Publications
2015
Langevin, Jared; Wen, Jin; Gurian, Patrick L.
Simulating the human-building interaction: Development and validation of an agent-based model of office occupant behaviors Journal Article
In: Building and Environment, vol. 88, pp. 27-45, 2015, ISSN: 0360-1323, (Interactions between human and building environment).
Abstract | Links | BibTeX | Tags: Agent-based modeling, Human-building interaction, Occupant behavior, Thermal acceptability, Thermal comfort
@article{LANGEVIN201527,
title = {Simulating the human-building interaction: Development and validation of an agent-based model of office occupant behaviors},
author = {Jared Langevin and Jin Wen and Patrick L. Gurian},
url = {https://www.sciencedirect.com/science/article/pii/S0360132314004090},
doi = {https://doi.org/10.1016/j.buildenv.2014.11.037},
issn = {0360-1323},
year = {2015},
date = {2015-01-01},
journal = {Building and Environment},
volume = {88},
pages = {27-45},
abstract = {This paper develops and validates an agent-based model (ABM) of occupant behavior using data from a one-year field study in a medium-sized, air-conditioned office building. The full ABM is presented in detail using a standard protocol for describing this type of model. Simulated occupant “agents” in the full ABM behave according to Perceptual Control Theory, taking the most immediate, unconstrained adaptive behaviors as needed to maintain their current thermal sensation within a reference range of seasonally acceptable sensations. ABM validation assigns simulated agents the personal characteristics and environmental context of real office occupants in the field study; executes the model; and compares the model's ability to predict observed fan, heater, and window use to the predictive abilities of several other behavior modeling options. The predictive performance of the full ABM compares favorably to that of the other modeling options on both the individual and aggregate outcome levels. The full ABM also appears capable of reproducing more familiar regression relationships between behavior and the local thermal environment. The paper concludes with a discussion of the model's current limitations and possibilities for future development.},
note = {Interactions between human and building environment},
keywords = {Agent-based modeling, Human-building interaction, Occupant behavior, Thermal acceptability, Thermal comfort},
pubstate = {published},
tppubtype = {article}
}
This paper develops and validates an agent-based model (ABM) of occupant behavior using data from a one-year field study in a medium-sized, air-conditioned office building. The full ABM is presented in detail using a standard protocol for describing this type of model. Simulated occupant “agents” in the full ABM behave according to Perceptual Control Theory, taking the most immediate, unconstrained adaptive behaviors as needed to maintain their current thermal sensation within a reference range of seasonally acceptable sensations. ABM validation assigns simulated agents the personal characteristics and environmental context of real office occupants in the field study; executes the model; and compares the model’s ability to predict observed fan, heater, and window use to the predictive abilities of several other behavior modeling options. The predictive performance of the full ABM compares favorably to that of the other modeling options on both the individual and aggregate outcome levels. The full ABM also appears capable of reproducing more familiar regression relationships between behavior and the local thermal environment. The paper concludes with a discussion of the model’s current limitations and possibilities for future development.