination in a crystal.

4. Normal mode determination

4.1. General approaches

Of the various methods that are available to analyze the
primitive unit cell and determine the selection rules for the
first-order phonon spectrum [25–29] the nuclear site analysis
(NSA) method have been found to be most convenient since
it requires the least amount of information about the unit
cell; usually the Wyckoff positions and the site groups of
the atoms are all that are required. Since for most practical
purposes the ABO3 perovskites can be considered as a flexible
network of corner connected BO6 octahedra, determining the
Wyckoff positions and sites groups are relatively easy for
these systems, and we use the NSA method in the present
paper.

To understand the approach in the NSA method, consider
for example, a set of atoms with site group g inside the unit
cell of a crystal of space group G. If the order of G is H
and that of g is h, then n = H/h, where n is the number of
equivalent points (e.g., atoms) in the site group g. Since g is a
subgroup of G, each irrep of g will map onto one or more of
the irreps of G. In the NSA method only the vector irreps of
the site group g are chosen and these are then mapped onto
the irreps of the crystallographic point group of the space
group G. The total number of normal modes of a crystal with a
particular space group can finally be obtained by considering
all the site groups and occupied Wyckoff positions and taking
their algebraic sum.

1 An equivalent setting for the a0a0a0 rotation pattern, has the A-site at
Wyckoff position 1b, the B-site at 1a and the oxygen atoms at 3d.

4.2. Methodology for perovskites with octahedral rotations

We use the nuclear site group analysis (NSA) method
to enumerate the normal modes of ABO3 perovskite
oxides characterized by rotations and steric constraint
driven distortions of the BO6 octahedra. We begin with
the prototypical aristotype cubic polymorph, e.g., room-
temperature SrTiO3, with the symmetry O1

h (Pm3̄m). To
generate the rotationally distorted phases, we then freeze-in
each specific symmetry lowering rotation pattern (table 1,
column 1) into the cubic structure to obtain the space groups
in column 2 of table 1. The rotations lead to a splitting
of the oxygen Wyckoff orbits, which have been tabulated
elsewhere [30].

Knowledge of the occupied cation and anion Wyckoff
positions in the standard notations is essential to the NSA
method, because they are directly related to the site symmetry
of the atomic species. The normal modes of each atom
are identified by consulting the International Tables for
Crystallography (ITC) and/or Porto et al [29, 31] for the
character tables of the site groups and of the space group.
These elements are required for determining the vector irreps
of the site group and subsequently mapping these to the
irreps of the space group. We repeated this analysis for all
atomic sets until the total number of normal modes for the
asymmetric unit was obtained. The data are presented in
tables A.1–A.15 found in the appendix.

4.3. Example: normal mode determination of the a+b−b−

rotation pattern

We now describe this process in detail for the orthorhombic
a+b−b− rotation pattern, Glazer tilt system 13 (table A.13),
which LaMnO3 is known to exhibit [32]. When the tilt
system a+b−b− is applied to the cubic structure the space
group transforms from cubic Pm3̄m to orthorhombic Pnma.
The displacement pattern of oxygen atoms also leads to an
approximate

√
2 ×
√

2 × 2 increase in the cell dimensions
a, b and c, respectively, producing a unit cell with four ABO3
formula units (Z = 4), as enumerated in column 2 of table 1.
In Schoenflies notation, the Pnma space group is equivalent
to D16

2h, making the relevant point symmetry mmm or D2h
(table A.13).

After obtaining the lower symmetry structure (table 2),
the Wyckoff positions can be read from the ITC, or by using
crystallographic visualization software such as VESTA and
CRYSTALMAKER [31, 33]. Note that in the Wyckoff orbit
column, the numeral preceding the Wyckoff label indicates
that all of those symmetry equivalent atoms occupy that
particular Wyckoff position. Chemically equivalent atoms
can occupy crystallographically unique Wyckoff positions in
crystals. This becomes apparent in LaMnO3 with the a+b−b−

rotation pattern: the eight oxygen atoms found in the ac
plane occupy Wyckoff positions 8d and possess site symmetry
C1, whereas the four oxygen atoms along the b axis occupy
Wyckoff positions 4c and possess site symmetry Cxz

s (table 2).
This ‘splitting’ of the Wyckoff orbits of the O atoms is a
signature of the structural transition on going from Pm3̄m→
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Table 2. Occupied Wyckoff positions and site symmetries for
Pnma orthorhombic (space group 62, a = 5.743, b = 7.695,
c = 5.537 Å) LaMnO3 from [32].

Atoms
Wyckoff
orbit

Site
symmetries

Position

x y z

La 4c Cxz
s 0.55 1

4 0.009
Mn 4a Ci 0 0 0
O(1) 4c Cxz

s −0.011 1
4 −0.071

O(2) 8d C1 0.309 0.039 0.225

Pnma, which can be exploited in Raman spectroscopy studies
to recognize the onset of the transition by monitoring the
change in number of peaks (modes), intensities, etc, with
external stimuli. In the ideal cubic case, however, only one
Wyckoff position is necessary to describe all oxygen atoms in
the crystal structure.

For determining the normal modes, consider the four
oxygen atoms occupying the Wyckoff position 4c and site
symmetry Cs, the irreps of which can be found in the ITC
and/or Porto et al [29, 31]. The vector irreps of Cs are A′

and A′′. When these are mapped on to the irreps of the
crystallographic point group D2h of Pnma, we obtain the
contributions of these four oxygen atoms to the normal modes
of LaMnO3. This is repeated for all the atomic species in the
unit cell.

The first column of table A.13 shows all available normal
modes for the tilt system a+b−b− in the absence of any
other atomic distortions (cation displacements or Jahn–Teller
distortions of the ligands). The values in the main body of
the table shows the number of symmetry modes in which the
atoms participate. This type of presentation, instead of simply
writing down all the modes, provides physical meaning to the
modes. As shown in table A.13, the 4 La atoms have site
symmetry Cxz

s and contribute the following modes:

2Ag ⊕ Au ⊕ B1g ⊕ 2B1u ⊕ 2B2g ⊕ B2u ⊕ B3g ⊕ 2B3u.

The 4 Mn atoms with site symmetry Ci contribute:

3Au ⊕ 3B1u ⊕ 3B2u ⊕ 3B3u,

while the 4 O(1) atoms with site symmetry Cxz
s contribute:

2Ag ⊕ Au ⊕ B1g ⊕ 2B1u ⊕ 2B2g ⊕ B2u ⊕ B3g ⊕ 2B3u,

and the 8 O(2) atoms with site symmetry C1 contribute:

3Ag ⊕ 3Au ⊕ 3B1g ⊕ 3B1u ⊕ 3B2g ⊕ 3B2u ⊕ 3B3g ⊕ 3B3u.

The last two columns in table A.13 provide the mode
selection rules in standard notations. The acoustic modes
belong to representations which contain the translation
vectors, symbolized by T . After subtracting out the three
acoustic modes available to three-dimensional crystals, the
remaining modes labeled by T are IR active. The selection
rules for the Raman modes are shown separately in the last
column with the polarizability tensor components, denoted by
αij and the appropriate Cartesian subscripts. αij are also known
as susceptibility derivative tensors in the literature.

For Pnma LaMnO3, table A.13 reveals that one of each
of the B1u,B2u and B3u modes account for the acoustic

(translational) modes of the crystal. The remaining 9B1u, 3B2u
and 8B3u modes are IR active, and the 7Ag, 5B1g, 7B2g, and
5B3g modes are Raman active. The normal modes that are
neither IR active, nor Raman active are considered silent.
In the present case, the silent modes transform with Au
symmetry.

For completeness, we also provide the rotation (axial)
vectors compatible with the appropriate modes. For example,
as shown in table A.13, the rotation Rz has the same symmetry
properties as that of the B1g modes. In general, the rotations
have the same symmetry properties as those of the difference
between anti-symmetric Raman tensors: Rz transforms as
αxy−αyx. For Raman scattering that uses excitation frequency
far from electronic resonance, these differences are zero since
the polarizability tensors are symmetric. In resonance Raman
experiments, however, asymmetries in the polarizability
tensors are introduced and then such modes, i.e., modes with
Rx,Ry,Rz labels could become Raman active.

The last row of each table shows the total number of
modes for each rotation pattern. Note that modes with A and B
spectroscopic labels are non-degenerate, whereas modes with
E(T) labels are doubly (triply) degenerate.

Finally, to complement these tables we have developed
a graphical description of each mode by using the character
projection method. The complete compilation of all 705
of these diagrams is available as supplementary data from
stacks.iop.org/JPhysCM/25/175902/mmedia. A few of the
representative diagrams are shown in figure 2. The vector
displacements without such diagrams, corresponding to all
normal modes for each Wyckoff position available to the
230 space groups, can also be obtained using the Bilbao
Crystallographic Server and the web-based program sam.

5. Discussions and applications

5.1. Raman mode bookkeeping: how many modes are there?

One way to check the accuracy of the normal mode tables
we have generated for the ABO3 perovskites with octahedral
rotations (tables A.1–A.15) is to count the number of normal
modes enumerated for each crystal system. If there are p > 2
different atoms in a three-dimensional primitive cell, there
should be 3p branches to the phonon dispersion relation, and
consequently, 3p modes at the 0 point. Of these 3p modes, 3
are acoustic (one longitudinal and two transverse) modes and
the remaining, 3p–3, are optical modes. For space groups with
a primitive lattice, as is the case for the Glazer tilt systems
1, 2, 8, 11, 13, 14, and 15, the Raman mode enumeration is
straightforward.

For the Glazer systems with non-primitive lattices, care
must be taken to avoid redundancy in the enumeration of the
normal modes. For these systems the usual construction of
the primitive cell is less useful because it does not usually
reveal the full symmetry of the structure. In these cases the
crystallographic cell or the conventional cell is constructed
by tiling an integral number of primitive cells through lattice
translations of the primitive cell lattice point. Since the
translation group transforms as the identity element of the
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Figure 2. Schematic atomic vibrational patterns of selected normal modes for a few octahedral rotation patterns. The symmetry mode
symbols (irreducible representations) and the atoms participating in the normal modes are also provided. The complete database for all
normal modes in each Glazer tilt system can be viewed online as supplementary data from stacks.iop.org/JPhysCM/25/175902/mmedia.

space group, the distribution of degrees of freedom among the
space group irreps does not change. However, this introduces a
redundancy in the value of the characters for each symmetry:
each set of equipoints in the primitive cell is duplicated for
the additional lattice points in the expanded crystallographic
cell. Since redefining the unit cell vectors does not affect the
rotational symmetry, the redundancy is uniformly distributed
over the characters of all symmetry classes of the space group.

To recover the primitive (P) cell characters, one should
divide the conventional (C) cell characters by the lattice point
multiplicity, i.e., χp = χc/`, where ` is the number of lattice
points (or primitive cells) in the full crystallographic cell: ` =
4 for face centered cell, ` = 3 for rhombohedral R-centered
cells given in hexagonal settings, and ` = 2 for both body
centered cells and base centered cells [26]. This consequently
yields the number of normal modes being an integral fraction
of 3q, where q is the number of atoms in the conventional cell.
The Glazer systems 3, 4, 5, 6, and 7 are body centered and as
such the number of modes is 3q/2. The Glazer system 8 is
rhombohedral and as such the number of modes is 3q/3. The
Glazer systems 9, 10 and 12 are base centered and as such the
number of modes is 3q/2.

5.2. Applications: phase transitions in bulk perovskites

Having ensured that the number of modes for each system is
accurate, we now provide some illustrative applications and
discuss a few limitations of the constructed tables and the
schematics. Here we show how the Raman normal modes
determination of the various octahedral rotation patterns in
perovskites provides a manner to explore antiferrodistortive
phase transitions.

CaTiO3 is a widely used electroceramic and has been
recognized as a suitable material for the immobilization
of high-level radioactive wastes [34]. Consequently, the

Figure 3. Sequence of structural phase transitions and the change
in octahedral rotation patterns that occurs with increasing
temperature in perovskite CaTiO3. The orthorhombic Cmcm phase
(linked by broken lines) appears (or is sometimes absent)
experimentally as an intermediate phase between Pnma and I4/mcm
at intermediate temperatures. Transitions required by Landau theory
to be first (second) order are distinguished by heavy (light) lines.

properties of CaTiO3, especially its crystal structures over
different temperature regimes have lately been the focus
of intense studies [35]. It undergoes a series of structural
transitions driven by the octahedral rotations (figure 3) [36]:
under ambient conditions, CaTiO3 is orthorhombic (space
group Pnma) and exhibits the a+b−b− rotation pattern.
Upon heating, the structure transforms to tetragonal (space
group I4/mcm, Glazer system a0a0c−) at 1520 K. Note
that some studies suggest that between the tetragonal and
the orthorhombic phase there is an additional structure with
orthorhombic symmetry, Cmcm, that exhibits one in-phase
and one out-of-phase rotation (a0b+c−). Finally near 1645 K,
CaTiO3 transforms into the ideal cubic Pm3̄m structure
without any octahedral rotations (a0a0a0).

Unpolarized Raman studies enable identification of the
nature and onset of the phase transition from the octahedrally
rotated structures to the cubic structure upon heating. The
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relevant information for the analysis of the rotation-driven
structural transitions

a+b−b−→ a0b+c−→ a0a0c−→ a0a0a0

are found in tables A.13, A.12, A.6 and A.1, respectively.
First, comparing these tables reveals that all of the rotationally
distorted perovskite polymorphs have first-order Raman
active vibrational modes, whereas all zone-center modes in
cubic (a0a0a0) structure are Raman inactive. Accordingly,
unpolarized Raman spectra of the tilted structures should
exhibit first-order Raman features, possibly superimposed
on broad second-order features, where as the cubic should
not. (Note that in practice, however, at the transition to the
cubic structure the first-order Raman features could give
way to broad second-order features—such effects are seen in
prototypical cubic perovskite SrTiO3 [35].)

Polarized Raman studies can be used to determine
the phase transitions among the tilted structures. Raman
scattering cross sections (σR) for Stokes scattering is related
to the polarizations of the incident (εi

I) and scattered (εj
S)

radiations and the susceptibility (derivative) tensors by the
following formula:

σR ∝ |e
i
Sej

Iαij|
2,

where αij are the components of the susceptibility (derivative)
tensors appropriate for a given mode, shown in the last column
of the tables A.1–A.15. Note that summation over the repeated
Cartesian indices (i, j) is implicit in the above equation.

As an application of this, let us consider Raman
spectroscopy in the back scattering geometry for CaTiO3.
The standard scattering geometry for this experiment is z(ij)z,
which is shorthand for kI(ei

I, ej
S)kS, where kI and kS are the

wavevectors of the incident and scattered light, respectively,
and ei

I and ej
S are their corresponding polarization vectors.

Since both kS and kI are in the z direction, the polarization
vectors of both the incident and scattered radiation are in the
xy-plane, resulting in Raman cross section of:

σR ∝ |e
x
Sex

Iαxx + ex
Sey

Iαxy + ey
Sex

Iαyx + ey
Sey

Iαyy|
2.

Consider now the transition from a+b−b− → a0a0c−.
As seen from tables A.13 and A.6, there are significant
differences between the mode distributions in the two
structures. In the a+b−b− (Pnma) structure, the Raman active
modes are:

7Ag ⊕ 5B1g ⊕ 7B2g ⊕ 5B3g,

whereas in the a0a0c− (I4/mcm) system, the Raman active
modes are:

Ag ⊕ Bg ⊕ 2B2g ⊕ Eg.

Based on the larger number of Raman modes in Pnma
(24 compared to the 8 in I4/mcm CaTiO3), there should
be a readily detectable difference in the Raman spectra,
i.e., one should expect significantly more first-order Raman
features in the Pnma structure than in I4/mcm, even in
unpolarized Raman spectroscopy. The two phases can further
be distinguished by performing a careful polarized Raman

experiment, whereby an appropriate selection of the incident
and scattered light orientation will enhance or suppress a
first-order Raman mode. Raman spectroscopy in the z(xx)z
geometry will result in Raman cross sections of

σR ∝ |e
x
Sex

Iαxx|
2.

This will only show modes of Ag symmetry of which are seven
in the Pnma and only one in the I4/mcm structure. Similar
results can be expected in the z(yy)z geometry. Further careful
studies with the z(yz)y configuration would show first-order
Raman features from the singly degenerate B3g mode in Pnma
CaTiO3, whereas an Eg doublet would appear in the I4/mcm
structure.

The controversial phase transition from Pnma to Cmcm
would be more difficult to determine by examining the Raman
spectra alone, since the Raman active modes present in the two
structures are similar (cf tables A.13 and A.12). To remedy
the ambiguity, one could rather use the octahedral rotation
angle, specifically the component about the x-axis, as an
order parameter for the Pnma→ Cmcm transition, because
it goes from a finite to null value as the rotation pattern
changes, i.e. a+b−b− to a0b+c−. Recently, Dubroka et al and
Abrashev et al have shown how to correlate the Raman Ag
mode frequency with the tilt angle, and subsequently that tilt
angle with the free oxygen positions [15, 17]. Their results,
along with our schematic diagrams for the normal modes
of the rotationally distorted perovskites and lattice dynamic
calculations could be used to ascertain the phase transition
between these two structures [36, 37].

5.3. Applications: structure–property relations in perovskite
thin films and superlattices

We expect this methodology to have higher impact in ABO3
perovskite systems realized via octahedral engineering routes
whereby efforts are being made to exploit epitaxial strains,
interfacial octahedral coupling, and superlattices to stabilize
structures inaccessible via conventional solid-state chemistry
techniques. Recent computational studies predict selective
control of the octahedra about different crystal directions
by using epitaxial strain to control the rotation-lattice
coupling in epitaxial films [38, 39]. Strain can therefore be
used to directly tailor the flavor—magnitude and phase—of
octahedral rotation patterns in thin films.

The normal mode determination presented here, could
be used to design and analyze ABO3 films with octahedral
rotations. Consider for example, La1/3Sr2/3FeO3 (LSFO),
which is rhombohedral (Glazer tilt system a−a−a−) in the
bulk. Its normal modes appear in table A.8. However, if an
epitaxial film of LSFO is grown on cubic SrTiO3, it would
likely transform to a monoclinic phase with the a−b−b−

octahedral rotation pattern due to lattice mismatch between
the film and the substrate in the epitaxial plane. Reduction of
symmetry will lead to a splitting of some degenerate modes
of the rhombohedral system, which can be determined by
using the standard reduction formulas [40] and our table A.10,
i.e., the relevant normal modes for the monoclinic LSFO. By
comparing the Raman spectra of bulk LSFO and the epitaxial

8
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film, it should be possible to evaluate the change in crystal
structure for the rhombohedral to monoclinic transition.

Formation of a coherent perovskite–perovskite heteroin-
terface produces a geometrical constraint of the octahedral
connectivity across the interface in synthetic structures [7].
The octahedral rotations present in a substrate, for ex-
ample, can propagate into the near-interface region of a
thin film: this was recently observed experimentally using
high-resolution x-ray diffraction and synchrotron radiation,
in (LaNiO3)n/(SrMnO3)2 superlattices [41]. This so-called
octahedral proximity effect remains to be harnessed for
materials design, yet has the ability to mediate electron–lattice
coupling across interfaces and produce remarkable changes in
the electronic properties of ultrathin films and superlattices.
Segal et al have shown that the propagation of lattice
vibrational modes (phonons) associated with the dynamic
octahedral rotations causes drastic changes in the resistivity
of a La0.53Sr0.47MnO3 (LSMO) films as the system is
cooled through the a0a0a0

→ a0a0c− phase transition of
the SrTiO3 substrate. The proposed microscopic mechanism
was attributed to evanescent cross-interface coupling between
the charge carriers in the film and the soft phonon mode
responsible for the out-of-phase rotation of TiO6 in SrTiO3.
In other words, enhanced electron–lattice coupling mediated
through the correlated oxygen octahedral motions [42].

Other external stimuli besides temperature can promote
novel behavior mediated by octahedral rotations. For example,
Caviglia et al have shown that an optical excitation
in resonance with a stretching mode of a perovskite
substrate can trigger a dynamic (transient) insulator to
metal transition in NdNiO3 epitaxial films below the
bulk Néel temperature [43]. Recent Raman spectroscopy
studies on superlattices of superconducting YBa2Cu3O7
and magnetoresistive La2/3Sr1/3MnO3 below the critical
temperature of the cuprate, reveal that the superconducting
state can renormalize the lineshape of the MnO6 octahedral
rotation modes in the manganite, providing an unexplored
platform to tailor electron–lattice interactions in correlated
materials [44].

The unique effects described here are all provided
by the normal mode distributions within the materials
and their coupling to the low-energy electronic structure.
They could possess tremendous technological potential, yet
the microscopic mechanisms in nearly all cases remain
inadequately understood and characterized. Much of the
current results of computational studies, for example, await
experimental verifications. Segal et al suggested that the
change in conductivity in their LSMO epitaxial film could
be due to the alteration of the B–O–B bond angles in the
film by the soft phonon modes of the STO substrate—direct
measurement of these variations remains to be seen. Note
however that they also offered an equally likely scenario: the
substrate could modify the B–O bond lengths in the film,
resulting in similar modifications to the films conductivity,
via a bond stretching mode. In the experiments by Caviglia
et al, the authors acknowledge that the precise nature of the
interaction between the LAO substrate and the NdNiO3 film
remains poorly understood and merits systematic studies. For

that reason, the group offered an alternative explanation for
the dynamic insulator–metal transition: the stretching mode of
the substrate could couple to a rotational mode (soft mode) of
the film, which would also alter the films conductivity through
a modification of the Ni 3d–O 2p angular orbital overlap.

For such complex systems, our results presented here,
especially the normal mode schematics, could be useful
in drawing more decisive conclusions. By superimposing
a unit cell of an epitaxial material on a unit cell of the
intended substrate and inducing a particular normal mode
in the substrate, once could examine geometrically and on
symmetry grounds the extent to which the substrate modes
couple to the film and induce changes in both the topology of
the film’s perovskite lattice and properties. Since our paper
presents a complete list of normal modes, selection rules,
and schematic diagrams of the bulk ABO3 perovskites with
octahedral rotations, careful implementation of our results
could guide research avenues in search of quantum phase
transitions in artificial materials using optical excitation of
lattice modes.

5.4. Applications: normal mode determination of a Glazer
tilt system with cation displacements

As an extension of the methodology presented here, we
describe the method for normal mode determination of an
ABO3 perovskite system that undergoes rotation of the BO6
octahedra as well as off-centering displacements of the ions:
BiFeO3 is a magnetoelectric multiferroic whose ground state
exhibits both antiferromagnetic and ferroelectric order. Bulk
BiFeO3 has the rhombohedral R3c structure, which consists
of antiferrodistortive octahedral rotation (a−a−a−) around
the [111] direction and an additional relative off-centering
of anions and cations along the [111] direction leading to a
ferroelectric polarization around that axis. Using a method
similar to LaMnO3 (section 4.3) we construct the normal
mode table for BiFeO3 in the bulk (table A.16).

These bulk normal modes, however, should change when
an epitaxial film of BiFeO3 is grown under epitaxial strain on
a substrate with different symmetry. If rhombohedral BiFeO3
is deposited on a cubic (001) substrate like STO, the film
under biaxial strain will acquire monoclinic symmetry due to
the geometric constraints imposed by epitaxy. In this case the
Glazer notation of this film becomes a−b−b− and the relevant
normal mode table to use is table A.10. If the substrate
is cubic but terminated with a (110) surface, rhombohedral
(001) or orthorhombic (001) the epitaxial film would adopt
a triclinic structure [7]. Using the appropriate tables and the
selection rules, a polarized Raman experiment would be able
to determine the mode and nature of substrate induced strain
effects on the BiFeO3 epitaxial films.

5.5. Limitations

We believe we would be remiss if we omitted a discussion of
some limitations of the current paper and the methods used
to derive the normal mode distributions. The normal modes
in our paper were derived for simple, single phase, ABO3
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perovskites with octahedral rotations. In mixed A- and B-site
systems, e.g. La1−ySryMn1−xMxFeO3 (M = Cr, Co, Cu, Zn,
Sc, or Ga), the normal modes may be drastically different
from their simple ABO3 counterpart [17]. In these cases the
A and B site disorder suppresses the translational invariance
that is a requirement for the range of applicability of the
symmetry analysis. The result being that the lineshapes of
the modes with atomic displacement patterns from those sites
could be broadened. Similar broadening could occur even
in single phase perovskites grown in thin film form, where
unintentional disorder and variability in the site occupation is
induced preferentially during growth along various directions,
i.e., in the plane of or perpendicular to the substrate.
Such broadening can further lead to linewidths in which
distinct modes of different, but closely spaced, energies are
indistinguishable.

Second, our results were derived for bulk perovskites.
Their direct application to epitaxial films and superlattices
may not be immediately transferable. As mentioned earlier,
the Glazer octahedral tilt patterns are derived by considering
the octahedra as rigid units. Even though we allowed for
the distortions of the BO6 octahedra to account for steric
constraints, in epitaxial films and superlattices the octahedra
are necessarily further distorted. A consequence of such
geometrically required distortions is that they can produce
crystal structures with space groups different than those
analyzed here, i.e., those obtained from Glazer’s analysis
of possible combinations of in- and out-of-phase rotations.
Nevertheless, our schemes would be a good starting point
in analyzing these systems and deviations from ideality. For
example, a comparison based on the Raman mode predictions
produced with our tables to the actual experimental results
could help in understanding the perturbative nature of
octahedral engineering in artificial perovskites.

Lastly, our treatment omits the consequences of magnetic
ordering on the crystal symmetry, which is expected to
become critical in perovskite superlattices formed with
transition metal B-sites with open d-shell configurations.
Several ABO3 type perovskites undergo paramagnetic metal
to antiferromagnetic insulator transitions followed by charge
ordering as they are cooled through their Néel temperature.
The crystal symmetry operations in the antiferromagnetic
state must leave invariant not only the positions of the ions but
also their magnetic moments. For example, magnetic ordering
in the rutile structure reduces the space group symmetry from
that of rutile with non-magnetic cations (P42/mnm) to Pnnm
or D12

2h [45], which in turn alters the Raman mode distribution.
We hope our paper spawns additional developments in the
experimental Raman studies of artificial perovskite oxides,
theoretical approaches to predict the normal mode distribution
in such materials, and means to overcome the current
limitations discussed.

6. Conclusions

Using the nuclear site group analysis method we have
determined the complete set of normal modes and the
associated selection rules for all 15 of the ABX3 perovskites

systems with octahedral rotations (the Glazer systems). For
each mode, we have produced a corresponding schematic
diagram showing the vector displacement pattern of the
atoms participating in the particular mode. The results of this
analysis is a compendium of 705 schematic diagrams, which
are now web accessible.

We have shown how some recent experimental findings
can be analyzed using our tables and the schematic diagrams
to understand macroscopic interactions in the complex
systems. We expect these tables and the schematic diagrams
to be useful tools in analyzing the phase transitions,
electron–lattice coupling and elucidating structure–property
relationships in ABO3 perovskites with octahedral rotations.
Equipped with this database for the bulk perovskites, we
suggest that one would be able to both analyze and rationally
design functional artificial materials built out of these
perovskite blocks and rotated octahedral units.
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Appendix.

Table A.1. System 1—normal modes for the Glazer system a0a0a0.

a0a0a0
A B O

Selection rulesOh(1) Oh(1) D4h(3)

T1u 1 1 2 T
T2u 1

Sum 3 3 9 15

Table A.2. System 2—normal modes for the Glazer system a0a0c+.

a0a0c+
A B O(1) O(2)

Selection rulesD′2h(2) C4h(2) C4h(2) C′2v(4)

A1g 1 αxx+αyy,
αzz

A1u 1 1
A2g 1 Rz
A2u 1 1 1 1 Tz
B1g 1 αxx − αyy
B1u 1 1
B2g 1 αxy
B2u
Eg 1 (Rx,Ry) αxz, αyz
Eu 2 2 2 2 (Tx,Ty)

Sum 6 6 6 12 30
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Table A.3. System 3—normal modes for the Glazer system a0b+b+.

a0b+b+
A(1) A(2) A(3) B O(1) O(2)

Selection rulesD2h(4) D4h(2) D4h(2) C′2h(8) Cv
s(16) C′2v(8)

A1g 2 1 αxx + αyy, αzz
A1u 1 1
A2g 1 1 Rz
A2u 1 1 1 2 2 1 Tz
B1g 2 1 αxx − αyy
B1u 2 1 1
B2g 1 1 αxy
B2u 1 1 2
Eg 3 1 (Rx,Ry) (αxz, αyz)
Eu 2 1 1 3 3 2 (Tx,Ty)

Sum 6 3 3 12 24 12 60

Table A.4. System 4—normal modes for the Glazer system a+a+a+.

a+a+a+
A(1) A(2) B O

Selection rulesTh(2) D2h(6) S6(8) Cs(24)

Ag 2 αxx + αyy + αzz
Au 1 1
Eg 2 (αxx + αyy − 2αzz,

√
3αxx −

√
3αyy)

Eu 1 1
Tg 4 R αxx, αxz, αyz
Tu 1 3 3 5 T

Sum 3 9 12 36 60

Table A.5. System 5—normal modes for the Glazer system a+b+c+.

a+b+c+
A(1) A(2) A(3) A(4) B O(1) O(2) O(3)

Selection rulesD2h(2) D2h(2) D2h(2) D2h(2) Ci(8) Cyz
s (8) Cxy

s (8) Cxz
s (8)

Ag 2 2 2 αxx, αyy, αzz
Au 3 1 1 1
B1g 1 2 1 Rz αxy
B1u 1 1 1 1 3 2 1 2 Tz
B2g 1 1 2 Ry αxz
B2u 1 1 1 1 3 2 2 1 Ty
B3g 2 1 1 Rx αyz
B3u 1 1 1 1 3 1 2 2 Tx

Sum 3 3 3 3 12 12 12 12 60

Table A.6. System 6—normal modes for the Glazer system a0a0c−.

a0a0c−
A B O(1) O(2)

Selection rulesD′2d(4) C4h(4) C′2v(8) D4(4)

A1g 1 αxx + αxx, αzz
A1u 1
A2g 1 1 Rz
A2u 1 1 1 1 Tz
B1g 1 αxx − αyy
B1u 1
B2g 1 1 αxy
B2u
Eg 1 1 1 (Rx,Ry) (αxz, αyz)
Eu 1 2 2 1 (Tx,Ty)

Sum 6 6 12 6 30
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Table A.7. System 7—normal modes for the Glazer system a0b−b−.

a0b−b−
A B O(1) O(2)

Selection rulesCz
2v(4) Cx

2h(4) Cy
2(8) Cz

2v(4)

Ag 1 1 1 αxx, αyy, αzz
Au 1 1
B1g 2 Rz αxy
B1u 1 2 2 1 Tz
B2g 1 1 1 Ry αxz
B2u 1 2 1 1 Tz
B3g 1 2 1 Rx αyz
B3u 1 1 2 1 Tx

Sum 6 6 12 6 30

Table A.8. System 8—normal modes for the Glazer system a−a−a−.

a−a−a−
A B O

Selection rulesD3(2) S6(2) C2(6)

A1g 1 αxx, αyy, αzz
A1u 1 1
A2g 1 2 Rz
A2u 1 1 2 Tz
Eg 1 3 (Rx,Ry) (αxx − αyy, αxy), (αxz, αyz)
Eu 1 2 1 Tx,Ty

Sum 6 6 18 30

Table A.9. System 9—normal modes for the Glazer system a0b−c−.

a0b−c−
A1 B O(1) O(2) O(3)

Selection rulesCs(4) Ci(4) C2(4) C2(4) Cs(4)

Ag 2 1 1 2 Rz αxx, αyy, αzz, αxy
Au 1 3 1 1 1 Tz
Bg 1 2 2 1 Rx,Ry αxx, αyy
Bu 2 3 2 2 2 Tx,Ty

Sum 6 6 6 6 6 30

Table A.10. System 10—normal modes for the Glazer system a−b−b−.

a−b−b−
A1 B O(1) O(2)

Selection rulesC2(4) Ci(4) C1(8) C2(4)

Ag 1 3 1 Rz αxx, αyy, αzz, αxy
Au 1 3 3 1 Tz
Bg 2 3 2 Rx,Ry αxx, αyy
Bu 2 3 3 2 Tx,Ty

Sum 6 6 12 6 30

Table A.11. System 11—normal modes for the Glazer system a−b−c−.

a−b−c−
A B(1) B(2) O(1) O(2) O(2)

Selection rulesC1(2) Ci(1) Ci(1) C1(2) C1(2) C1(2)

Ag 3 3 3 3 R α
Au 3 3 3 3 3 3 T

Sum 6 3 3 6 6 6 30
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Table A.12. System 12—normal modes for the Glazer system a0b+c−.

a0b+c−
A(1) A(2) B O(1) O(2) O(3)

Selection rulesCy
2v(4) Cy

2v(4) Ci(8) Cyz
s (8) Cxy

s (8) Cx
2(8)

Ag 1 1 2 2 1 αxx, αyy, αzz
Au 3 1 1 1
B1g 1 1 1 2 2 Rz αxy
B1u 1 1 3 2 1 2 Tz
B2g 1 1 2 Ry αxz
B2u 1 1 3 2 2 2 Ty
B3g 1 1 2 1 1 Rx αyz
B3u 1 1 3 1 2 1 Tx

Sum 6 6 12 12 12 12 60

Table A.13. System 13—normal modes for the Glazer system a+b−b−.

a+b−b−
A B O(1) O(2)

Selection rulesCyz
s (4) Ci(4) Cyz

s (4) C1(8)

Ag 2 2 3 αxx, αyy, αzz
Au 1 3 1 3
B1g 1 1 3 Rz αxy
B1u 2 3 2 3 Tz
B2g 2 2 3 Ry αxz
B2u 1 3 1 3 Ty
B3g 1 1 3 Rx αyz
B3u 2 3 2 3 Tx

Sum 12 12 12 24 60

Table A.14. System 14—normal modes for the Glazer system a+b−c−.

a+b−c−
A(1) A(2) B(1) B(2) O(1) O(2) O(3) O(4)

Selection rulesCs(2) Cs(2) Ci(2) Ci(2) C1(4) Cs(2) Cs(2) C1(4)

Ag 2 2 3 2 2 3 Rz αxx, αyy, αzz, αxy
Au 1 1 3 3 3 1 1 3 Tz
Bg 1 1 3 1 1 3 Rx,Ry αxx, αyy
Bu 2 2 3 3 3 2 2 3 Tx,Ty

Sum 6 6 6 6 12 6 6 12 60

Table A.15. System 15—normal modes for the Glazer system a+a+c−.

a+a+c−
A(1) A(2) A(3) B O(1) O(2) O(3)

Selection rulesC4
2v(4) D2d(2) D2d(2) Ci(8) Cv

s(8) Cv(8) C′2(8)

A1g 1 2 2 1 αxx + αyy, αzz
A1u 3 1 1 1
A2g 1 1 2 Rz
A2u 1 1 1 3 2 2 2 Tz
B1g 1 1 1 2 2 2 αxx − αxy
B1u 3 1 1 2
B2g 1 1 1 αxy
B2u 1 3 2 2 1
Eg 2 1 1 3 3 3 (Rx,Ry) (αxz, αyz)
Eu 2 1 1 6 3 3 3 (Tx,Ty)

Sum 12 6 6 24 24 24 24 120
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Table A.16. System 16—normal modes for BiFeO3 a−a−a−.

a−a−a−
Bi Fe O

Selection rulesC3(2) C3(2) C1(6)

A1 1 1 3 Tz αz
xx + α

z
yy, α

z
zz

A2 1 1 3 Rz

E 2 2 6 (Tx,Ty); (RxRy) (α
y
xx − α

y
yy, α

x
xy), (α

x
xz, α

y
yz)

Sum 6 6 18 30
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