Click here for patents and conference proceedings
Google Scholar Profile
2021
52. Pai, R. and Kalra, V. Vanadium Monoxide-Based Free-Standing Nanofiber Hosts for High-Loading Lithium-Sulfur Batteries, 2021, ACS Applied Energy Materials,4, 5649. doi.org/10.1021/acsaem.1c00293
51. Pai,, R., Natu,V., Sokol, M., Carey, M., Barsoum, M.W., and Kalra, V. Tuning functional two-dimensional MXene nanosheets to enable efficient sulfur utilization in lithium-sulfur batteries, 2021, Cell Reports and Physical Sciences, 2, 100480. doi.org/10.1016/j.xcrp.2021.100480
2020
50. Li, X., Rafie, A., Kalra, V. and Lau, K.K.S. Deposition Behavior of Polyaniline on Carbon Nanofibers by Oxidative Chemical Vapor Deposition, Langmuir, 2020, 36, 13079. doi.org/10.1021/acs.langmuir.0c02539
49. Rafie, A., Singh, A. and Kalra. V. Synergistic Effect of Sulfur-rich Copolymer and Carbon Host Porosity in Li-S Batteries, Electrochimica Acta, 2020, 365, 137088. DOI:10.1016/j.electacta.2020.137088
48. Intikhab, S., Rebollar, L., Li, Y., Pai, R., Kalra, V., Tang, M.H. and Snyder, J.D. Caffeinated Interfaces Enhance Alkaline Hydrogen Electrocatalysis, ACS Catalysis, 2020, 10, 6798. pubs.acs.org/doi/10.1021/acscatal.0c01635.
47. Carey, M., Hinton, Z., Natu, V., Pai, R., Sokol, M., Alvarez, N., Kalra, V., and Barsoum, M. Dispersion and Stabilization of Alkylated 2D Ti3C2Tz MXene in Nonpolar Solvents and Their Pseudocapacitive Behavior, Cell Reports Physical Science, 2020, 1, 100042. DOI:10.1016/j.xcrp.2020.100042
46. Natu, V., Pai, R., Sokol, M., Carey, M., Kalra, V., and Barsoum, M.W. 2D Ti3C2Tz MXene Synthesized by Water Free Etching of Ti3AlC2 in Polar Organic Solvents, Chem, 2020, 6, 616. doi.org/10.1016/j.chempr.2020.01.019
45. Amaral, P.E.M., Hall, D.C., Pai, R., Krol, J., Kalra, V., Ehrlich, G.D. and Ji, H-F, Fibrous Phosphorus Quantum Dots for Cell Imaging, ACS Applied Nano Materials, 2020, 3, 752. doi.org/10.1021/acsanm.9b01786
2019
44. Singh, A.; Kalra, V. Electrospun Nanostructures for Conversion Type Cathode (S, Se) Based Lithium and Sodium batteries. Journal of Materials Chemistry A, 2019, 7, 11613 (Invited Review). doi.org/10.1039/C9TA00327D
43. Singh, A. Rafie, A. Kalra, V. Revisiting the Use of Electrolyte Additives in Li-S Batteries: Role of Porosity of Sulfur Host Materials, Sustainable Energy and Fuels 2019, 3, 2788. doi.org/10.1039/C9SE00277D
42. Li,X.; Rafie, A.; Yuriy, S.; Simotwo, S.; Kalra, V.; Lau, KKS. Engineering Conformal Nanoporous Polyaniline via Oxidative Chemical Vapor Deposition and its Potential Application in Supercapacitors. Chem. Eng. Sci. 2019, 194, 156 (Invited Special Issue Article). doi.org/10.1016/j.ces.2018.06.053
2018
41. Dillard, C.; Singh, A.; Kalra, V. Polysulfide Speciation and Electrolyte Interactions in Lithium–Sulfur Batteries with in Situ Infrared Spectroelectrochemistry. Journal of Physical Chemistry C 2018, 122, 18195. DOI: 10.1021/acs.jpcc.8b02506.
40. Dillard, C.; Chung, S-H.; Singh, A.; Manthiram, A.; Kalra, V. Binder-free, freestanding cathodes fabricated with an ultra-rapid diffusion of sulfur into carbon nanofiber mat for lithium sulfur batteries. Materials Today Energy 2018, 9, 336. doi.org/10.1016/j.mtener.2018.06.004
39. Li,X.; Rafie, A.; Yuriy, S.; Simotwo, S.; Kalra, V.; Lau, KKS. Engineering conformal nanoporous polyaniline via oxidative chemical vapor deposition and its potential application in supercapacitors. Chemical Engineering Science 2018, doi.org/10.1016/j.ces.2018.06.053.
38. Pai, R.N.; Kalra, V. High Performance Aqueous Asymmetric Supercapacitor based on Iron Oxide Anode and Cobalt Oxide Cathode. Journal of Materials Research 2018, 33, 1199 (Invited Special Issue Article). DOI: https://doi.org/10.1557/jmr.2018.13
37. Pai, R.N.; Singh, A.; Simotwo, S.; Kalra. V., In-Situ Grown Iron Oxides on Carbon Nanofibers as Freestanding Anodes in Aqueous Supercapacitors. Advanced Engineering Materials, 2018, 1701116. doi.org/10.1002/adem.201701116
36. Simotwo, S.; Kalra, V. Polyaniline-Carbon based Binder-free Asymmetric Supercapacitor in Neutral Aqueous Electrolyte. Electrochimica Acta 2018, 268, 131. doi.org/10.1016/j.electacta.2018.01.157
35. Singh, A.; Kalra, V. TiO Phase Stabilized into Freestanding Nanofibers as Strong Polysulfide Immobilizer in Li–S Batteries: Evidence for Lewis Acid–Base Interactions. ACS Applied Materials and Interfaces 2018, 10, 37937. doi.org/10.1021/acsami.8b11029
2017
34. Simotwo, S.; Chinnam, PR.; Wunder, S. L.; Kalra, V. Self-Standing Supercapacitor Based on Ionic Liquid-Rich Ionogel and Activated Carbon Nanofiber Electrodes. ACS Applied Materials and Interfaces 2017, 9, 33749 doi.org/10.1021/acsami.7b07479
33. Singhal, R.; Kalra, V. Cobalt nanoparticle-embedded porous carbon nanofibers with inherent N- and F-doping as binder-free bifunctional catalysts for oxygen reduction and evolution reactions. Chem Phys Chem 2017, 18, 223. DOI: 10.1002/cphc.201600771
2016
32. Singhal, R.; Kalra, V. Binder-free Hierarchically-porous Carbon Nanofibers Decorated with Cobalt Nanoparticles as Efficient Cathodes for Lithium-Oxygen Batteries. RSC Advances 2016, 6, 103072. doi.org/10.1039/C6RA16874D
31. Simotwo, S.K.; Kalra, V. Polyaniline-based Electrodes: Recent Application in Supercapacitors and Next Generation Rechargeable Batteries. Curr. Opin. Chem. Eng. 2016, 13, 150, Invited Review Article. doi.org/10.1016/j.coche.2016.09.001
30. Simotwo, S.K.; DelRe, C.#; Kalra, V. Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline-Carbon Nanotube Nanofibers. ACS Applied Materials and Interfaces 2016, 8, 21261. doi.org/10.1021/acsami.6b03463
29. Lawrence, D.#; Tran, C.; Mallajoysula, A.T.; Doorn, S.K.; Mohite, A.; Gupta, G.; Kalra, V. High-energy Density Nanofiber-based Solid-state Supercapacitors. Journal of Materials Chemistry A 2016, 4, 160. Featured as a JMCA HOT Paper. doi.org/10.1039/C5TA05552K
28. Simotwo, S.K.; Kalra, V. Study of Co-electrospun Nafion and Polyaniline Nanofibers as Potential Catalyst Support for Fuel Cell Electrodes. Electrochimica Acta 2016, 198, 156. doi.org/10.1016/j.electacta.2016.02.209Get
2015
27. Chung, S-H; Singhal, R; Kalra, V; Manthiram, A. A Porous Carbon Mat as an Electrochemical Testing Platform for Investigating the Polysulfide Retention of Various Cathode Configurations in Li-S Cells. The Journal of Physical Chemistry Letters, 2015, 6, 2163. doi.org/10.1021/acs.jpclett.5b00927
26. Tran, C.; Lawrence, D.#; Richey, F.W.; Dillard, C.; Elabd, Y.; Kalra, V. Electrochemical Performance of Device-ready Porous Carbon Nanofibers in Ionic Liquid Electrolyte-based Supercapacitors. Chemical Communications 2015, 51, 13760.
25. Tran, C.; Singhal, R.; Lawrence, D.#; Kalra, V. Polyaniline-coated Freestanding Porous Carbon Nanofibers as Efficient Hybrid Electrodes for Supercapacitors. Journal of Power Sources 2015, 293, 373. doi.org/10.1016/j.jpowsour.2015.05.054
24. Chung, S-H.; Singhal, R.; Kalra, V.; Manthiram, A. Electrochemically Stable Rechargeable Lithium–Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide. Advanced Energy Materials 2015, DOI: 10.1002/aenm.201500738. doi.org/10.1002/aenm.201500738
23. Singhal, R.*; Chung, S-H.*; Manthiram, A.; Kalra, V. Free-standing Carbon Nanofiber Interlayer for High Performance Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 2015, 3, 4530. doi.org/10.1039/C4TA06511E
22. Andersen, C.P.; Hu, H.; Qiu, G.; Kalra, V.; Sun, Y. Pore-Scale Transport Resolved Model Incorporating Cathode Microstructure and Peroxide Growth in Lithium-Air Batteries. Journal of Electrochemical Society, 2015, A1135 DOI:10.1149/2.0051507
21. Singhal, R.; Kalra, V. Using Common Salt to Impart Pseudocapacitive Functionalities to Carbon Nanofibers, Journal of Materials Chemistry A, 2015, 3, 377. DOI:10.1039/C4TA05121A
20. Dillard, C.; Singhal, R.; Kalra, V. Hierarchical Self-Assembly in Monoaxially Electrospun P3HT/PCBM Nanofibers.Macromol. Mater. Eng. 2015, 300 (3), 20-327. doi.org/10.1002/mame.201400214
2014
19. Richey, F.W., Tran, C., Kalra, V., Elabd, Y.A. Ionic Liquid Dynamics in Nanoporous Carbon Nanofibers in Supercapacitors Measured with in operando Infrared Spectroelectrochemistry, The Journal of Physical Chemistry C, 2014, 118, 21846. doi.org/10.1021/jp506903m
18. Kapllani, A.#, Dillard, C., Washington, K.E., Biewer, M. C. Stefan, M. C., Kalra, V. Self-Assembly of Poly(3-hexylthiophene)-blockpoly(γ-benzyl-L-glutamate) within Solution-Cast Films and Nanofibers, 2014, 299(12), 1484-1493. doi.org/10.1002/mame.201400148
17. Tran, C.; Kalra, V. Molecular Dynamics Study on Effect of Elongational Flow on Morphology of Immiscible Mixtures. J. Chem. Phys. 2014, 140, 134902. doi.org/10.1063/1.4869404
16. Mayrhuber, I.; Dennison, C.R.; Kalra, V.; Kumbur, E.C. Laser-Perforated Carbon Paper Electrodes for Improved Mass-Transport in High Power Density Vanadium Redox Flow Batteries. J. Power Sources 2014, 260, 251-258. doi.org/10.1016/j.jpowsour.2014.03.007
15. Park, J.; Kalra, V.; Joo, Y.L. Controlling the Dispersion and Orientation of Nanorods in Polymer Melt under Shear: Coarse-Grained Molecular Dynamics Simulation Study. J. Chem. Phys. 2014, 140, 124903. doi.org/10.1063/1.4868986
14. Hu, A.#; Curran, C.#; Tran, C.; Kapllani, A.#; Kalra, V. Fabrication of Transition Metal Oxide-Carbon Nanofibers with Novel Hierarchical Architectures. J. Nanosci. Nanotechnol. 2014, 14, 5501-5507. DOI: 10.1166/jnn.2014.8704
13. Park, J.; Yin, J.; Kalra, V.; Joo, Y. Role of Nanoparticle Selectivity in the Symmetry Breaking of Cylindrically Confined Block Copolymers. J. Phys. Chem. C 2014, 118, 7653-7668. doi.org/10.1021/jp412145j
2013
12. Tran, C.; Kalra, V. Fabrication of Porous Carbon Nanofibers with Adjustable Pore Sizes as Electrodes for Supercapacitors. J Power Sources 2013, 235, 289-296. [pdf] doi.org/10.1016/j.jpowsour.2013.01.080
11. Kapllani, A.#; Tran, C.; Kalra, V. Self-Assembly of Fully Conjugated Diblock Copolymers within Nanofibers. Soft Matter2013, 9, 11014. [pdf] doi.org/10.1039/C3SM50792K
10. Tran, C.; Kalra, V. Co-continuous nanoscale assembly of Nafion/polyacrylonitrile blends within nanofibers: A facile route to fabrication of porous nanofibers. Soft Matter 2013, 9, 846-852. [pdf] doi.org/10.1039/C2SM25976A
2012
9. Park, J.H.; Kalra, V.; Joo, Y.L. Cylindrically Confined Assembly of Asymmetrical Block Copolymers with and without Nanoparticles. Soft Matter 2012, 8(6), 1845-1857. DOI: 10.1039/C2SM06955E
Prior to Starting at Drexel
2004-2010
8. Kalra, V.; Escobedo, F.; Joo, Y.L. Effect of shear on Nanoparticle dispersion in Polymer Melts: A Molecular Dynamics Study. J. Chem. Phys. 2010, 132, 024901. [pdf] doi.org/10.1063/1.3277671
7. Kalra, V.; Joo, Y.L. Coarse-grained molecular dynamics study of block copolymer/nanoparticle composites under elongational flow. J. Chem. Phys. 2009, 131, 214904, DOI: 10.1063/1.3266511. #Selected for publication in Virtual Journal of Nanoscale Science and Technology. [pdf] DOI: 10.1063/1.3266511
6. Kalra, V.; Lee, J.H.; Park, J.; Marquez, M.; Joo, Y.L. Confined Assembly of Asymmetric Block Copolymer Nanofibers via Multi-axial Jet Electrospinning. Small 2009, 5, 2323. [pdf] doi.org/10.1002/smll.200900157
5. Carroll, C.P.; Zhmayev, E.; Kalra, V.; Joo, Y.L. Electrically Driven Polymeric Liquid Jets: Modeling and Experiments. Korea-Australia Rheology Journal 2008, 20, 153. [pdf]
4. Kalra, V.; Lee, J.; Lee, J.H.; Marquez, M.; Wiesner, U.; Joo, Y.L. Controlling Nanoparticle Location via Confined Assembly in Electrospun Block Copolymer Nanofibers. Small 2008, 4, 2067. [pdf] doi.org/10.1002/smll.200800279
3. Kalra, V.; Mendez, S.; Escobedo, F.; Joo, Y.L. Coarse-grained Molecular Dynamics Simulation on the Placement of Nanoparticles within Symmetric Diblock Copolymers under Shear Flow. J. Chem. Phys. 2008, 128, 164909. #Selected for publication in Virtual Journal of Nanoscale Science and Technology and Virtual Journal of Biological Physics Research. [pdf] DOI: 10.1063/1.2911690
2. Kalra, V.; Mendez, S.; Lee, J.H.; Nguyen, H.; Marquez, M.; Joo, Y.L. Confined Assembly in Coaxially Electrospun Block Copolymer Fibers. Adv. Mater. 2006, 18, 3299. [pdf] doi.org/10.1002/adma.200601948
1. Kalra, V.; Kakad, P.A.; Mendez, S.; Ivannikov, T.; Kamperman, M.; Joo, Y.L. Self Assembled Structures in Electrospun Poly (styrene-block-isoprene) Fibers. Macromolecules 2006, 39, 5453. [pdf] doi.org/10.1021/ma052643a