Rate of hemifusion diaphragm dissipation and ability to form three-junction bound HD determined by lipid composition

Rate of hemifusion diaphragm dissipation and ability to form three-junction bound HD determined by lipid composition

Jasmine Gardner and CFA

J. Chem. Phys. 2017;147:134903 (10.1063/1.4994320)

Abstract: Though the hemifusion diaphragm (HD) is widely accepted as an intermediate in bilayer membrane fusion, lipid contributions toward HD stability and dynamics are still not fully understood. In this paper, we study large, binary, protein-free HD systems at varying compositions of negative intrinsic curvature (NIC) lipids using molecular dynamics (MD) simulations of a solvent-free coarse-grained lipid model. Under MD, initially created HDs are found to relax to three major end states depending on the composition and lipid intrinsic curvature. Low compositions of NIC lipids or weak intrinsic curvature result in double-bilayer end states, and moderate compositions of moderate to strong NIC lipids result in metastable fusion pores. Importantly, high compositions of moderate NIC lipids result in a metastable HD that persists beyond μs time scales. NIC lipids stabilize the HD by filling the junction core around the HD. Sorting of NIC lipids toward the three-junction region occurs in fused-endpoint systems, but no significant sorting was seen in systems that end in a double bilayer indicating that high line tension at the triple junction drives HD dissipation faster than sorting can enrich that junction enough to lower that line tension. The appearance of three end states dependent on the NIC lipid composition highlights the necessity of NIC lipids for non-leaky fusion.

Categories: