Formulation of a model resin system for benchmarking processing-property relationships in high-performance photo 3D printing applications
Abstract
A well-defined resin system is needed to serve as a benchmark for 3D printing of high-performance composites. This work describes the design and characterization of such a system that takes into account processability and performance considerations. The Grunberg–Nissan model for resin viscosity and the Fox equation for polymer Tg were used to determine proper monomer ratios. The target viscosity of the resin was below 500 cP, and the target final Tg of the cured polymer was 150 °C based on tan-δ peak from dynamic mechanical analysis. A tri-component model resin system, termed DA-2 resin, was determined and fully characterized. The printed polymer exhibited good thermal properties and high mechanical strength after post-cure, but has a comparatively low fracture toughness. The model resin will be used in additive manufacturing of fiber reinforced composite materials as well as for understanding the fundamental processing–property relationships in light-based 3D printing.
Publication Metadata
Authors
Tu, Jianwei.; Makarian, Kamran; Alvarez, Nicolas J.; Palmese, Giuseppe R.
Keywords
Citation
Tu J, Makarian K, Alvarez NJ, Palmese GR. Formulation of a Model Resin System for Benchmarking Processing-Property Relationships in High-Performance Photo 3D Printing Applications. Materials 2020, 13(18), 4109; DOI: https://doi.org/10.3390/ma13184109