High-performance electric-powered race cars are an outstanding application of motor controls, power electronics, and energy management system. These battery-powered cars have a maximum power of 200 kW and can reach speeds of over 225 mph. Learn more about Learn more about this exciting new form of auto racing in these YouTube videos:
Energy storage is a necessary component of practical solar or wind energy systems. Without storage, a passing cloud or a day of calm winds could result in the lights turning off.
This article from philly.com discusses a proposed energy storage system that may be used to complement wind energy in Central Pennsylvania. The Bucks County-based Merchant Hydro Developers wants to convert 21 out-of-use anthracite coal mines into pumped storage facilities. When power is less expensive, intermittent wind power will be used to pump water into an upper reservoir. When energy prices rise during the middle of the day, the water will be released into the lower reservoirs of the mines, spinning turbines on the way down to generate a consistent and predictable flow of power.
Pumped hydro storage already accounts for the vast majority of stored energy in the world including 97% of the energy storage in the United States. The coal mine reservoir solution is unique because it is a closed system. Most pumped storage draws from flowing bodies of water (e.g. rivers) and released the water back into the same system.
Nanyang Technological University (NTU) is constructing four offshore hybrid microgrid systems in Singapore under the Renewable Energy Integration Demonstrator-Singapore (REIDS) initiative. The microgrids will include over 3,000 square meters of solar panels; their first customers will include fish hatcheries and nurseries in Singapore.
Read more from Asian Scientist Magazine at: http://www.asianscientist.com/2016/11/tech/reids-initiative-singapore-offshore-renewable-energy-system-ntu/
The BBC recently published this report that gives an overview of new research conducted at MIT which may make traditional incandescent bulbs even more efficient than modern LEDs. The method required covering the base of the bulb with a nano-engineered material that reflects some of the (otherwise wasted) energy back into the bulb where it is emitted as visible light.
CEPE PhD Student Nick Coleman received a 2015 Koerner Family Award. From the Drexel COE Website:
The Koerner Family Awards for Graduate Students in the College of Engineering supports the research of Drexel Engineering graduate students. Founded by Robert M. Koerner, Ph.D. (’56, ’63) and his wife Paula Koerner, the awards fund allows graduate students to continue to pursue their research in electrical, chemical, mechanical, environmental, and biomedical engineering. Eight CoE students and two students working with faculty in the A.J. Drexel Institute for Energy and the Environment (IExE) received Koerner awards this year.
A link to the full article featuring recipients from each department is available here.
Three CEPE Papers were presented at the 2015 IEEE North American Power Symposium at UNC Charlotte, North Carolina, USA, Oct 4-6, 2015. “Evaluating Load Flow Capability with Thermostically Controllable Building Loads,” by Ph.D. Candidate Mohammed Muthalib and his his advisor Dr. Chika Nwankpa, won first place in the student paper competition.
IEEE has recently honored the Virginia Smith High-Voltage Direct-Current Converter Station, completed in 1988, as an IEEE Milestone. The station was the first of eight HVDC stations that connect the eastern and western AC grids in the United States. These interconnections allow power to flow east and west through the county, increasing the flexibility and reliability of both grids.
The Virginia Smith station, named after Nebraska’s first woman in the House of Representatives, can transfer up to 200 megawatts of power. The full article is available online here.
Three CEPE Papers were presented at the 2015 IEEE International Symposium on Circuits and Systems (ISCAS) in Lisbon, Portugal, May 24-27, 2015. Click the links below to access PDFs.
In December, IEEE Spectrum published an article on the now-underway NordLink project, which will result in a new high-voltage direct-current (HVDC) link between Norway and Germany. A new Spectrum article reveals that the project is on schedule to be completed in 2019, and will travel a total of 623 km, making it the longest HVDC line in Europe. And with a 1400 MW capacity, it will also be the most powerful HVDC line in Europe.
The new Spectrum article highlights the three primary incentives for the project, from and electrical point of view:
Firstly, the HVDC converters have the ability to connect two non-synchronized grids, thereby linking the frequency of the two separated electrical zones represented by the Nordic and continental grids. Secondly, the HVDC connection makes it possible to transmit electricity over long distances with minimum losses. In fact, it is not even possible to transport alternating current (AC) over long distances subsea due to capacitive losses. Finally, the VSC-HVDC converter stations have full STATCOM (Static Synchronous Compensator) functionality to support the AC network at the Norwegian and German point of common coupling.
You can visit the official ABB site on Nordlink here.
Drexel University Department of Electrical and Computer Engineering