Impact of Mutual Coupling on Adaptive Switching Between MIMO Transmission Strategies and Antenna Configurations

by Ramya Bhagavatula, Robert W. Heath, Antonio Forenza, Nicholas J. Kirsch and Kapil R. Dandekar
Abstract:
Adaptive switching between multiple-input multiple-output (MIMO) transmission strategies like diversity and spatial multiplexing is a flexible approach to respond to channel variations. It is desirable to obtain accurate estimates of the switching points between these transmission schemes to realize the capacity gains made possible by adaptive switching. In this paper, it is shown that the accuracy of switching point estimates for switching between statistical beamforming and spatial multiplexing is improved by taking into account the effects of mutual coupling between antenna array elements. The impact of mutual coupling on the ergodic capacities of these two transmission strategies is analyzed, by deriving expressions for the same. Adaptive switching between combinations of transmission strategies and antenna array configurations (using reconfigurable antenna arrays) is shown to produce maximum capacity gains. Expressions for the switching points between transmission strategies and/or antenna configurations, including mutual coupling effects, are derived and used to explore the influence of mutual coupling on the estimates. Finally, measurements taken from reconfigurable rectangular patch antenna arrays are used to validate the analytical results.
Reference:
R. Bhagavatula, R. W. Heath, A. Forenza, N. J. Kirsch, K. R. Dandekar, “Impact of Mutual Coupling on Adaptive Switching Between MIMO Transmission Strategies and Antenna Configurations”, Wireless Personal Communications, vol. 52, no. 1, pp. 69–87, 2008.
Bibtex Entry:
@Article{Bhagavatula2008,
author="Ramya Bhagavatula and Robert W. Heath and Antonio Forenza and Nicholas J. Kirsch and Kapil R. Dandekar",
title="Impact of Mutual Coupling on Adaptive Switching Between MIMO Transmission Strategies and Antenna Configurations",
journal="Wireless Personal Communications",
year="2008",
volume="52",
number="1",
pages="69--87",
abstract="Adaptive switching between multiple-input multiple-output (MIMO) transmission strategies like diversity and spatial multiplexing is a flexible approach to respond to channel variations. It is desirable to obtain accurate estimates of the switching points between these transmission schemes to realize the capacity gains made possible by adaptive switching. In this paper, it is shown that the accuracy of switching point estimates for switching between statistical beamforming and spatial multiplexing is improved by taking into account the effects of mutual coupling between antenna array elements. The impact of mutual coupling on the ergodic capacities of these two transmission strategies is analyzed, by deriving expressions for the same. Adaptive switching between combinations of transmission strategies and antenna array configurations (using reconfigurable antenna arrays) is shown to produce maximum capacity gains. Expressions for the switching points between transmission strategies and/or antenna configurations, including mutual coupling effects, are derived and used to explore the influence of mutual coupling on the estimates. Finally, measurements taken from reconfigurable rectangular patch antenna arrays are used to validate the analytical results.",
issn="1572-834X",
doi="10.1007/s11277-008-9513-2",
url="http://dx.doi.org/10.1007/s11277-008-9513-2"
}