Ragh Kuttappa: Difference between revisions
Line 29: | Line 29: | ||
<li style="display: inline-block;"> [[File:aes_core.png|thumb|right|412px|AES core synthesized with RotaSYN]] </li> | <li style="display: inline-block;"> [[File:aes_core.png|thumb|right|412px|AES core synthesized with RotaSYN]] </li> | ||
</ul></div> | |||
''2. Robust Low Power Clock Synchronization for Multi-Die Systems'' | |||
Multi-Die Systems (MDS) have leveraged the high interconnect performance on active and passive interposers to design Network-on-Chips (NoC). However, synchronizing the MDS with a single clocking domain has never been explored. We design a single clocking domain over the active interposer leveraging the high quality interconnect performance, specifically targeting cross-die synchronization. Check out our Paper to appear in ISLPED'19. | |||
<div><ul> | |||
<li style="display: inline-block;"> [[File:Rotary_interposer_topology.png|thumb|left|400px|Active silicon interposer based synchronization topology for multi-die systems with resonant rotary clocks]] </li> | |||
<li style="display: inline-block;"> [[File:Rotary_interposer_die.png|thumb|right|412px|Multi-die system implemented with CORTEX M0 cores and resonant rotary clocks]] </li> | |||
</ul></div> | </ul></div> | ||
Revision as of 07:27, 22 May 2019
Education
Ph.D. in Electrical Engineering, ongoing
- Drexel University, Philadelphia, PA, USA
M.S. in Electrical Engineering, 2015
- San Francisco State University
Bachelor of Engineering, 2012
- Visvesvaraya Technological University (VTU), Karnataka, India
Research Interests
- Resonant clocking technologies
- Adiabatic circuits
- Nanoscale circuits and systems
- Low-power design methodologies
Resonant clocking technologies
Resonant clocking is a low power clock generation and distribution solution for modern ICs. The main research focus is the design and implementation of rotary clocks that is interoperable within the traditional ASIC flow. Based on years of development and experience within Dr. Taskin's research group numerous products for rotary clocks are currently being developed to address future needs for energy efficient computing.
1. RotaSYN: Rotary Traveling Wave Oscillator SYNthesizer
RotaSYN is a backend synthesis tool for rotary clocks. RotaSYN is demonstrated on publicly available designs and compared to traditionally clocked designs. Check out our RotaSYN PAPER published in TCAS-I.
2. Robust Low Power Clock Synchronization for Multi-Die Systems
Multi-Die Systems (MDS) have leveraged the high interconnect performance on active and passive interposers to design Network-on-Chips (NoC). However, synchronizing the MDS with a single clocking domain has never been explored. We design a single clocking domain over the active interposer leveraging the high quality interconnect performance, specifically targeting cross-die synchronization. Check out our Paper to appear in ISLPED'19.
Résumé
Publications
Journals
- Ragh Kuttappa, Adarsha Balaji, Vasil Pano, Baris Taskin, and Hamid Mahmoodi, "RotaSYN: Rotary Traveling Wave Oscillator SYNthesizer", IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS-I), February 2019 PAPER.
- Ragh Kuttappa, Houman Homayoun, Hassan Salmani and Hamid Mahmoodi, "Reliability Analysis of Spin Transfer Torque based Look up Tables under Process Variations and NBTI Aging," Elsevier Microelectronics Reliability Journal, Vol. 62, pp. 156--166, July 2016.
Conferences
- Ragh Kuttappa, Baris Taskin, Scott Lerner, Vasil Pano, and Ioannis Savidis, "Robust Low Power Clock Synchronization for Multi-Die Systems", Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), July 2019.
- Longfei Wang, Ragh Kuttappa, Baris Taskin, and Selcuk Kose, "Distributed Digital Low-Dropout Regulators with Phase Interleaving for On-Chip Voltage Noise Mitigation", Proceedings of the IEEE International Workshop on System Level Interconnect Prediction (SLIP), June 2019.
- Ragh Kuttappa, Scott Lerner, Leo Filippini, and Baris Taskin, "Low Swing -- Low Frequency Rotary Traveling Wave Oscillators", Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), May 2019.
- Ragh Kuttappa and Baris Taskin, "Low Frequency Rotary Traveling Wave Oscillators", Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), May 2018.
- Ragh Kuttappa, Leo Filippini, Scott Lerner and Baris Taskin, "Stability of Rotary Traveling Wave Oscillators Under Process Variations and NBTI", Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), May 2017, pp. 1--4.
- Ragh Kuttappa, Lunal Khuon, Bahram Nabet and Baris Taskin, "Reconfigurable Threshold Logic Gates using Optoelectronic Capacitors", Proceedings of the Design, Automation and Test in Europe (DATE), March 2017, pp. 614--617.
- Ragh Kuttappa, Houman Homayoun, Hassan Salmani and Hamid Mahmoodi, "Comparative Analysis of Robustness of Spin Transfer Torque based Look Up Tables under Process Variations,” Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), May 2016, pp. 606--609.
Contact Information
Address:
3141 Chestnut Street
Drexel University
ECE Department
Philadelphia, PA 19104
Office: Bossone 405
Email: fr67 [at the rate] drexel [period] edu
Linkedin: ragh/linkedin