Energy storage is a necessary component of practical solar or wind energy systems. Without storage, a passing cloud or a day of calm winds could result in the lights turning off.
This article from philly.com discusses a proposed energy storage system that may be used to complement wind energy in Central Pennsylvania. The Bucks County-based Merchant Hydro Developers wants to convert 21 out-of-use anthracite coal mines into pumped storage facilities. When power is less expensive, intermittent wind power will be used to pump water into an upper reservoir. When energy prices rise during the middle of the day, the water will be released into the lower reservoirs of the mines, spinning turbines on the way down to generate a consistent and predictable flow of power.
Pumped hydro storage already accounts for the vast majority of stored energy in the world including 97% of the energy storage in the United States. The coal mine reservoir solution is unique because it is a closed system. Most pumped storage draws from flowing bodies of water (e.g. rivers) and released the water back into the same system.
Nanyang Technological University (NTU) is constructing four offshore hybrid microgrid systems in Singapore under the Renewable Energy Integration Demonstrator-Singapore (REIDS) initiative. The microgrids will include over 3,000 square meters of solar panels; their first customers will include fish hatcheries and nurseries in Singapore.
Read more from Asian Scientist Magazine at: http://www.asianscientist.com/2016/11/tech/reids-initiative-singapore-offshore-renewable-energy-system-ntu/
The BBC recently published this report that gives an overview of new research conducted at MIT which may make traditional incandescent bulbs even more efficient than modern LEDs. The method required covering the base of the bulb with a nano-engineered material that reflects some of the (otherwise wasted) energy back into the bulb where it is emitted as visible light.
CEPE PhD Student Nick Coleman received a 2015 Koerner Family Award. From the Drexel COE Website:
The Koerner Family Awards for Graduate Students in the College of Engineering supports the research of Drexel Engineering graduate students. Founded by Robert M. Koerner, Ph.D. (’56, ’63) and his wife Paula Koerner, the awards fund allows graduate students to continue to pursue their research in electrical, chemical, mechanical, environmental, and biomedical engineering. Eight CoE students and two students working with faculty in the A.J. Drexel Institute for Energy and the Environment (IExE) received Koerner awards this year.
A link to the full article featuring recipients from each department is available here.
IEEE has recently honored the Virginia Smith High-Voltage Direct-Current Converter Station, completed in 1988, as an IEEE Milestone. The station was the first of eight HVDC stations that connect the eastern and western AC grids in the United States. These interconnections allow power to flow east and west through the county, increasing the flexibility and reliability of both grids.
The Virginia Smith station, named after Nebraska’s first woman in the House of Representatives, can transfer up to 200 megawatts of power. The full article is available online here.
Six proposed lagoon power plants in the UK aim to harness sustainable and predictable tidal power to provide up to 8% of the UK’s energy demand by 2022. Read the article watch a video on how tidal power plants are built and operated at this link from the BBC.
Ph. D. students Michael Kleinberg and Nicole Segal, and Dr. Karen Miu presented “On Measurement’ Role in Supporting Capacitor Control” at the Energy Association of Pennsylvania’s Electric Operations Committee Spring Meeting in March 2014.
The Center for Electric Power Engineering now has a LinkedIn group exclusively available to current and former faculty and staff. You can visit the group or request to join here.
Drexel University Department of Electrical and Computer Engineering